JPH0367991B2 - - Google Patents

Info

Publication number
JPH0367991B2
JPH0367991B2 JP3442184A JP3442184A JPH0367991B2 JP H0367991 B2 JPH0367991 B2 JP H0367991B2 JP 3442184 A JP3442184 A JP 3442184A JP 3442184 A JP3442184 A JP 3442184A JP H0367991 B2 JPH0367991 B2 JP H0367991B2
Authority
JP
Japan
Prior art keywords
water vapor
aluminum
porous
pores
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3442184A
Other languages
Japanese (ja)
Other versions
JPS60180979A (en
Inventor
Masaji Asae
Korehiko Nishimoto
Hiroshi Makihara
Masahito Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3442184A priority Critical patent/JPS60180979A/en
Publication of JPS60180979A publication Critical patent/JPS60180979A/en
Publication of JPH0367991B2 publication Critical patent/JPH0367991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials

Description

【発明の詳細な説明】 本発明は凝縮性成分の分離に用いるセラミツク
膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ceramic membranes for use in separating condensable components.

金属粉末あるいはセラミツク粉末を焼結した
り、又はフツ素樹脂等の有機合成樹脂粉末を圧縮
成形した、平均細孔直径数10〜数100Åの超微細
な孔を有する多孔質隔膜を、分離に用いるために
任意の形状に成形することは困難であつた。その
ため、多くの場合、充分な強度を有するように、
ある程度の厚みを有するガス透過性の高い多孔質
体又は金網様のもので、上記の微細孔を有する薄
い多孔質隔膜を補強し、多層構造とする方策等が
とられている。
A porous diaphragm with ultra-fine pores with an average pore diameter of several tens to several hundreds of angstroms is used for separation, which is made by sintering metal powder or ceramic powder, or compression molding organic synthetic resin powder such as fluorine resin. Therefore, it was difficult to mold it into an arbitrary shape. Therefore, in many cases, in order to have sufficient strength,
Measures have been taken to reinforce the above-mentioned thin porous diaphragm having micropores with a porous body or wire mesh-like material having a certain thickness and high gas permeability to form a multilayer structure.

例えば、多層構造の多孔質膜を管状とするため
には各種の方法があるが、一般にはシート状の多
層多孔質隔膜を円管状に成形加工し、端末をつき
合せ溶接、あるいは重ね合せ接着を行つている。
しかし、多孔質体が金属のように柔軟性の高いも
のでは円管形成も可能であるが、セラミツクのよ
うに柔軟性のないものでは極めて困難である。
又、多孔質金属では、金属であつても多孔質体で
あるため空孔の存在により強度が無孔質体に比べ
て低くなり、円形成形可能な曲率半径に限度があ
り、細い管状に成形することは極めて困難であつ
た。
For example, there are various methods to make a multilayered porous membrane into a tubular shape, but in general, a sheet-like multilayer porous diaphragm is formed into a circular tube shape, and the ends are butt welded or overlapped and bonded. I'm going.
However, although it is possible to form a circular tube when the porous material is highly flexible such as metal, it is extremely difficult to form a circular tube when the porous material is inflexible such as ceramic.
In addition, since porous metals are porous materials, their strength is lower than that of non-porous materials due to the presence of pores, and there is a limit to the radius of curvature that can be formed into a circular shape. It was extremely difficult to mold.

そこで、このような難点を解決する方法とし
て、多孔質支持管とその内側又は外側に配置した
パイプ又は芯金とを同じ円状に保持して、多孔質
支持管とパイプ又は芯金とに振動を与えながら、
多孔質支持管とパイプ又は芯金との間の空隙部に
気体を噴出させて該空隙部内に粉末を均一に充填
し、該空隙部内に充填した粉末を多孔質支持管に
静圧成形により圧着し、多孔質支持管に粉末の圧
着層を形成する管状多孔質膜の成形法が知られて
いる(特開昭50−77410号公報参照)が、粉末を
均一に充填すること及び非常に薄い膜を作製する
ことなど実際には困難な点が多い。
Therefore, as a method to solve such difficulties, the porous support tube and the pipe or core metal placed inside or outside of it are held in the same circular shape, and the porous support tube and the pipe or core metal are vibrated. while giving
Gas is ejected into the gap between the porous support tube and the pipe or core metal to uniformly fill the gap with powder, and the powder filled in the gap is crimped onto the porous support tube by static pressure forming. However, a method of forming a tubular porous membrane in which a compressed layer of powder is formed on a porous support tube is known (see Japanese Patent Application Laid-open No. 77410/1983), but it is difficult to fill the powder uniformly and to make it extremely thin. In practice, there are many difficulties, such as creating a membrane.

