JPS5934149B2 - Method for manufacturing dense β′-sialon sintered body - Google Patents
Method for manufacturing dense β′-sialon sintered bodyInfo
- Publication number
- JPS5934149B2 JPS5934149B2 JP51088719A JP8871976A JPS5934149B2 JP S5934149 B2 JPS5934149 B2 JP S5934149B2 JP 51088719 A JP51088719 A JP 51088719A JP 8871976 A JP8871976 A JP 8871976A JP S5934149 B2 JPS5934149 B2 JP S5934149B2
- Authority
- JP
- Japan
- Prior art keywords
- sialon
- powder
- sintered body
- main component
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】
本発明は緻密質β′−サイアロン焼結体の製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a dense β'-sialon sintered body.
従来、β′−サイアロン(β’−8ialon)焼結体
の製造方法としては、種々の方法が提案さられているが
、得られたβ′−サイアロン焼結体は緻密質とならず、
仮に緻密質になっても焼成時に屈曲したり、収縮して寸
法安定性の劣るものしか得られず、しかも高温度で焼成
しなければならず製造コストの高騰を招く欠点があった
。Conventionally, various methods have been proposed for producing β'-sialon (β'-8ialon) sintered bodies, but the obtained β'-sialon sintered bodies do not have a dense quality;
Even if it were dense, it would bend or shrink during firing, resulting in poor dimensional stability, and it would have to be fired at a high temperature, which would increase manufacturing costs.
本発明は上記欠点を解消するためになされたもので、低
温焼成にて気孔率が小さく、かつ寸法安定性に優れると
共に耐熱性、耐熱衝撃性、耐酸化性の優れた緻密質β′
−サイアロン焼結体を得ることを目的とするものである
。The present invention was made in order to eliminate the above-mentioned drawbacks.
- The purpose is to obtain a sialon sintered body.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
まず、次の方法にてβ′−サイアロン主成分素材(通常
β′−サイアロン70〜80重量%含有)を造る。First, a β'-sialon main component material (usually containing 70 to 80% by weight of β'-sialon) is prepared by the following method.
(1)シリカ粉末70〜40重量%と金属アルミニウム
粉末30〜60重量%とを充分混合して出発原料粉とし
、この出発原料粉を種々の成形法、たとえば金型プレス
法、ラバープレス法、スリップキャスティング法、押出
成形法により肉厚50r/L以下、好ましくは2cIr
L以下の任意形状の圧粉体とした後、この圧粉体を窒素
含有非酸化性ガス雰囲気中で1400〜1700°Cに
加熱反応せしめて固溶状態のβ′−サイアロン主成分素
材を造る。(1) 70 to 40% by weight of silica powder and 30 to 60% by weight of metal aluminum powder are thoroughly mixed to obtain a starting raw material powder, and this starting raw material powder is molded by various molding methods, such as mold pressing method, rubber pressing method, Wall thickness 50r/L or less, preferably 2cIr by slip casting method or extrusion molding method
After forming a green compact into an arbitrary shape of L or less, the green compact is reacted by heating at 1400 to 1700°C in a nitrogen-containing non-oxidizing gas atmosphere to produce a β'-SiAlON main component material in a solid solution state. .
(2)シリカ粉末70〜40重量%と金属アルミニウム
粉末30〜61重量%とを混合した出発原料粉を一旦粉
砕して平均粒径3μ以下、好ましくは1゜5μ以下にし
、微粉末原料を耐熱性容器に深さ5crfL以下、好ま
しくは2crIL以下に充填した後膣微粉末原料を窒素
含有非酸化性ガス雰囲気中で1400〜1700℃の温
度下にて加熱反応せしめて固溶状態のβ′−サイアロン
生成分素材を造る。(2) The starting raw material powder, which is a mixture of 70 to 40% by weight of silica powder and 30 to 61% by weight of metal aluminum powder, is once pulverized to an average particle size of 3μ or less, preferably 1°5μ or less, and the fine powder raw material is heat-resistant. After filling a sex container to a depth of 5 crfL or less, preferably 2 crIL or less, the vaginal fine powder raw material is subjected to a heating reaction at a temperature of 1400 to 1700°C in a nitrogen-containing non-oxidizing gas atmosphere to form β'- in a solid solution state. Create sialon-generating materials.
(3) シリカ粉末70〜40重量%と金属アルミニ
ウム粉末30〜60重量%とからなる混合粉末100重
量部に、鉄粉、銅粉、コバルト粉、マンガン粉等の金属
粉或いはそれらの酸化物粉、もしくはフッ化カルシウム
、フッ化アルミニウム、フッ化マグネシウム粉、フッ化
マンガン粉等の弗化物粉の群から選ばれる1種または2
種以上の添加剤を0.1〜10重量部添加混合して出発
原料粉とし、この出発原料粉を前記(1)の方法に準じ
て圧粉体とするか、もしくは前記(2)の方法に準じて
微粉末状原料とするかした後、窒素含有非酸化性雰囲気
中で1200〜1700℃の温度にて加熱せしめて固溶
状態のβ′−サイアロン主成分素材を造る。(3) Metal powders such as iron powder, copper powder, cobalt powder, manganese powder, or their oxide powders are added to 100 parts by weight of a mixed powder consisting of 70 to 40% by weight of silica powder and 30 to 60% by weight of metal aluminum powder. or one or two selected from the group of fluoride powders such as calcium fluoride, aluminum fluoride, magnesium fluoride powder, manganese fluoride powder, etc.
A starting material powder is prepared by adding and mixing 0.1 to 10 parts by weight of at least one additive, and this starting material powder is made into a green compact according to the method described in (1) above, or by the method described in (2) above. The raw material is made into a fine powder according to the method, and then heated at a temperature of 1200 to 1700° C. in a nitrogen-containing non-oxidizing atmosphere to produce a β'-sialon main component material in a solid solution state.
上記(1)〜(3)の方法における加熱中の化学反応、
化学変化の詳細は不明であるが、基本的には次の反応が
起こっていると考えられる。Chemical reaction during heating in the methods (1) to (3) above,
Although the details of the chemical change are unknown, it is thought that the following reaction basically occurs.
