JPH0516892B2 - - Google Patents

Info

Publication number
JPH0516892B2
JPH0516892B2 JP60030546A JP3054685A JPH0516892B2 JP H0516892 B2 JPH0516892 B2 JP H0516892B2 JP 60030546 A JP60030546 A JP 60030546A JP 3054685 A JP3054685 A JP 3054685A JP H0516892 B2 JPH0516892 B2 JP H0516892B2
Authority
JP
Japan
Prior art keywords
water vapor
porous
ceramic
pores
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60030546A
Other languages
Japanese (ja)
Other versions
JPS61192314A (en
Inventor
Masaji Asae
Kazutaka Mori
Hiroshi Makihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60030546A priority Critical patent/JPS61192314A/en
Publication of JPS61192314A publication Critical patent/JPS61192314A/en
Publication of JPH0516892B2 publication Critical patent/JPH0516892B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、凝縮性成分の分離に用いるセラミツ
ク膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a ceramic membrane used for separating condensable components.

(従来の技術) 金属粉末あるいはセラミツク粉末を焼結した
り、又は、フツ素樹脂等の有機合成樹脂粉末を圧
縮成形した、平均細孔直径数10〜数100Åの超微
細な孔を有する多孔質隔膜を分離に用いるため
に、任意の形状に成形することは困難であつた。
そのため、多くの場合、充分な強度を有するよう
に、ある程度の厚みを有するガス透過性の高い多
孔質体又は金網様のもので、上記の微細孔を有す
る薄い多孔質隔膜を補強し、多層構造とする方策
等がとられている。
(Prior art) Porous material having ultra-fine pores with an average pore diameter of several tens to several hundreds of angstroms, made by sintering metal powder or ceramic powder, or compression molding organic synthetic resin powder such as fluororesin. It has been difficult to mold the diaphragm into an arbitrary shape for use in separation.
Therefore, in many cases, the above-mentioned thin porous membrane with micropores is reinforced with a porous material or wire mesh-like material with a certain thickness and high gas permeability in order to have sufficient strength, resulting in a multilayer structure. Measures are being taken to

例えば、多層構造の多孔質膜を管状とするため
には、各種の方法があるが、一般には、シート状
の多層多孔質隔膜を円管状に成形加工し、端末を
つき合せ溶接、あるいは重ね合せ接着を行つてい
る。しかし、多孔質体が金属のように柔軟性の高
いものでは、円管成形も可能であるが、セラミツ
クのように柔軟性のないものでは、極めて困難で
ある。又、多孔質金属では、金属であつても多孔
質体であるため、空孔の存在により強度が無孔質
体に比べて低くなり、円形成形可能な曲率半径に
限度があり、細い管状に成形することは極めて困
難であつた。
For example, there are various methods to make a multilayered porous membrane into a tubular shape, but in general, a sheet-like multilayered porous diaphragm is formed into a circular tube shape, and the ends are butt welded or overlapped. Gluing is being done. However, if the porous material is highly flexible, such as metal, it is possible to form a circular tube, but if the porous material is inflexible, such as ceramic, it is extremely difficult. In addition, since porous metals are porous bodies even if they are metals, their strength is lower than that of non-porous bodies due to the presence of pores, and there is a limit to the radius of curvature that can be formed into a circular shape. It was extremely difficult to mold it into a shape.

そこで、このような難点を解決する方法とし
て、多孔質支持管とその内側又は外側に配置した
パイプ又は芯金とを同じ円状に保持して、多孔質
支持管とパイプ又は芯金とに振動を与えながら、
多孔質支持管とパイプ又は芯金との間の空〓部に
気体を噴出させて該空〓部内に粉末を均一に充填
し、該空〓部内に充填した粉末を多孔質支持管に
静圧成形により圧着し、多孔質支持管に粉末の圧
着層を形成する管状多孔質膜の成形法が知られて
いる(特開昭50−77410号公報参照)が、粉末を
均一に充填すること及び非常に薄い膜を作製する
ことなど実際には困難な点が多い。
Therefore, as a method to solve these difficulties, the porous support tube and the pipe or core metal placed inside or outside of it are held in the same circular shape, and the porous support tube and the pipe or core metal are vibrated. while giving
Gas is ejected into the cavity between the porous support tube and the pipe or core metal to uniformly fill the cavity with powder, and the powder filled in the cavity is applied to the porous support tube under static pressure. A method of forming a tubular porous membrane is known in which a porous membrane is compressed by molding to form a compressed layer of powder on a porous support tube (see Japanese Patent Application Laid-Open No. 77410/1983). In practice, there are many difficulties, such as creating very thin films.