本発明は、このような現状に鑑みてなされたも
のであつて、大きさと形状を自由に選択すること
が可能であり、細孔直径も10Å程度と非常に小さ
な細孔径を有する多孔質隔膜の製造方法を提案す
るものである。
The present invention was made in view of the current situation, and it is possible to freely select the size and shape, and the present invention is a porous diaphragm having a very small pore diameter of about 10 Å. This paper proposes a manufacturing method.

すなわち本発明は、セラミツク多孔体の細孔中
にアルミニウムアルコラート又はアルミニウムキ
レートを加水分解して得たアルミナゾルを含浸し
た後、乾燥し、焼成し、次いで有機溶剤に溶解し
たアルミニウムアルコラート又はアルミニウムキ
レートを含浸し、加水分解した後、焼成すること
を特徴とする凝縮成分分離用セラミツク膜の製造
方法に関する。
That is, the present invention involves impregnating the pores of a ceramic porous body with an alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate, drying and firing, and then impregnating aluminum alcoholate or aluminum chelate dissolved in an organic solvent. The present invention relates to a method for producing a ceramic membrane for separating condensed components, which comprises hydrolyzing the membrane and then firing it.

本発明方法においては、先ず、発泡シリカ、焼
結アルミナ及びムライトなどの比較的大きな細孔
(通常細孔直径1000Å以上)を有する任意の形状
の多孔質基材にアルミニウムアルコラート又はア
ルミニウムキレート化合物を加水分解して得たア
ルミナゾル(AlOOH)を含浸した後乾燥及び焼
成を行つてアルミナ(Al2O3)を生成させる。な
お、上記の加水分解は60〜100℃の水中又は飽和
水蒸気中等で行い、また加水分解後に硝酸や塩酸
等を添加してゾルを解膠し、得られる固体の均一
性と強度を向上させる。上記の乾燥は80〜120℃
で24時間程度で行い、焼成は400〜600℃、1〜24
時間で行うことが好ましく、またこれより低温で
の前焼成を行うこともできる。
In the method of the present invention, first, an aluminum alcoholate or an aluminum chelate compound is added to a porous base material of any shape having relatively large pores (usually a pore diameter of 1000 Å or more) such as foamed silica, sintered alumina, and mullite. After being impregnated with alumina sol (AlOOH) obtained by decomposition, drying and firing are performed to produce alumina (Al 2 O 3 ). The above hydrolysis is performed in water or saturated steam at 60 to 100°C, and after the hydrolysis, nitric acid, hydrochloric acid, etc. are added to peptize the sol to improve the uniformity and strength of the resulting solid. The above drying is 80-120℃
The firing time is 400-600℃, 1-24 hours.
Prefiring is preferably performed at a lower temperature than this, and pre-firing can also be performed at a lower temperature.

この操作は1回では乾燥収縮によるひび割れが
生じたり、またゾルにより充分には細孔を充填す
ることができないので数回繰り返す。
This operation is repeated several times because cracks may occur due to drying shrinkage or the pores cannot be filled sufficiently with the sol.

次に、上記の操作により細孔径が小さくなつた
細孔に、有機溶剤に溶解したアルミニウムアルコ
ラートまたはアルミニウムキレートを含浸させ、
有機溶剤を揮発除去した後、細孔内のアルミニウ
ムアルコラートまたはアルミニウムキレートを水
蒸気により加水分解してアルミナゾルとした後、
乾燥、焼成する。
Next, the pores whose pore diameter has been reduced by the above operation are impregnated with aluminum alcoholate or aluminum chelate dissolved in an organic solvent,
After removing the organic solvent by volatilization, the aluminum alcoholate or aluminum chelate in the pores is hydrolyzed with water vapor to form an alumina sol,
Dry and bake.