1)1000℃以下では、
3 S i02 + 4A11→3Si+2A1203
・・・・・(I)2Al+N2→2AJl?N
・・・・・・(If)ii)1000℃以上では
、
3Si+2N2→β−5i3N4 ・・・・・・(
III)β−8i3 N4へのAl2O8,AANの固
溶→β′−サイアロン主成分素材* ・・・・・・G
V)*β′−サイアロン主成分素材;β′−サイアロン
が主成分であるが、他に未固溶のAl2O3゜Y−相サ
サイアロンA[N構造中にSi、0が入り、金属:非金
属原子比が5二6になっている化学式(Si 、Al)
s(0−N)aで表わされるもの)、AlN等が含有す
る。1) Below 1000℃, 3Si02 + 4A11→3Si+2A1203
...(I)2Al+N2→2AJl? N
・・・・・・(If) ii) At 1000℃ or higher, 3Si+2N2→β-5i3N4 ・・・・・・(
III) Solid solution of Al2O8, AAN in β-8i3 N4 → β'-Sialon main component material * ・・・・・・G
V) *β'-sialon main component material; β'-sialon is the main component, but there is also undissolved Al2O3゜Y-phase Sasialon A [Si and 0 are included in the N structure, metal: nonmetal Chemical formula with an atomic ratio of 526 (Si, Al)
s(0-N)a), AlN, etc.
上記(1)〜(3)の方法に使用するシリカ粉末として
は、水晶粉末、硅砂粉末、石英ガラス粉末、蒸発シリカ
(Volatiled−8ilica)、化学沈殿法シ
リカ、気相法シリカ等を挙げることができ、とくに蒸発
シリカはβ′−サイアロン主成分素材の生成収率が最も
良好である。Examples of the silica powder used in the methods (1) to (3) above include quartz powder, silica sand powder, quartz glass powder, evaporated silica (volatiled-8ilica), chemically precipitated silica, and vapor phase silica. In particular, evaporated silica has the best yield of β'-sialon-based material.
この場合、シリカ粉としてシラスを用いることも可能で
あるが、アルカリ成分の含有率が高いために加熱時に加
熱炉の炉芯管、ライニング耐火物、断熱耐火物、抵抗発
熱体などを汚染、劣化するため好ましくない。In this case, it is possible to use shirasu as the silica powder, but due to the high content of alkaline components, it may contaminate and deteriorate the furnace core tube, lining refractory, insulation refractory, resistance heating element, etc. during heating. It is not desirable because
上記(1)〜(3)の方法に使用するアルミニウム粉末
としては、アルミニウムの涙滴状アトマイズ粉(噴霧粉
)、鱗片状搗砕粉のどちらでも効果は同じであるが、と
くに50メツシユより細かい粉末を用いることが望まし
い。The aluminum powder used in methods (1) to (3) above can be either teardrop-shaped atomized powder (sprayed powder) or scale-shaped ground powder, but the effect is the same, especially finer than 50 mesh. It is preferable to use powder.
上記(1)〜(3)の方法におけるシリカ粉末とアルミ
ニウム粉末との比(Sin2粉末/Al粉末)を上記範
囲に限定した理由は、S t 02粉末/All粉末の
比を40/60 (重量割合)より小さくすると、未反
応のAlが残存したりSi、AlNが生成したりしてβ
′−サイアロン主成分素材中のβ′−サイアロン生成量
が減少し、一方その比が70/30より多いと、未反応
のS t 02が残存したり、ムライトが生成したりし
て該主成分素材中のβ′−サイアロン生成量が減少する
からであり、好ましい比はSiO2粉末/Al粉末が6
0/40付近である。The reason why the ratio of silica powder to aluminum powder (Sin2 powder/Al powder) in methods (1) to (3) above is limited to the above range is that the ratio of S t 02 powder/All powder is 40/60 (by weight If the ratio is made smaller, unreacted Al may remain or Si and AlN may be generated, resulting in β
The amount of β'-sialon produced in the main component material of '-sialon decreases, and on the other hand, if the ratio is more than 70/30, unreacted S t 02 may remain or mullite will be produced, causing the main component to be reduced. This is because the amount of β'-sialon produced in the material decreases, and the preferable ratio is SiO2 powder/Al powder of 6.
It is around 0/40.
また、上記(1) 、 (33の方法において圧粉体の
厚さを限定した理由はその肉厚が5CIrLを越えると
、加熱時に該圧粉体中に窒素ガスが充分浸入せず、β′
−サイアロンの生成率の高いβ′−サイアロン主成分素
材が得られないからである。The reason for limiting the thickness of the green compact in methods (1) and (33) above is that if the wall thickness exceeds 5 CIrL, nitrogen gas will not penetrate sufficiently into the green compact during heating, and β'
- This is because a β'-sialon main component material with a high sialon production rate cannot be obtained.
上記(1) 、 (3)の方法において微粉体状原料の
充填深さを限定した理由は、その充填深さが5crfL
を越えると、加熱時該充填原料中に窒素ガスが充分浸入
せず、β′−サイアロンの主成率の高いβ′−サイアロ
ン主成分素材が得られないからである。The reason why the filling depth of the fine powder raw material is limited in the methods (1) and (3) above is that the filling depth is 5 crfL.
This is because, if it exceeds this amount, nitrogen gas will not sufficiently infiltrate into the filling material during heating, and a β'-sialon-based material with a high β'-sialon content will not be obtained.
この場合使用される容器としては、通常黒鉛質、窒化珪
素質、アルミナ質のものであるが、とくに黒鉛質容器を
用いるには炭化珪素の生成を防止する目的からその内面
に窒化アルミニウム粉末或いは窒化硼素粉末を被覆する
ことが望ましい。The containers used in this case are usually made of graphite, silicon nitride, or alumina, but when using a graphite container, the inner surface is coated with aluminum nitride powder or nitride to prevent the formation of silicon carbide. Coating with boron powder is desirable.
上記(3)の方法においてシリカ粉末とアルミニウム粉
末とからなる混合粉末に添加する添加剤の量を上述した
範囲に限定した理由は、添加剤の量を0.1重量部未満
にすると、上記(1)〜帥式の反応を促進する効果が期
待できず、一方その量が10重量部を越えると、得られ
たβ′−サイアロン主成分素材の純度を阻害するからで
ある。The reason for limiting the amount of additives added to the mixed powder consisting of silica powder and aluminum powder in the method (3) above is that if the amount of additives is less than 0.1 part by weight, the above ( 1) It cannot be expected to have the effect of accelerating the three-cycle reaction, and on the other hand, if the amount exceeds 10 parts by weight, the purity of the obtained β'-sialon main component material will be impaired.