(発明が解決しようとする問題点) 本発明は、このような現状に鑑みてなされたも
のであつて、大きさと形状を自由に選択すること
が可能であり、細孔直径も10Å程度と非常に小さ
な細孔径を有するセラミツク多孔質隔膜の製造方
法を提供するものである。
(Problems to be Solved by the Invention) The present invention was made in view of the current situation, and allows the size and shape to be freely selected, and the pore diameter is approximately 10 Å, which is extremely large. The present invention provides a method for manufacturing a ceramic porous diaphragm having a small pore diameter.

(問題点を解決するための手段) 本発明は、セラミツク多孔体の細孔中にアルミ
ニウムアルコラート又はアルミニウムキレートを
加水分解して得たアルミナゾルを含浸した後、け
い酸ナトリウム水溶液に含浸し、更に高温水蒸気
中において水蒸気処理することを特徴とする凝縮
成分分離用セラミツク膜の製造方法に関する。
(Means for Solving the Problems) The present invention involves impregnating an alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate into the pores of a porous ceramic material, and then impregnating the material with an aqueous solution of sodium silicate. The present invention relates to a method for manufacturing a ceramic membrane for separating condensed components, which is characterized by steam treatment in steam.

更に具体的には、本発明は、セラミツク多孔体
の細孔中にアルミニウムアルコラート又はアルミ
ニウムキレートを加水分解して得たアルミナゾル
を含浸した後、0.01〜0.5モル/のけい酸ナト
リウム水溶液に含浸し、更に95〜100℃の水蒸気
中において0.5〜5時間水蒸気処理することを特
徴とする凝縮成分分離用セラミツク膜の製造方法
に関する。
More specifically, the present invention involves impregnating the pores of a ceramic porous body with an alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate, and then impregnating it with a 0.01 to 0.5 mol/aqueous sodium silicate solution. Furthermore, the present invention relates to a method for producing a ceramic membrane for separating condensed components, which comprises steam treatment for 0.5 to 5 hours in steam at 95 to 100°C.

本発明方法においては、先ず、発泡シリカ、焼
結アルミナ及びムライトなどの比較的大きな細孔
(通常、細孔直径1000Å以上)を有する任意の形
状の多孔質基材に、アルミニウムアルコラート又
はアルミニウムキレート化合物を加水分解して得
たアルミナゾル(AlOOH)を含浸した後、けい
酸ナトリウムの水溶液に含浸し、高温スチーム中
に保持する。次に、ふつとう水中に浸漬し、アル
カリ成分を洗浄除去する。
In the method of the present invention, first, an aluminum alcoholate or an aluminum chelate compound is applied to a porous base material of any shape having relatively large pores (usually 1000 Å or more in pore diameter) such as foamed silica, sintered alumina, and mullite. After being impregnated with alumina sol (AlOOH) obtained by hydrolyzing , it is impregnated with an aqueous solution of sodium silicate and kept in high-temperature steam. Next, it is immersed in normal water to wash and remove alkaline components.

上記の操作により、細孔は充填される。一回の
操作では乾燥収縮によるひび割れが生じたり、ま
た、ゾルにより完全には細孔を充填することはで
きないので、数回繰り返すと完全である。
The pores are filled by the above operation. A single operation may cause cracks due to drying shrinkage, and the pores cannot be completely filled with the sol, so repeating the process several times will complete the process.

本発明に使用するアルミニウムアルコラートと
しては、アルミニウムイソプロポキシドやアルミ
ニウム−2−プチレートなどがあり、アルミニウ
ムキレートとしては、アルミニウムトリス(エチ
ルアセトアセテート)やエチルアセトアセテート
アルミニウムジイソプロピレートなどがある。
Examples of aluminum alcoholates used in the present invention include aluminum isopropoxide and aluminum-2-butyrate, and examples of aluminum chelates include aluminum tris (ethylacetoacetate) and ethylacetoacetate aluminum diisopropylate.