本発明に使用するアルミニウムアルコラートと
しては、アルミニウムイソプロポキシドやアルミ
ニウム−2−ブチレートなどがあり、アルミニウ
ムキレートとしては、アウミニウムトリス(エチ
ルアセトアセテート)やエチルアセトアセテート
アルミニウムジイソプロピレートなどがある。ま
た、使用する有機溶剤はノルマルヘキサン、シク
ロヘキサン、ベンゼン、トルエン、キシレン、イ
ソプロパノール及びトリクレンなどである。
Examples of aluminum alcoholates used in the present invention include aluminum isopropoxide and aluminum-2-butyrate, and examples of aluminum chelates include aluminum tris (ethylacetoacetate) and ethylacetoacetate aluminum diisopropylate. Further, the organic solvents used include normal hexane, cyclohexane, benzene, toluene, xylene, isopropanol, and trichlene.

本発明方法によれば、細孔直径10Å以下の細孔
を有するセラミツク膜を製造することが可能であ
る。
According to the method of the present invention, it is possible to produce a ceramic membrane having pores with a pore diameter of 10 Å or less.

本発明方法で得られるセラミツク膜を使用すれ
ば、気体中の凝縮性成分を分離することが可能で
ある。例えば、空気中の水分(水蒸気)を分離す
るためには、セラミツク膜の片側を水蒸気を含ん
だ空気とし、膜の他側を真空に引いてやると、空
気中の水分が細孔中に凝縮し、真空側に出てくる
ので、空気中の水蒸気は減少する。このような膜
の用途としてはクローズドシステムにおける脱湿
装置への利用などが考えられる。
By using the ceramic membrane obtained by the method of the present invention, it is possible to separate condensable components in a gas. For example, in order to separate moisture (water vapor) from the air, one side of a ceramic membrane is filled with air containing water vapor, and the other side of the membrane is evacuated.The moisture in the air condenses into the pores. However, since it comes out on the vacuum side, the water vapor in the air decreases. Possible uses for such a membrane include use in a dehumidifying device in a closed system.

以下、本発明を実施例に従い説明する。 Hereinafter, the present invention will be explained according to examples.

実施例 1 重量比で2:1の割合にカオリンとグラフアイ
トを混合した後、水を加えて直径12mm、厚さ1.2
mm、長さ12cmの片側がつまつた粘土管を成形し
た。これを室内にて乾燥した後、200℃/hの昇
温速度で1250℃まで昇温し、1250℃で10時間保持
することにより粘土焼成体を得た。焼成雰囲気は
空気であつた。この結果、細孔直径0.8μm(8000
Å)、細孔容積0.2c.c./gで、形状が直径10mm、厚
さ1mm、長さ10cmの多孔性焼結体が得られた。
Example 1 After mixing kaolin and graphite at a weight ratio of 2:1, water was added to form a mixture with a diameter of 12 mm and a thickness of 1.2 mm.
mm, and a length of 12 cm, a clay tube with one side plugged was molded. After drying this indoors, the temperature was raised to 1250°C at a rate of 200°C/h and held at 1250°C for 10 hours to obtain a fired clay body. The firing atmosphere was air. As a result, the pore diameter was 0.8 μm (8000
A porous sintered body with a pore volume of 0.2 cc/g, a diameter of 10 mm, a thickness of 1 mm, and a length of 10 cm was obtained.

水100gに対し、5gのアルミニウムイソプロ
ポキシドを、80〜90℃に保持した水中に添加し、
アルミニウムイソプロポキシドを加水分解した。
これに0.6mlの濃硝酸を加え、80〜90℃に24時間
保持し、解膠してアルミナゾルを得た。
Add 5g of aluminum isopropoxide to 100g of water maintained at 80-90℃,
Hydrolyzed aluminum isopropoxide.
0.6 ml of concentrated nitric acid was added to this, kept at 80 to 90°C for 24 hours, and peptized to obtain an alumina sol.