さらに、上記(1) 、 (2)の方法において加熱処
理温度を限定した理由は、加熱処理温度を1400℃よ
り低くすると、未反応Siが残ってβ′−サイアロン主
成分素材中のβ′−サイアロンの生成率が低下し、一方
その温度が1700℃を越えると、Y−phase サ
イアロンが増加してβ′−サイアロン主成分素材中のβ
′−サイアロンの生成率が低下するからである。Furthermore, the reason for limiting the heat treatment temperature in methods (1) and (2) above is that if the heat treatment temperature is lower than 1400°C, unreacted Si remains and the β'-SiAlON main component material is When the production rate of sialon decreases and the temperature exceeds 1700°C, Y-phase sialon increases and β'-sialon in the main component material increases.
This is because the production rate of ′-Sialon decreases.
また、上記(3)の方法においては加熱処理純度を上記
(1) 、 (2)の方法の温度より200℃低い12
00℃の温度下でも可能となる。In addition, in the method (3) above, the heat treatment purity is 12
This is possible even at temperatures as low as 00°C.
望ましい加熱処理方法は、600℃/Hr以下、好まし
くは200°C/Hr以下の昇温速度で1400〜15
00℃、或いは1200〜1500℃の温度まで加熱し
、その保持温度を5時間以上保持する(これを第1段加
熱処理と称す)。A desirable heat treatment method is a heating rate of 1400 to 15
The sample is heated to a temperature of 00°C or 1200 to 1500°C and held at that temperature for 5 hours or more (this is referred to as the first stage heat treatment).
これで加熱処理の目的は達せられるが、さらにβ′−サ
イアロンの生成率を向上させるには、第1段加熱処理後
さらに1500〜1700°Cの間の所 。This achieves the purpose of the heat treatment, but in order to further improve the production rate of β'-sialon, it is necessary to further increase the temperature between 1500 and 1700°C after the first stage heat treatment.
定温度まで昇温しで3時間以上加熱処理する(これを第
2段加熱処理と称す)。The temperature is raised to a constant temperature and heat treatment is performed for 3 hours or more (this is referred to as the second stage heat treatment).
しかるに、前記(1)の方法にあっても、上述した組成
割合の出発原料粉を成形して圧粉体とし、かつ該圧粉体
の厚さを規定することにより、シリカ 。However, even in the method (1), silica can be produced by molding the starting raw material powder having the above-mentioned composition ratio to form a green compact, and by defining the thickness of the green compact.
粉末とアルミニウム粉末との接触状況が良好となると共
に各粉末に対する窒素ガスの接触度合も改善するため、
上述した(I)〜(IV;式の反応が促進され、β′−
サイアロンの含有率の高いβ′−サイアロン主成分素材
が得られる。This improves the contact between the powder and aluminum powder, and also improves the degree of contact of nitrogen gas with each powder.
The reactions of formulas (I) to (IV) described above are promoted, and β'-
A β'-sialon-based material with a high sialon content can be obtained.
また、前記(2)の方法にあっては、上述した組成割合
の出発原料粉を粉砕して微粉末状原料とすると共に該原
料の容器への充填深さを規定することにより、粉砕、混
合中に展延性の優えたアルミニウム粉末がシリカ粉末を
被覆してアルミニウム被シ膜を形成し、アルミニウムと
シリカとの接触状況が良好となり、かつ各原料に対する
窒素ガスの接触度合も向上するため、上述した(1)〜
(β′v)の反応が促進され、β′−サイアロンの含有
率の高いβ′−サイアロン主成分素材が得られる。In addition, in the method (2) above, the starting raw material powder having the above-mentioned composition ratio is pulverized into a finely powdered raw material, and the filling depth of the raw material into the container is specified, so that the pulverization and mixing are performed. The aluminum powder with excellent malleability coats the silica powder to form an aluminum film, which improves the contact between aluminum and silica and improves the degree of contact of nitrogen gas with each raw material. Did (1) ~
The reaction of (β'v) is promoted, and a β'-sialon-based material with a high β'-sialon content can be obtained.
さらに、前記(3)の方法にあっては、出発原料粉を成
形、もしくは粉砕する他、該原料粉中に鉄、マグネシウ
ム等の添加剤を混入するため、上述した(1) 、 (
2)の方法よりさらに反応の促進化が助長され極めてβ
′−サイアロンの含有率の高いβ′−1“サイアロン主
成分素材が得られる。Furthermore, in the method (3) above, in addition to molding or pulverizing the starting raw material powder, additives such as iron and magnesium are mixed into the raw material powder.
The reaction is further accelerated than method 2), and the β
A β'-1"sialon-based material having a high content of '-sialon is obtained.
なお、上記(1)〜(3)の製造方法において使用する
出発原料はシリカ粉とアルミニウム粉とからなるものに
限らず、たとえばシリカ、金属珪素、金属アルミニウム
、アルミナ、窒素珪素、窒化アルミニウム等を適宜組合
せ、窒化処理によってβ′−サイアロン主成分素材とな
る組成に配合したものを使用してもよく、場合によって
は出廃原料をそのままβ′−サイアロン主成分素材とし
て使用してもよい。Note that the starting materials used in the manufacturing methods (1) to (3) above are not limited to those consisting of silica powder and aluminum powder, but may also include, for example, silica, metallic silicon, metallic aluminum, alumina, silicon nitrogen, aluminum nitride, etc. They may be appropriately combined and nitrided to form a composition as a β'-sialon main component material, or in some cases, waste raw materials may be used as they are as a β'-sialon main component material.
次いで、上述した(1)〜(3)の方法により得たβ′
−サイアロン主成分素材を、平均粒径(フィッシャー・
サブシーブサイザーで測定)が1.6μ以下、好ましく
は1.2μ以下になるまで微粉砕してβ′−サイアロン
主成分素材粉とする。Next, β′ obtained by the above-mentioned methods (1) to (3)
−The average particle size (Fisher
The powder is pulverized until the particle diameter (measured with a subsieve sizer) is 1.6 μ or less, preferably 1.2 μ or less, to obtain a β'-sialon main component material powder.
粉砕法としては、湿式粉砕法、乾式粉砕法が採用される
が、とくにアルコール中にタングステンカーバイド製或
いはアルミナ製のボールミナを入れた湿式粉砕法は短時
間で粉砕できるため有効である。As the pulverization method, a wet pulverization method and a dry pulverization method are employed, and a wet pulverization method in which a ball miller made of tungsten carbide or alumina is placed in alcohol is particularly effective because it can pulverize in a short time.
つづいて、該β′サイアロン主成分素材粉にシリカ粉末
を0.2〜20重量%及び珪酸ガラスを形成する金属酸
化物の一種又は二種以上を0.2〜20重量%配合し混
合してβ′−サイアロン混合素材粉とし、これを種々の
成形法、たとえば金型プレス、ラバープレス、スリップ
キャスティング、押出成形などにより密度が1.’H!