本発明方法によれば、細孔直径10Å以下の細孔
を有するセラミツク膜を製造することが可能であ
る。
According to the method of the present invention, it is possible to produce a ceramic membrane having pores with a pore diameter of 10 Å or less.

本発明方法で得られるセラミツク膜を使用すれ
ば、気体中の凝縮性成分を分離することが可能で
ある。例えば、空気中の水分(水蒸気)を分離す
るためには、セラミツク膜の片側を水蒸気を含ん
だ空気とし、膜の他側を真空に吸引してやると、
空気中の水分が細孔中に凝縮し、真空側に出てく
るので、空気中の水蒸気は減少する。このような
膜の用途としては、クローズドシステムにおける
脱湿装置への利用などが考えられる。
By using the ceramic membrane obtained by the method of the present invention, it is possible to separate condensable components in a gas. For example, in order to separate moisture (water vapor) from the air, one side of a ceramic membrane is filled with air containing water vapor, and the other side of the membrane is vacuumed.
Moisture in the air condenses in the pores and comes out on the vacuum side, reducing the amount of water vapor in the air. Possible uses for such a membrane include use in a dehumidifying device in a closed system.

(発明の効果) 本発明方法で得られるセラミツク膜は、ガス温
度や凝縮性成分の含有量によつて性能は若干変化
するものの、凝縮性成分の良好な分離性能を有
し、また、該セラミツク膜の製造方法も容易であ
り、本発明は工業上有益である。
(Effects of the Invention) The ceramic membrane obtained by the method of the present invention has good separation performance for condensable components, although the performance varies slightly depending on the gas temperature and the content of condensable components. The method for producing the membrane is also easy, and the present invention is industrially useful.

以下に、本発明の実施例を示す。 Examples of the present invention are shown below.

実施例 1 重量比で2:1の割合にカオリンとグラフアイ
トを混合した後、水を加えて直径12mm、厚さ1.2
mm、長さ12cmの片側がつまつた粘土管を成形し
た。これを室内にて乾燥した後、200℃/hの昇
温速度で1250℃まで昇温し、1250℃で10時間保持
することにより粘土焼成体を得た。焼成雰囲気
は、空気であつた。この結果、細孔直径0.8μm
(8000Å)、細孔容積0.2c.c./gで、形状が直径10
mm、厚さ1mm、長さ10cmの多孔性焼結体が得られ
た。
Example 1 After mixing kaolin and graphite at a weight ratio of 2:1, water was added to form a mixture with a diameter of 12 mm and a thickness of 1.2 mm.
mm, and a length of 12 cm, a clay tube with one side plugged was molded. After drying this indoors, the temperature was raised to 1250°C at a rate of 200°C/h and held at 1250°C for 10 hours to obtain a fired clay body. The firing atmosphere was air. As a result, the pore diameter was 0.8 μm.
(8000Å), pore volume 0.2cc/g, shape 10mm in diameter
A porous sintered body measuring 1 mm in thickness, 1 mm in length, and 10 cm in length was obtained.

水100gに対し、5gのアルミニウムイソプロポ
キシドを80〜90℃に保持した水中に添加し、アル
ミニウムイソプロポキシドを加水分解した。これ
に、0.6mlの濃硝酸を加え、80〜90℃に24時間保
持し、解膠してアルミナゾルを得た。このアルミ
ナゾルに、上で得た多孔性焼結体を5分間浸漬し
た後、0.1モル/のけい酸ナトリウム水溶液に
1分間浸漬し、100℃の水蒸気中において1時間
保持した。この操作を4回繰り返した後、90℃の
熱水中に1分間浸漬し、アルカリを洗浄除去し
た。
5 g of aluminum isopropoxide was added to 100 g of water maintained at 80 to 90° C., and the aluminum isopropoxide was hydrolyzed. To this, 0.6 ml of concentrated nitric acid was added, and the mixture was kept at 80 to 90°C for 24 hours to peptize and obtain an alumina sol. The porous sintered body obtained above was immersed in this alumina sol for 5 minutes, then immersed in a 0.1 mol/aqueous sodium silicate solution for 1 minute, and kept in steam at 100°C for 1 hour. After repeating this operation four times, it was immersed in hot water at 90°C for 1 minute to wash and remove the alkali.