このアルミナゾルに上で得た多孔性焼結体を5
分回浸漬した後、室内で24時間乾燥し、80℃で2
時間乾燥した後、更に350℃で2時間、600℃で2
時間焼成した。この操作を4回繰り返して微細多
孔体を得た。水銀圧入法で測定した平均細孔直径
の変化を第1図に示す。第1図において横軸は含
浸回数、縦軸は平均細孔直径である。含浸するこ
とにより細孔がアルミナにより充填されているこ
とがよくわかる。
The porous sintered body obtained above was added to this alumina sol.
After soaking in batches, dry indoors for 24 hours, and then dry at 80℃ for 2 hours.
After drying for 1 hour, further dry at 350℃ for 2 hours and at 600℃ for 2 hours.
Baked for an hour. This operation was repeated four times to obtain a microporous body. Figure 1 shows the change in average pore diameter measured by mercury intrusion method. In FIG. 1, the horizontal axis represents the number of impregnations, and the vertical axis represents the average pore diameter. It is clearly seen that the pores are filled with alumina by impregnation.

次に、トリクレン100に対し、アルミニウムイ
ソプロポキシドを5の重量比で溶解し、アルミナ
の充填の行なわれた管を、この溶液に含浸し、ト
リクレンを揮発させ、細孔内にアルミニウムイソ
プロポキシドを析出させた。次に、この管の内側
を減圧に引きながら、100℃のスチーム中に入れ
てアルミニウムイソプロポキシドを加水分解し、
室温で乾燥した後、350℃で2時間焼成し、更に
600℃で1時間焼成した。この操作を3回繰り返
し、微細多孔体を得た。
Next, aluminum isopropoxide was dissolved in a weight ratio of 5 parts to 100 parts of trichlene, and the tube filled with alumina was immersed in this solution. was precipitated. Next, while the inside of this tube is under reduced pressure, it is placed in steam at 100℃ to hydrolyze the aluminum isopropoxide.
After drying at room temperature, baking at 350℃ for 2 hours, and then
It was baked at 600°C for 1 hour. This operation was repeated three times to obtain a microporous body.

最終的に得たセラミツク微細多孔体の細孔分布
を、水蒸気吸着により求めた結果を第2図に示
す。第2図において、横軸は関係湿度、縦軸は無
次元水蒸気吸着量である。尚、この測定は32℃に
おいて行つたものであり、図中の94Å、24Å、10
Åの値は毛管凝縮に関するケルビン式から求めた
細孔直径である。この図から本発明方法により調
製したセラミツク膜は10Å以下の細孔を有してい
ることが明らかとなつた。すなわち、ケルビン式
は、成分が凝縮を初める時の細孔半径(凝縮半
径)を与えるもので、次式で示される。
The pore distribution of the finally obtained microporous ceramic material was determined by water vapor adsorption, and the results are shown in FIG. In FIG. 2, the horizontal axis is the relative humidity, and the vertical axis is the dimensionless water vapor adsorption amount. This measurement was carried out at 32℃, and the 94Å, 24Å, and 10Å in the figure
The value of Å is the pore diameter determined from the Kelvin equation for capillary condensation. It is clear from this figure that the ceramic membrane prepared by the method of the present invention has pores of 10 Å or less. That is, the Kelvin equation gives the pore radius (condensation radius) when the components begin to condense, and is expressed by the following equation.

r=2Vσ/RTln(P/Pp) ここで、r:凝縮半径 σ:液体の表面張力 v:液体の分子容 Pp:飽和蒸気圧 P:毛管凝縮をおこす圧 或る温度における関係湿度は、圧力で表現する
とP/Ppと表わされ、これらの値をケルビン式に
入れて計算すれば、細孔半径が得られる。第2図
中、矢印を付して示した10Å、24Å、94Åは、そ
れぞれ関係湿度13%、50%、80%に対する凝縮半
径であり、10Åで明らかに凝縮吸着が認められる
ため、本発明において細孔径10Åが形成されてい
ることが判る。
r=2Vσ/RTln(P/P p ) where, r: Condensation radius σ: Surface tension of liquid v: Molecular volume of liquid P p : Saturated vapor pressure P: Pressure that causes capillary condensation The relative humidity at a certain temperature is , when expressed in terms of pressure, it is expressed as P/P p , and by entering these values into the Kelvin equation and calculating, the pore radius can be obtained. In Fig. 2, 10 Å, 24 Å, and 94 Å shown with arrows are the condensation radii for relative humidity of 13%, 50%, and 80%, respectively, and since condensation adsorption is clearly observed at 10 Å, in the present invention, It can be seen that pores with a diameter of 10 Å are formed.