/cIf1以上となるように所望形状に成形した後、こ
の成形体を窒素含有非酸化性ガス雰囲気中(大気とほぼ
同圧)で1200〜1800℃の温度下にて焼成せしめ
て緻密質β′−サイアロン焼結体を得る。Next, 0.2 to 20% by weight of silica powder and 0.2 to 20% by weight of one or more metal oxides forming silicate glass are added to the β'sialon main component material powder and mixed. β'-Sialon mixed raw material powder is made into a powder with a density of 1.5 mm by various molding methods such as die pressing, rubber pressing, slip casting, and extrusion molding. 'H!
/cIf1 or more, the molded body is fired at a temperature of 1200 to 1800°C in a nitrogen-containing non-oxidizing gas atmosphere (approximately the same pressure as the atmosphere) to form a dense β' - Obtain a Sialon sintered body.
本発明において、β′−サイアロン主成分素材粉の粒径
を限定した理由は、該主成分素材粉の粒径が1.6μを
越える払気孔率の低い緻密質βl−サイアロン焼結体が
得られないからである。In the present invention, the reason why the particle size of the main component material powder of β'-sialon is limited is that a dense βl-sialon sintered body having a particle size of more than 1.6μ and a low porosity due to air removal can be obtained. This is because it cannot be done.
本発明に使用するシリカ粉としては、前述したβ′−サ
イアロン主成分素材の製造時に用いたのと同様、水晶粉
末、珪砂粉末、石英ガラス粉末、蒸発シリカ(Vola
tiled −5ilica)、化学沈殿法シリカ気相
法シリカ等を挙げることができる。The silica powder used in the present invention includes quartz crystal powder, silica sand powder, quartz glass powder, and evaporated silica (Vola
tiled-5 ilica), chemical precipitation silica, vapor phase silica, and the like.
本発明におけるβ′−サイアロン混合素材粉中のシリカ
粉末及び珪酸ガラスを形成する金属酸化物の一種又は二
種以上の配合量を上記範囲に限定した理由は、その配合
量を0.2重量%未満にすると、低温焼結性の効果を充
分発揮できず、一方その配合量が20重量%を越えると
、得られた焼結体の構成相中にシリカガラスが多く含ま
れて物性低下を招来するからである。The reason why the blending amount of one or more metal oxides forming the silica powder and silicate glass in the β'-Sialon mixed material powder in the present invention is limited to the above range is that the blending amount is 0.2% by weight. If the amount is less than 20% by weight, the effect of low-temperature sinterability cannot be fully exhibited, while if the amount is more than 20% by weight, a large amount of silica glass will be included in the constituent phase of the obtained sintered body, resulting in a decrease in physical properties. Because it does.
ここに用いる金属酸化物としては、MgO* MnOt
L i20. Ti 02゜B2O3+ Fe2O3
、Cu2O、CaOから選ばれる1種または2種以上の
ものを挙げることができる。The metal oxides used here include MgO* MnOt
L i20. Ti 02゜B2O3+ Fe2O3
, Cu2O, and CaO.
本発明において成形体の密度を限定した理由は、その密
度を1.7g/cri1未満にすると、気孔率の低い緻
密質β′−サイアロン焼結体が得られないからである。The reason why the density of the molded body is limited in the present invention is that if the density is less than 1.7 g/cri1, a dense β'-sialon sintered body with low porosity cannot be obtained.
本発明における窒素含有非酸化性ガス雰囲気とは、窒素
ガス単独、或いは窒素ガスとアルゴンガス、ネオンガス
等の不活性ガスとの混合ガスなどである。The nitrogen-containing non-oxidizing gas atmosphere in the present invention includes nitrogen gas alone, or a mixed gas of nitrogen gas and an inert gas such as argon gas or neon gas.
この場合、窒素ガス単独の雰囲気にするか、もしくは混
合ガスの雰囲気にするかは、成形体中のβl−サイアロ
ンの含有率、焼成温度等により適宜選定すればよい。In this case, whether to use a nitrogen gas atmosphere alone or a mixed gas atmosphere may be appropriately selected depending on the content of βl-sialon in the compact, firing temperature, etc.
本発明におけて焼成温度を上記範囲に限定した理由は、
焼成温度を1200°C未満の低い温度にすると、成形
体の焼結速度が遅く、緻密質β′−サイアロン焼結体を
得るのに長時間要し、一方その温度が1800℃を越え
る高い温度にすると、成形体中のβ′−サイアロンの一
部が他の物質に変換されβ′−サイ了ロン含有率の高い
緻密質β′−サイアロン焼結体が得られないからである
。The reason why the firing temperature is limited to the above range in the present invention is as follows.
If the firing temperature is lower than 1200°C, the sintering rate of the compact will be slow and it will take a long time to obtain a dense β'-sialon sintered body; This is because a part of the β'-sialon in the compact is converted into other substances, making it impossible to obtain a dense β'-sialon sintered body with a high β'-sialon content.
本発明の焼結時に使用する焼成炉は通常黒鉛製抵抗ヒー
タ、高周波誘導加熱力式の黒鉛製サセプターを内装した
黒鉛製ライニングの炉が用いられる力S、この焼成時該
黒鉛製ヒータ等から多少のCOガスが発生するため、得
られたβ′−サイアロン焼結体の表面が炭化されて炭化
珪素膜が生じ易い。The firing furnace used during the sintering of the present invention is usually a graphite-lined furnace equipped with a graphite resistance heater and a high-frequency induction heating type graphite susceptor. Since CO gas is generated, the surface of the obtained β'-sialon sintered body is likely to be carbonized and a silicon carbide film is likely to be formed.
また焼成時、成形体を同一温度で均一に焼結せしめるこ
とは難しく、その結果焼結体に亀裂や変形を生じる虞れ
がある。Furthermore, during firing, it is difficult to uniformly sinter the molded body at the same temperature, which may result in cracks or deformation in the sintered body.
しかるに、このような問題を解消するには、珪化硼素粉
(BN)、窒化アルミニウム粉(A7N)からなる詰粉
を充填した黒鉛製容器に前述した成形体を埋設して黒鉛
製容器ごと炉内に入れ、焼成を均一に行なうと共に焼結
体表面に炭化珪素膜が生成するのを阻止することが望ま
しい。However, in order to solve this problem, the above-mentioned molded body is buried in a graphite container filled with powder made of boron silicide powder (BN) and aluminum nitride powder (A7N), and the graphite container is placed inside the furnace. It is desirable that the sintered body be placed in a sintered body to uniformly perform the firing and to prevent the formation of a silicon carbide film on the surface of the sintered body.