最終的に得たセラミツク微細多孔体の細孔分布
を水蒸気吸着により求めた結果を第1図に示す。
第1図において、横軸は関係湿度、縦軸は無次元
水蒸気吸着量である。尚、この測定は32℃におい
て行つたものであり、図中の94Å、24Å、10Åの
値は、毛管凝縮に関するケルビン式から求めた細
孔直径である。この図から、本発明方法により調
製したセラミツク膜は、10Å以下の細孔を有して
いることが明らかとなつた。すなわち、ケルビン
式は、成分が凝縮を初める時の細孔半径(凝縮半
径)を与えるもので、次式で示される。
The pore distribution of the finally obtained microporous ceramic material was determined by water vapor adsorption, and the results are shown in FIG.
In FIG. 1, the horizontal axis is the relative humidity, and the vertical axis is the dimensionless water vapor adsorption amount. Note that this measurement was performed at 32°C, and the values of 94 Å, 24 Å, and 10 Å in the figure are pore diameters determined from the Kelvin equation regarding capillary condensation. From this figure, it is clear that the ceramic membrane prepared by the method of the present invention has pores of 10 Å or less. That is, the Kelvin equation gives the pore radius (condensation radius) when the components begin to condense, and is expressed by the following equation.

r=2Vσ/RTln(P/P0) ここで r:凝縮半径 σ:液体の表面張力 V:液体の分子容 P0:飽和蒸気圧 P:毛管凝縮をおこす圧 ある温度における関係湿度は、圧力で表現する
とP/P0と表わされ、これらの値をケルビン式
に入れて計算すれば、細孔半径が得られる。第1
図中、矢印を付して示した10Å、24Å、94Åは、
それぞれ関係湿度13%、50%、80%に対する凝縮
半径であり、10Åで明らかに凝縮吸着が認められ
るため、本発明において、細孔径10Åが形成され
たことがわかる。
r=2Vσ/RTln (P/P 0 ) where r: Condensation radius σ: Surface tension of liquid V: Molecular volume of liquid P 0 : Saturated vapor pressure P: Pressure that causes capillary condensation The relative humidity at a certain temperature is the pressure Expressed as P/P 0 , the pore radius can be obtained by calculating by entering these values into the Kelvin equation. 1st
In the figure, 10Å, 24Å, and 94Å shown with arrows are
These are the condensation radii for the relative humidity of 13%, 50%, and 80%, respectively, and since condensation adsorption is clearly observed at 10 Å, it can be seen that a pore diameter of 10 Å was formed in the present invention.

このセラミツク膜について、第2図A,Bに示
す水蒸気分離試験装置を用いて凝縮性成分分離性
能評価試験を行つた。第2図Aにおいて、1及び
2はガス加熱用蛇管、3及び4はそれぞれ凝縮性
成分ガス添加部であり、本試験の場合は、凝縮性
成分として水(水蒸気)を用いた。5は凝縮性成
分分離部分であり、6及び7は凝縮性成分凝縮部
であり、8は真空ポンプである。第2図Bは、凝
縮性成分分離部分5の膜部分の拡大図である。図
中、9は、細孔11に充填した微細細孔を有する
アルミナであり、10は基材である。
Regarding this ceramic membrane, a condensable component separation performance evaluation test was conducted using a water vapor separation test apparatus shown in FIGS. 2A and 2B. In FIG. 2A, 1 and 2 are corrugated pipes for gas heating, 3 and 4 are condensable component gas addition parts, and in the case of this test, water (steam) was used as the condensable component. 5 is a condensable component separation section, 6 and 7 are condensable component condensation sections, and 8 is a vacuum pump. FIG. 2B is an enlarged view of the membrane portion of the condensable component separation section 5. FIG. In the figure, 9 is alumina having fine pores filled in pores 11, and 10 is a base material.

試験は、ガス加熱用蛇管1及び凝縮性成分添加
部3により窒素ガスに水蒸気を含ませた後、セラ
ミツク膜5を介して真空ポンプ8で真空に吸引す
ることにより行われた。ここで、セラミツク膜5
を通して流過した水蒸気は、凝縮性成分凝縮部6
又は7に充填された液体窒素により凝縮させる。
そして、凝縮した水を計量することにより、水の
透過速度を測定した。
The test was conducted by impregnating nitrogen gas with water vapor using the gas heating coil 1 and the condensable component adding section 3, and then evacuating the nitrogen gas using the vacuum pump 8 through the ceramic membrane 5. Here, the ceramic film 5
The water vapor that has passed through the condensable component condensing section 6
Or it is condensed with liquid nitrogen filled in 7.
The water permeation rate was then measured by weighing the condensed water.