このセラミツク膜について、第3図A,Bに示
す水蒸気分離試験装置を用いて凝縮性成分分離性
評価試験を行つた。
Regarding this ceramic membrane, a condensable component separation evaluation test was conducted using a water vapor separation test apparatus shown in FIGS. 3A and 3B.

第3図Aにおいて、1及び2はガス加熱用蛇
管、3及び4はそれぞれ凝縮性成分ガス添加部で
あり、本試験の場合は凝縮性成分として水(水蒸
気)を用いた。5は凝縮性成分分離部分であり、
6及び7は凝縮性成分凝縮部であり、8は真空ポ
ンプである。第3図Bは上記の凝縮性成分分離部
分5の膜部分の拡大図である。9は細孔11に充
填した微細細孔を有するアルミナであり、10は
基材である。
In FIG. 3A, 1 and 2 are corrugated pipes for gas heating, 3 and 4 are condensable component gas addition parts, and in the case of this test, water (steam) was used as the condensable component. 5 is a condensable component separation part,
6 and 7 are condensable component condensing sections, and 8 is a vacuum pump. FIG. 3B is an enlarged view of the membrane portion of the condensable component separation section 5 described above. 9 is alumina having fine pores filled in pores 11, and 10 is a base material.

試験は、ガス加熱用蛇管1及び凝縮性成分添加
部3により窒素ガスに水蒸気を含ませた後、セラ
ミツク膜5を介して真空ポンプ8で真空に吸引す
る。セラミツク膜5を通して流過した水蒸気は、
凝縮性成分凝縮部6又は7に充填された液体窒素
により凝縮させる。
In the test, nitrogen gas is impregnated with water vapor using a gas heating coil 1 and a condensable component adding section 3, and then the nitrogen gas is evacuated via a ceramic membrane 5 using a vacuum pump 8. The water vapor that has passed through the ceramic membrane 5 is
The condensable components are condensed using liquid nitrogen filled in the condensing section 6 or 7.

凝縮した水を計量することにより、水の透過速
度を測定した。
The water permeation rate was determined by weighing the condensed water.

水の透過速度測定結果を第4図に示す。第4図
において横軸は関係湿度(%)、縦軸は透過速度
(mol/m2hr)であり、測定温度は76.2℃であつ
た。第4図中、曲線1は水蒸気の透過速度であ
り、曲線2は窒素の透過速度である。図から明ら
かなように、関係湿度20%以上では水蒸気の透過
速度が窒素の透過速度より大である。また、関係
湿度が高くなるにつれて水蒸気の透過速度は大と
なり、窒素の透過速度は小さくなる。
Figure 4 shows the results of measuring the water permeation rate. In FIG. 4, the horizontal axis is relative humidity (%), the vertical axis is permeation rate (mol/m 2 hr), and the measurement temperature was 76.2°C. In FIG. 4, curve 1 is the water vapor permeation rate, and curve 2 is the nitrogen permeation rate. As is clear from the figure, the permeation rate of water vapor is greater than the permeation rate of nitrogen at relative humidity of 20% or higher. Furthermore, as the relative humidity increases, the water vapor permeation rate increases and the nitrogen permeation rate decreases.