なお、上述した粒径1.6μ以下のβ′−サイアロン主
成分素材粉(微粉末)と上述した方法により得た緻密質
β′−サイアロン焼結体を再粉砕して篩分けした中粒と
粗粒とを適当な配合割合で混合し、これを常法に従って
成形した後、この成形体を窒素含有非酸化性が大雰囲気
中で1600〜2000°Cの温度にて焼成ゼしめて緻
密質β′−サイアロン焼結体を製造してもよい。In addition, the above-mentioned β'-sialon main component material powder (fine powder) with a particle size of 1.6 μ or less and the medium grains obtained by re-pulverizing and sieving the dense β'-sialon sintered body obtained by the above-mentioned method. Coarse particles are mixed with coarse grains in an appropriate proportion and molded according to a conventional method. The molded body is fired at a temperature of 1,600 to 2,000°C in a nitrogen-containing, non-oxidizing atmosphere to form a dense β '-SiAlON sintered bodies may be manufactured.
このような方法によれば、焼成中における成形体の収縮
がわずかとなるため、得られた焼結体の変形、亀裂を皆
無ならしめ、大型形状物の製造を可能にし、さらに寸法
安定性を向上させる他、耐熱衝撃性のとくに優れた緻密
質β′−サイアロン焼結体を得るこことができる。According to this method, the shrinkage of the molded body during firing is slight, so there is no deformation or cracking of the obtained sintered body, making it possible to manufacture large-sized objects, and further improving dimensional stability. In addition to improving the thermal shock resistance, a dense β'-sialon sintered body with particularly excellent thermal shock resistance can be obtained.
しかして、本発明は平均粒径を規定した微細なβ′−サ
イアロン主成分素材粉に所定量のシリカ粉末及び珪酸ガ
ラスを形成する金属酸化物の一種又は二種以上を配合し
たβ′−サイアロン混合素材粉を、所定密度に成形し、
これを窒素含有非酸化性ガス雰囲気中で所定温度範囲に
て焼成せしめることにより、成形体のβl−サイアロン
主成分素材粉中のβ′−サイアロン以外の物質を一部β
′−サイアロンに変換できるとともに、焼成過程におい
て粒界相にβ′−サイアロンを主成分とする微細粉とシ
リカガラスとが化合した窒素含有ガラス相を形成して該
微細粉同志を著しく容易に低温度で焼結できるため、亀
裂、変形のない寸法安定性に優れた緻密質β′−サイア
ロン焼結体を安価に得ることができる。Therefore, the present invention provides β'-sialon, which is prepared by blending a predetermined amount of silica powder and one or more metal oxides forming silicate glass into fine β'-sialon main component material powder having a defined average particle size. Form the mixed material powder to a predetermined density,
By firing this in a nitrogen-containing non-oxidizing gas atmosphere at a predetermined temperature range, some of the substances other than β'-sialon in the βl-sialon main component material powder of the molded body are removed by β
In addition to being able to convert into '-sialon, a nitrogen-containing glass phase is formed in the grain boundary phase in which the fine powder mainly composed of β'-sialon and silica glass are combined, and the fine powder can be reduced extremely easily. Since it can be sintered at high temperature, a dense β'-sialon sintered body with excellent dimensional stability without cracking or deformation can be obtained at low cost.
したがって、本発明方法により得た緻密質β′−サイア
ロン焼結体は寸法安定性に優れる他、骨格をなすβ′−
サイアロン自体の特性により次に示すような多種多様の
分野に応用できる。Therefore, the dense β'-sialon sintered body obtained by the method of the present invention not only has excellent dimensional stability but also
Due to the characteristics of Sialon itself, it can be applied to a wide variety of fields as shown below.
■ 溶融非鉄金属用耐火物
溶融炉ライニング材、溶融非鉄金属輸送用パイプ、溶融
非鉄金属測温用熱電対保護管、低圧鋳造用ストーク、連
続鋳造用ノズル、タップホール用インサートノズル、溶
融非鉄金属流量調整弁、溶融非鉄金属用ポンプ摺動部材
(ホットチャンバーのピストン、シリンダー)、クーズ
ネツク、ゲルマニウム或いはシリコン等の半導体溶融用
ルツボ
■ 溶鋼用耐火物
連続鋳造用各種ノズル、スライディングノズル用プレー
ト、イマージョンパイプ
■ 機械部品
熱交換器、ピストンエンジンにおけるピストンヘッド、
およびシリンダー、ガスタービンエンジンの燃焼室構造
材(ロータ、ステータ、シュラウド等)、ロケットノズ
ル
■ 耐蝕材料
耐酸、耐アルカリ容器、塩素、硫化水素ガス輸送用パイ
プ、塩素ガス吹込管、プラスチックなどの焼成炉の内張
材
以下、本発明の詳細な説明する。■ Refractory melting furnace lining materials for molten nonferrous metals, pipes for transporting molten nonferrous metals, thermocouple protection tubes for temperature measurement of molten nonferrous metals, stalks for low pressure casting, nozzles for continuous casting, insert nozzles for tap holes, flow rate of molten nonferrous metals Regulating valves, sliding parts of pumps for molten non-ferrous metals (hot chamber pistons, cylinders), crucibles for melting semiconductors such as Kuznets, germanium or silicon ■ Various nozzles for continuous casting of refractories for molten steel, plates for sliding nozzles, immersion pipes ■ Mechanical parts heat exchangers, piston heads in piston engines,
and cylinders, combustion chamber structural materials for gas turbine engines (rotors, stators, shrouds, etc.), rocket nozzles ■ Corrosion-resistant materials, acid- and alkali-resistant containers, chlorine and hydrogen sulfide gas transport pipes, chlorine gas blowing pipes, firing furnaces for plastics, etc. The present invention will be described in detail below.
実施例 1〜2
蒸発シリカ粉末60重量%とアルミニウムのアトマイズ
粉(250メツシユ以下)40重量%とをvミキサーで
乾式混合した出発原料粉を、ラバープレス(lton/
cr/l)により肉厚5crILのチューブ状圧粉体と
した後、との圧粉体を窒素雰囲気中で昇温速度200°
C/Hrの条件下にて1500℃まで高め、その温度下
で10時間保持して加熱処理せしめβ′−サイアロン主
成分素材を造った。Examples 1-2 A starting material powder obtained by dry mixing 60% by weight of evaporated silica powder and 40% by weight of atomized aluminum powder (250 mesh or less) in a V-mixer was mixed in a rubber press (Lton/
cr/l) to form a tube-shaped powder compact with a wall thickness of 5 crIL, and then heat the compact in a nitrogen atmosphere at a heating rate of 200°.