水の透過速度測定結果を第3図に示す。第3図
において、横軸は関係湿度(%)、縦軸は透過速
度(mol/m2h)であり、測定温度は76.2℃であ
つた。第3図中、曲線1は水蒸気の透過速度であ
り、曲線2は窒素の透過速度である。第3図から
明らかなように、関係湿度20%以上では、水蒸気
の透過速度が窒素の透過速度より大である。ま
た、関係湿度が高くなるにつれて、水蒸気の透過
速度は大となり、窒素の透過速度は小さくなる。
Figure 3 shows the results of measuring the water permeation rate. In FIG. 3, the horizontal axis is relative humidity (%), the vertical axis is permeation rate (mol/m 2 h), and the measurement temperature was 76.2°C. In FIG. 3, curve 1 is the water vapor permeation rate, and curve 2 is the nitrogen permeation rate. As is clear from FIG. 3, at relative humidity of 20% or more, the water vapor permeation rate is greater than the nitrogen permeation rate. Furthermore, as the relative humidity increases, the water vapor permeation rate increases and the nitrogen permeation rate decreases.

実施例 2 細孔直径1500Å、細孔容積0.18c.c./gのアルミ
ナ多孔質焼結体に、実施例1と同様にしてアルミ
ナゾルを3回含浸処理した後、0.2モル/のけ
い酸ナトリウム水溶液に1分間浸漬し、100℃の
水蒸気中において1時間保持する操作を4回繰り
返した。得られたセラミツク膜の水蒸気平衡吸着
曲線(32℃)を第4図に示す。第4図において、
横軸は関係湿度(%)であり、縦軸は無次元水蒸
気吸着量である。ケルビン式による細孔径の値10
Å、24Åを図中に示す。水蒸気平衡吸着曲線測定
の結果、得られたセラミツク多孔体の細孔径は、
10Åより小さいことが明らかとなつた。
Example 2 An alumina porous sintered body with a pore diameter of 1500 Å and a pore volume of 0.18 cc/g was impregnated with alumina sol three times in the same manner as in Example 1, and then impregnated with a 0.2 mol/sodium silicate aqueous solution. The operation of immersing the sample for a minute and holding it in steam at 100°C for 1 hour was repeated four times. The water vapor equilibrium adsorption curve (32°C) of the obtained ceramic membrane is shown in Figure 4. In Figure 4,
The horizontal axis is the relative humidity (%), and the vertical axis is the dimensionless water vapor adsorption amount. Value of pore diameter according to Kelvin formula10
Å, 24 Å are shown in the figure. As a result of water vapor equilibrium adsorption curve measurement, the pore diameter of the ceramic porous material obtained was
It became clear that the diameter was smaller than 10 Å.