実施例 2 細孔直径1500Å、細孔容積0.18c.c./gのアルミ
ナ多孔質焼結体に、実施例1と同様にしてアルミ
ナゾルを4回充填した後、有機溶剤に溶解したア
ルミニウムイソプロポキシドを加水分解する操作
を5回行い、セラミツク膜を得た。
Example 2 An alumina porous sintered body with a pore diameter of 1500 Å and a pore volume of 0.18 cc/g was filled with alumina sol four times in the same manner as in Example 1, and then aluminum isopropoxide dissolved in an organic solvent was added with water. The decomposition operation was performed five times to obtain a ceramic membrane.

得られたセラミツク膜の水蒸気平衡吸着曲線
(32℃)を第5図に示す。第5図において、横軸
は関係湿度(%)であり、縦軸は無次元水蒸気吸
着量である。ケルビン式による細孔径の値10Å、
24Åを図中に示す。水蒸気平衡吸着曲線測定の結
果、得られたセラミツク多孔体の細孔径は10Åよ
り小さいことが明らかとなつた。
The water vapor equilibrium adsorption curve (32°C) of the obtained ceramic membrane is shown in Figure 5. In FIG. 5, the horizontal axis is relative humidity (%), and the vertical axis is dimensionless water vapor adsorption amount. Pore diameter value 10 Å according to Kelvin equation,
24 Å is shown in the figure. As a result of water vapor equilibrium adsorption curve measurement, it was revealed that the pore diameter of the obtained ceramic porous material was smaller than 10 Å.

次に、得られたセラミツク膜について実施例1
と同様に凝縮性成分(水蒸気)分離性能評価試験
を実施した。試験結果を第6図に示す。
Next, Example 1 about the obtained ceramic film
A condensable component (water vapor) separation performance evaluation test was conducted in the same manner as above. The test results are shown in Figure 6.

第6図において横軸は関係湿度(%)であり、
縦軸は透過速度(mol/m2・hr)である。第6図
中、○・は76.8℃水蒸気、△は76.8℃空気、●は
58.0℃水蒸気、△・は58.0℃空気の透過速度データ
である。
In Figure 6, the horizontal axis is the relative humidity (%),
The vertical axis is the permeation rate (mol/m 2 ·hr). In Figure 6, ○: 76.8℃ water vapor, △: 76.8℃ air, ●:
58.0℃ water vapor, △・ is the permeation rate data of 58.0℃ air.

この場合にも関係湿度20%以上では水蒸気が空
気に比べ多く透過することが明らかとなつた。ま
た湿度が高くなるにつれて空気の透過速度は減少
するのに比べ、水蒸気の透過速度は大となる。ま
た、温度による水蒸気の透過量を比べた場合、
76.8℃の水蒸気透過量>58.0℃の水蒸気透過量と
なり、温度が高いほうが水蒸気の透過量が多いこ
とが判明した。
In this case as well, it has become clear that at relative humidity levels of 20% or higher, more water vapor permeates than air. Furthermore, as the humidity increases, the air permeation rate decreases, but the water vapor permeation rate increases. Also, when comparing the amount of water vapor permeation depending on temperature,
The amount of water vapor permeated at 76.8°C was greater than the amount of water vapor permeated at 58.0°C, and it was found that the higher the temperature, the greater the amount of water vapor permeated.