The temperature was raised to 1500° C. under C/Hr conditions, and the temperature was maintained for 10 hours for heat treatment to produce a β'-sialon main component material.
このβl−サイアロン主成分素材をX線粉末回折法で調
べたところ、β′−サイアロンの大きなピークとα−A
1203およびY−相ササイアロン小さなピークとが確
認され、はぼβ′−サイアロンからなることが判った。When this βl-sialon main component material was examined by X-ray powder diffraction, it was found that a large peak of β′-sialon and α-A
1203 and a small peak of Y-phase sialon were confirmed, and it was found that it consisted mostly of β'-sialon.
次いで、上記β′−サイアロン主成分素材を予めショー
クラッシャーで粗砕し、さらにハンマークラッシャーで
細粉した後、この細粉を■アルコール中にアルミナ製ボ
ールミルを混入した湿式粉砕法にて70時間粉砕し、ま
た■同温式粉砕法にて24時間粉砕して平均粒径1.2
μのβ′−サイアロン主成分素材粉(実施例1)、平均
粒径1,6μのβ′−サイアロン主成分素材粉(実施例
2)を造った。Next, the above β'-SiAlON main component material was preliminarily crushed using a show crusher, and then finely ground using a hammer crusher, and then this fine powder was crushed for 70 hours using a wet crushing method using an alumina ball mill mixed in alcohol. Also, the average particle size was 1.2 by pulverizing for 24 hours using the isothermal pulverizing method.
β'-Sialon main component material powder having a particle diameter of 1.6 μm (Example 1) and β′-Sialon main component material powder (Example 2) having an average particle size of 1.6 μm were prepared.
なお、比較例として、上記細粉を■アルミナ製ボールミ
ルの乾式粉砕法にて24時間粉砕して平均粒径1.8μ
のβ′−サイアロン主成分素材粉を造った。As a comparative example, the above fine powder was pulverized for 24 hours using the dry pulverization method using an alumina ball mill to obtain an average particle size of 1.8μ.
A material powder with β'-SiAlON as its main component was prepared.
その談合β′−サイアロン主成分素材粉に夫々蒸発シリ
カを2重量%及び炭酸ソーダ2重量%添加混合してβ′
−サイアロン混合素材粉とし、°これら混合素材粉に夫
々酢酸ビニールを20重量%添加混練し50メツシユの
ナイロン篩を通過さセで造粒した後、一旦乾燥してから
金型プレスにより550ky/C11tの圧力条件で成
形して3種の板状成形体(寸法40WX70LX9T’
ジを造った。2% by weight of evaporated silica and 2% by weight of soda carbonate are added and mixed into the brigged β'-Sialon main component material powder, and β'
- Add 20% by weight of vinyl acetate to each of these mixed material powders, knead them, pass through a 50-mesh nylon sieve, granulate them, dry once, and then use a mold press to produce 550ky/C11t. Three types of plate-shaped molded products (dimensions 40WX70LX9T') were molded under the pressure conditions of
I created ji.
これら成形体を400℃の大気中で12時間加熱処理し
てバインダー(酢酸ビニール)を揮散除去し、除去後の
各成形体の密度を調べた。These molded bodies were heat-treated in the atmosphere at 400° C. for 12 hours to volatilize and remove the binder (vinyl acetate), and the density of each molded body after removal was examined.
その結果、実施例1に用いる成形体は1.919/cr
IL、実施例2の成形体は1.9397cm、比較例1
の成形体は1、92 g/cmであった。As a result, the molded body used in Example 1 was 1.919/cr
IL, the molded body of Example 2 is 1.9397 cm, Comparative Example 1
The weight of the molded product was 1.92 g/cm.
つづいて、これら成形体を夫々黒鉛製容器内の窒化硼素
詰粉中に埋設し、コレら容器ごと窒素雰囲気の焼成炉に
入れ昇温速度400℃の条件で1600℃まで高め、そ
の温度下で2時間保持して焼成せしめ3種のβ′−サイ
アロン焼結体を得た。Next, each of these molded bodies was buried in boron nitride packed powder in a graphite container, and the containers were placed in a firing furnace with a nitrogen atmosphere and heated to 1600°C at a temperature increase rate of 400°C. Three types of β'-sialon sintered bodies were obtained by holding and firing for 2 hours.
得られたβ′−サイアロン焼結体をX線粉末回折法によ
り同定したところ、どの焼結体もβl−サイアロンに少
量のα−A1203、Y−相ササイアロン含むものであ
った。When the obtained β'-sialon sintered bodies were identified by X-ray powder diffraction, all of the sintered bodies contained βl-sialon and a small amount of α-A1203 and Y-phase sasialon.
また、各β′−サイアロン焼結体の気孔率を調べたとこ
ろ、実施例1の焼結体は1%、実施例2の焼結体は2%
と極めて緻密質であるのに対し、比較例1の焼結体は9
%と気孔率の高いものであった。Furthermore, when examining the porosity of each β'-Sialon sintered body, the porosity of the sintered body of Example 1 was 1%, and the porosity of the sintered body of Example 2 was 2%.
In contrast, the sintered body of Comparative Example 1 has a density of 9.
%, which had a high porosity.
このようなことがら緻密質βl−サイアロン焼結体を得
るにはβ′−サイアロン混合素材粉中のβ′−サイアロ
ン主成分素材粉の平均粒径が重要な要素になることがわ
かる。These facts show that the average particle size of the β'-sialon main component material powder in the β'-sialon mixed material powder is an important factor in obtaining a dense βl-sialon sintered body.
実施例 3
上記実施例1で用いたβ′−サイアロン混合素材粉(平
均粒径1.2μのβ′−サイアロン主成分素材粉含有)
に酢酸ビニールを添加混線し50メツシユのナイロン篩
を通過させて造粒した後、一旦乾燥してから、金型プレ
スにより600 kg/C111(実施例3)、110
kg/cril (比較例2)、55ky/ffl
(比較例3)の圧力条件で成形して3種の板状成形体(
寸法40WX70LX9T關)を造った。Example 3 β'-sialon mixed material powder used in Example 1 (contains β'-sialon main component material powder with an average particle size of 1.2μ)
After mixing with vinyl acetate and passing through a 50-mesh nylon sieve to granulate it, once it was dried, it was molded into 600 kg/C111 (Example 3), 110
kg/cril (Comparative Example 2), 55ky/ffl
(Comparative Example 3) Three types of plate-shaped molded products (
It was built with dimensions 40W x 70L x 9T.