次に、得られたセラミツク膜について、実施例
1と同様に凝縮性成分(水蒸気)分離性能試験を
実施した。試験結果を第5図に示す。第5図にお
いて、横軸は関係湿度(%)であり、縦軸は透過
速度(mol/m2・h)である。第5図中、・○は
76.8℃の水蒸気、△は76.8℃の空気、●は58.0℃
の水蒸気、・△は58.0℃の空気の透過速度データで
ある。この場合にも、関係湿度20%以上では、水
蒸気が空気に比べ多く透過することが明らかとな
つた。また、湿度が高くなるにつれて、空気の透
過速度は減少するのに比べ、水蒸気の透過速度は
大となる。また、湿度による水蒸気の透過量を比
べた場合、76.8℃の水蒸気透過量>58.0℃の水蒸
気透過量となり、湿度が高いほうが水蒸気の透過
量が多いことが判明した。
Next, the resulting ceramic membrane was subjected to a condensable component (water vapor) separation performance test in the same manner as in Example 1. The test results are shown in Figure 5. In FIG. 5, the horizontal axis is relative humidity (%), and the vertical axis is permeation rate (mol/m 2 ·h). In Figure 5, ○ is
Water vapor at 76.8℃, △ is air at 76.8℃, ● is 58.0℃
water vapor, △ is the air permeation rate data at 58.0℃. In this case as well, it has become clear that at relative humidity levels of 20% or higher, more water vapor permeates than air. Furthermore, as the humidity increases, the air permeation rate decreases, but the water vapor permeation rate increases. Furthermore, when comparing the amount of water vapor permeation due to humidity, it was found that the amount of water vapor permeation at 76.8°C was greater than the amount of water vapor permeation at 58.0°C, indicating that the higher the humidity, the greater the amount of water vapor permeation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は、本発明方法に従つて試作
したセラミツク膜の水蒸気平衡吸着曲線を示す
図、第2図Aは、本発明方法で得られたセラミツ
ク膜を評価するための凝縮性成分分離試験装置の
概略図、第2図Bは、第2図Aの一部拡大図であ
る。第3図及び第5図は、試作したセラミツク膜
によるガス透過試験結果を示す図である。
Figures 1 and 4 are diagrams showing water vapor equilibrium adsorption curves of ceramic membranes prototyped according to the method of the present invention, and Figure 2A is a diagram showing condensability curves for evaluating the ceramic membrane obtained by the method of the present invention. FIG. 2B, a schematic diagram of the component separation test apparatus, is a partially enlarged view of FIG. 2A. 3 and 5 are diagrams showing the results of a gas permeation test using a prototype ceramic membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク多孔体の細孔中にアルミニウムア
ルコラート又はアルミニウムキレートを加水分解
して得たアルミナゾルを含浸した後、けい酸ナト
リウム水溶液に含浸し、更に高温水蒸気中におい
て水蒸気処理することを特徴とする凝縮成分分離
用セラミツク膜の製造方法。
1. A condensed component characterized by impregnating the pores of a ceramic porous body with an alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate, then impregnating it with an aqueous sodium silicate solution, and further steaming it in high-temperature steam. A method for producing a ceramic membrane for separation.
JP60030546A 1985-02-20 1985-02-20 Preparation of ceramic membrane for separating condensible component Granted JPS61192314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030546A JPS61192314A (en) 1985-02-20 1985-02-20 Preparation of ceramic membrane for separating condensible component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030546A JPS61192314A (en) 1985-02-20 1985-02-20 Preparation of ceramic membrane for separating condensible component

Publications (2)

Publication Number Publication Date
JPS61192314A JPS61192314A (en) 1986-08-26
JPH0516892B2 true JPH0516892B2 (en) 1993-03-05

Family

ID=12306788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030546A Granted JPS61192314A (en) 1985-02-20 1985-02-20 Preparation of ceramic membrane for separating condensible component

Country Status (1)

Country Link
JP (1) JPS61192314A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112533B2 (en) * 1987-01-08 1995-12-06 三菱重工業株式会社 Method for producing ceramic porous membrane
JP2508999B2 (en) * 1989-12-25 1996-06-19 三井東圧化学株式会社 Method for producing bisphenol A

Also Published As

Publication number Publication date
JPS61192314A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
Nair et al. Sol-gel synthesis of molecular sieving silica membranes
US6536604B1 (en) Inorganic dual-layer microporous supported membranes
US6387269B1 (en) Membrane for separating fluids
JPS63171610A (en) Production of porous ceramic membrane
JPS642408B2 (en)
Shusen et al. Asymmetric molecular sieve carbon membranes
NL8701598A (en) GAS SEPARATION DEVICE AND METHOD FOR SEPARATING GASES BY USING SUCH A DEVICE
WO2008050814A1 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
JP2012040549A (en) Silica membrane and method for manufacturing the same
JPWO2009001970A1 (en) Separation membrane complex and method for producing separation membrane complex
US4692354A (en) Method for preparing ceramic membrane for separation of condensed component
US6004374A (en) Carbonaceous adsorbent membranes for gas dehydration
JP4599557B2 (en) Gas separation membrane and method for producing the same
JP3297542B2 (en) Laminated inorganic separator
JPH0516892B2 (en)
JPS6355973B2 (en)
JP7065492B2 (en) Separation membrane
de Lange et al. Aging and stability of microporous sol-gel-modified ceramic membranes
JP2001276586A (en) Gas separation membrane and its production method
JPH0367991B2 (en)
JPH0199618A (en) Production of ceramics porous film
JPH0367992B2 (en)
Kuraoka et al. Highly selective separation of CO2 and He by xerogel coated porous glass membrane
JPS6233521A (en) Separation of condensable gas
JP4737945B2 (en) Manufacturing method of separation membrane