以上詳述したように、本発明方法で得られるセ
ラミツク膜はガス温度や凝縮性成分の含有量によ
つて性能は若干変化するものの、凝縮性成分の良
好な分離性能を有し、また該セラミツク膜の製造
方法も容易であり、本発明方法は工業上有益であ
る。
As detailed above, the ceramic membrane obtained by the method of the present invention has good separation performance for condensable components, although its performance varies slightly depending on the gas temperature and the content of condensable components. The method for producing the membrane is also easy, and the method of the present invention is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で得られた結果を示す
図で、アルミナゾルを含浸していつた場合の平均
細孔直径の変化を示す図である。第2図及び第5
図は本発明方法に従つて試作したセラミツク膜の
水蒸気平衡吸着曲線である。第3図はAは本発明
方法で得られたセラミツク膜を評価するための凝
縮性成分分離試験装置の概略図、第3図Bは第3
図Aの一部拡大図である。第4図及び第6図は試
作したセラミツク膜によるガス透過試験結果であ
る。
FIG. 1 is a diagram showing the results obtained in Examples of the present invention, and is a diagram showing the change in average pore diameter when impregnated with alumina sol. Figures 2 and 5
The figure shows a water vapor equilibrium adsorption curve of a ceramic membrane prototyped according to the method of the present invention. In FIG. 3, A is a schematic diagram of a condensable component separation test device for evaluating ceramic membranes obtained by the method of the present invention, and FIG.
It is a partially enlarged view of figure A. Figures 4 and 6 show the results of a gas permeation test using a prototype ceramic membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク多孔体の細孔中にアルミニウムア
ルコラート又はアルミニウムキレートを加水分解
して得たアルミナゾルを含浸した後、乾燥、焼成
し、次いで有機溶剤に溶解したアルミニウムアル
コラート又はアルミニウムキレートを含浸し、加
水分解した後、焼成することを特徴とする凝縮成
分分離用セラミツク膜の製造方法。
1 After impregnating the pores of a ceramic porous body with alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate, drying and firing, then impregnating aluminum alcoholate or aluminum chelate dissolved in an organic solvent and hydrolyzing. 1. A method for producing a ceramic membrane for condensed component separation, which is characterized in that the ceramic membrane is then fired.
JP3442184A 1984-02-27 1984-02-27 Manufacture of ceramic membrane for separating condensate Granted JPS60180979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3442184A JPS60180979A (en) 1984-02-27 1984-02-27 Manufacture of ceramic membrane for separating condensate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3442184A JPS60180979A (en) 1984-02-27 1984-02-27 Manufacture of ceramic membrane for separating condensate

Publications (2)

Publication Number Publication Date
JPS60180979A JPS60180979A (en) 1985-09-14
JPH0367991B2 true JPH0367991B2 (en) 1991-10-24

Family

ID=12413736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3442184A Granted JPS60180979A (en) 1984-02-27 1984-02-27 Manufacture of ceramic membrane for separating condensate

Country Status (1)

Country Link
JP (1) JPS60180979A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK193287A (en) 1986-04-16 1987-10-17 Alcan Int Ltd COMPOSITE MEMBRANE
JPH07112533B2 (en) * 1987-01-08 1995-12-06 三菱重工業株式会社 Method for producing ceramic porous membrane
ES2050716T3 (en) * 1988-03-17 1994-06-01 Ceramiques Tech Soc D FILTERING MEMBRANE AND MANUFACTURING PROCEDURE.

Also Published As

Publication number Publication date
JPS60180979A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
US6536604B1 (en) Inorganic dual-layer microporous supported membranes
US5238569A (en) Filter membrane and method of manufacture
Okubo et al. Preparation of γ-alumina thin membrane by sol-gel processing and its characterization by gas permeation
KR930005940A (en) Supported Microporous Ceramic Membrane
US5186833A (en) Composite metal-ceramic membranes and their fabrication
NL8701598A (en) GAS SEPARATION DEVICE AND METHOD FOR SEPARATING GASES BY USING SUCH A DEVICE
JPS63171610A (en) Production of porous ceramic membrane
Shusen et al. Asymmetric molecular sieve carbon membranes
JP2012040549A (en) Silica membrane and method for manufacturing the same
JPWO2009001970A1 (en) Separation membrane complex and method for producing separation membrane complex
US4484935A (en) Permeation modified membrane
WO2013042262A1 (en) Method for producing carbon film
JPH0367991B2 (en)
JPS6355973B2 (en)
JP3297542B2 (en) Laminated inorganic separator
JPH0516892B2 (en)
JP2001276586A (en) Gas separation membrane and its production method
JPH0367992B2 (en)
JPH07112534B2 (en) Method for producing ceramic porous membrane
JPS6233521A (en) Separation of condensable gas
JPH01281119A (en) Glass-ceramic-type filtration material and its manufacture
JP4737945B2 (en) Manufacturing method of separation membrane
JP2642860B2 (en) Inorganic xerogel membrane, method for producing the same, and gas separation membrane comprising inorganic xerogel membrane
JP5897334B2 (en) Method for producing silica film
JP2923752B2 (en) Humidity responsive membrane with inorganic xerogel membrane