これら成形体を大気中で12時間加熱処理してバインダ
ー(酢酸ビニール)を揮散除去し、除去後の各成形体の
密度を調べたところ、実施例3に用いる成形体は1.9
i g7crit、比較例2の成形体は1.66.9
重cm、比較例3の成形体は1.50g/dであった。These molded bodies were heat-treated in the atmosphere for 12 hours to volatilize and remove the binder (vinyl acetate), and the density of each molded body after removal was examined. The density of the molded body used in Example 3 was 1.9.
i g7crit, the molded product of Comparative Example 2 is 1.66.9
The weight cm of the molded article of Comparative Example 3 was 1.50 g/d.
つづいて、これら成形体を前記実施例1と同様な方法に
て焼成せしめ3種のβ′〜サイアロン焼結体を得た。Subsequently, these molded bodies were fired in the same manner as in Example 1 to obtain three types of β' to Sialon sintered bodies.
得られた各β′−サイアロン焼結体の気孔率を調べた。The porosity of each of the obtained β'-sialon sintered bodies was examined.
その結果、本発明(実施例3)の焼結体は1%と極めて
緻密性の優れたものであるのに対し、比較例2の焼結体
は9%、比較例3の焼結体は15%と気孔率が高く緻密
性の劣るものであった。As a result, the sintered body of the present invention (Example 3) has an extremely high density of 1%, while the sintered body of Comparative Example 2 has a density of 9%, and the sintered body of Comparative Example 3 has a density of 1%. The porosity was high at 15% and the density was poor.
このようなことから、緻密質β′−サイアロン焼結体を
得るには、成形体の密度も重要な要素なることがわかる
。From these facts, it can be seen that the density of the compact is also an important factor in obtaining a dense β'-sialon sintered body.
実施例 4
蒸発シリカ粉末60重量%とアルミニウムのアトマイズ
粉(250メツシユ)40重量%とを混合した出発原料
粉を、アルコール中にアルミナ製ボールミルを混入しよ
湿式粉砕法により48時間粉砕し、平均粒径1.3μの
微粉末原料とし、これを窒化珪素質容器に深さ約1.5
儒まで充填した後、該微粉末原料を窒素雰囲気中で15
00℃の温度にて10時間保持して加熱処理せしめβ′
−サイアロン主成分素材を造った。Example 4 Starting material powder, which is a mixture of 60% by weight of evaporated silica powder and 40% by weight of atomized aluminum powder (250 mesh), was ground for 48 hours by a wet grinding method using an alumina ball mill in alcohol. A fine powder raw material with a particle size of 1.3 μm was placed in a silicon nitride container at a depth of about 1.5 μm.
After filling to a maximum of 150 ml, the fine powder raw material was heated in a nitrogen atmosphere for 15 min.
Heat treated by holding at a temperature of 00℃ for 10 hours β'
-Created Sialon main ingredient material.
このβ′−サイアロン主成分素材をX線粉末回折法で調
べたところ、β′−サイアロンに少量のα−A1203
、Y−相ササイアロン微量のAA’Nを含むことが判っ
た。When this β'-sialon main component material was examined by X-ray powder diffraction, it was found that β'-sialon contained a small amount of α-A1203.
It was found that the Y-phase sashyalon contained a trace amount of AA'N.
次いで、上記β′〜サイアロン主成分素材を予めショー
クラッシャーで粗砕し、さらにハンマークラッシャーで
細粉砕した後、この細粉をアルコール中にタングステン
カーバイド製ボールミルを混入した湿式粉砕法にて96
時間粉砕して平均粒径0.7μのβ′−サイアロン主成
分素材粉を造った。Next, the above β'~Sialon main component material was preliminarily crushed with a show crusher, and further finely crushed with a hammer crusher, and then this fine powder was subjected to a wet crushing method in which a tungsten carbide ball mill was mixed in alcohol.
By time-pulverizing, a β'-SiAlON main component material powder having an average particle size of 0.7 μm was prepared.
その後、このβ′−サイアロン主成分素材粉に蒸発シリ
カ3重量%及び無水硼酸0.5重量%を添加混合してβ
′−サイアロン混合素材粉とし、この混合素材粉を用い
て前記実施例1と同様酢酸ビニールを添加混練、造粒、
金型プレス(圧力条件550kg/i)して成形し、そ
の成形体中のバインダーを揮散除去して密度1.83
g/cfIlの成形体を造った。Thereafter, 3% by weight of evaporated silica and 0.5% by weight of boric anhydride were added and mixed to this β'-Sialon main component material powder.
'-sialon mixed material powder, and using this mixed material powder, vinyl acetate was added, kneaded, granulated, and
It is molded by mold pressing (pressure condition: 550 kg/i), and the binder in the molded body is removed by volatilization to obtain a density of 1.83.
A molded body of g/cfIl was made.
つづいて、この成形体を黒鉛製容器内の窒化硼素詰粉中
に埋設し、この容器ごと窒素雰囲気の焼成炉に入れ、昇
温速度200℃/ Hrの条件下で1500℃まで高め
、その温度下で3時間保持して焼成せしめβ′−サイア
ロン焼結体を得た。Next, this molded body was buried in boron nitride packed powder in a graphite container, and the container was placed in a firing furnace with a nitrogen atmosphere, and the temperature was raised to 1500°C at a temperature increase rate of 200°C/Hr. The mixture was held for 3 hours to obtain a β'-SiAlON sintered body.
得られたβ′−サイアロン焼結体をX線粉末回折法で同
定したところ、β′−サイアロンに微量のα−A120
3、Y−相ササイアロン含むものであった。When the obtained β'-Sialon sintered body was identified by X-ray powder diffraction, it was found that β'-sialon contained a trace amount of α-A120.
3, containing Y-phase sasialon.
また、このβ′−サイアロン焼結体は気孔率が2%と極
めて緻密性に優れていることが認められた。Further, it was recognized that this β'-sialon sintered body had a porosity of 2% and was extremely dense.
実施例 5
前記実施例1で用いたβ′−サイアロン主成分素材粉(
平均粒径1.2μ)に蒸発シリカ微粉末7重量%および
酸化リチウム粉末(Li20)3重量%を添加混合して
β′−サイアロン混合素材粉とし、これを実施例1と同
様な条件にて成形し密度1.89g/cr71の成形体
を造る。Example 5 The β'-sialon main component material powder used in Example 1 (
7% by weight of evaporated silica fine powder and 3% by weight of lithium oxide powder (Li20) were added and mixed to the average particle size of 1.2μ to obtain β'-Sialon mixed material powder, and this was prepared under the same conditions as in Example 1. A molded body having a density of 1.89 g/cr71 is produced.
つづいてこの成形体を黒鉛製容器の窒化硼素詰粉中に埋
設し、容器ごと窒素雰囲気の焼成炉に入れ、昇温速度4
00’C/Hrの条件にて1250℃まで高め、その温
度下で4時間保持して焼成せしめβ′−サイアロン焼結
体を得た。Next, this molded body was buried in a graphite container filled with boron nitride powder, and the container was placed in a firing furnace with a nitrogen atmosphere, and the heating rate was 4.
The temperature was raised to 1250°C under the conditions of 00'C/Hr, and the temperature was maintained for 4 hours to obtain a β'-sialon sintered body.
得られたβ′−サイアロン焼結体をX線粉末回折法によ
り同定したところ、β′−サイアロンに少量のα−A1
203、Y−相ササイアロン含むことが確認された。When the obtained β'-sialon sintered body was identified by X-ray powder diffraction method, it was found that a small amount of α-A1 was present in β'-sialon.
203, was confirmed to contain Y-phase sashyalon.
また、このβ′−サイアロン焼結体は上述した低い焼成
温度(1250℃)で処理しても気孔率が4.2%と極
めて緻密性に富むことがわかった。It was also found that this β'-sialon sintered body had a porosity of 4.2% and was extremely dense even when processed at the above-mentioned low firing temperature (1250°C).
以上詳述した如く本発明によれば気孔率が小さく、寸法
安定性に優れると共に耐熱性、耐酸性、耐熱衝撃性、耐
摩耗性に優れ溶融非鉄金属用耐火物、溶鋼用耐火物等の
分野に有効に利用できる緻密質β′−サイアロン焼結体
を著しく簡単かつ安価に得ることができる。As detailed above, the present invention has low porosity, excellent dimensional stability, and excellent heat resistance, acid resistance, thermal shock resistance, and abrasion resistance, and is suitable for use in the fields of refractories for molten nonferrous metals, refractories for molten steel, etc. It is possible to obtain a dense β'-sialon sintered body which can be effectively used for the purpose of the present invention in an extremely simple and inexpensive manner.
Claims (1)
下に粉砕してβI−サイアロン主成分素材粉とし、該主
成分素材粉にシリカ粉末を0.2〜20重量%及び硅酸
ガラスを形成する金属酸化物の1種又は2種以上を0.
2〜20重量%添加混合してβ′−サイアロン混合素材
粉とし、これを密度が1.79/cIft以上になるよ
うに成形して成形体とした後、該成形体を窒素含有非酸
化性ガス雰囲気中で1200〜1800°Cの温度下に
て焼成せしめることを特徴とする緻密質β′−サイアロ
ン焼結体の製造方法。1 β'-sialon main component material is ground to an average particle size of 1.6 μ or less to obtain βI-sialon main component material powder, and 0.2 to 20% by weight of silica powder and silicate glass are added to the main component material powder. One or more of the metal oxides to be formed is reduced to 0.
2 to 20% by weight is added and mixed to obtain a β'-Sialon mixed material powder, which is molded to a density of 1.79/cIft or more to form a molded body. 1. A method for producing a dense β'-sialon sintered body, which comprises firing at a temperature of 1200 to 1800°C in a gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51088719A JPS5934149B2 (en) | 1976-07-27 | 1976-07-27 | Method for manufacturing dense β′-sialon sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51088719A JPS5934149B2 (en) | 1976-07-27 | 1976-07-27 | Method for manufacturing dense β′-sialon sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5314716A JPS5314716A (en) | 1978-02-09 |
JPS5934149B2 true JPS5934149B2 (en) | 1984-08-20 |
Family
ID=13950702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51088719A Expired JPS5934149B2 (en) | 1976-07-27 | 1976-07-27 | Method for manufacturing dense β′-sialon sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5934149B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1340696A (en) * | 1970-07-10 | 1973-12-12 | Lucas Industries Ltd | Method of manufacturing silicon nitride products |
JPS49102707A (en) * | 1972-11-01 | 1974-09-27 | ||
JPS5082109A (en) * | 1973-10-05 | 1975-07-03 |
-
1976
- 1976-07-27 JP JP51088719A patent/JPS5934149B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1340696A (en) * | 1970-07-10 | 1973-12-12 | Lucas Industries Ltd | Method of manufacturing silicon nitride products |
JPS49102707A (en) * | 1972-11-01 | 1974-09-27 | ||
JPS5082109A (en) * | 1973-10-05 | 1975-07-03 |
Also Published As
Publication number | Publication date |
---|---|
JPS5314716A (en) | 1978-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4243621A (en) | β'-Sialon sintered body and a method for manufacturing the same | |
US2618565A (en) | Manufacture of silicon nitride-bonded articles | |
JP3600933B2 (en) | Method for producing aluminum titanate-based sintered body | |
JPS6313955B2 (en) | ||
TW201829299A (en) | Method for producing high-purity silicon nitride powder | |
JP3096814B1 (en) | Method for producing aluminum titanate sintered body | |
JPS62176954A (en) | Polycrystal silicon carbide sintered product | |
US4040848A (en) | Polycrystalline silicon articles containing boron by sintering | |
JP3559382B2 (en) | Method for producing silicon nitride based sintered body | |
US20040067837A1 (en) | Ceramic materials in powder form | |
JPS6210954B2 (en) | ||
JPH09183662A (en) | Production of aluminum nitride sintered compact and aluminum nitride powder | |
TWI297672B (en) | Method for synthesizing aluminum nitride and composite thereof | |
JPS62288167A (en) | Manufacture of silicon carbide sintered body | |
JPS629548B2 (en) | ||
JPS5934149B2 (en) | Method for manufacturing dense β′-sialon sintered body | |
US3199993A (en) | Sintered bodies being resistant to heat, oxidation and wear | |
JPS5943436B2 (en) | Method for manufacturing dense β′-sialon sintered body | |
JPS6335593B2 (en) | ||
JPS632913B2 (en) | ||
JPS6253473B2 (en) | ||
JPH01131066A (en) | Boron nitride based compact calcined under ordinary pressure | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JPS5855110B2 (en) | Manufacturing method of carbide heat-resistant ceramics | |
JPS5915113B2 (en) | Method for manufacturing dense β′-sialon sintered body |