JPS6233521A - Separation of condensable gas - Google Patents

Separation of condensable gas

Info

Publication number
JPS6233521A
JPS6233521A JP60171741A JP17174185A JPS6233521A JP S6233521 A JPS6233521 A JP S6233521A JP 60171741 A JP60171741 A JP 60171741A JP 17174185 A JP17174185 A JP 17174185A JP S6233521 A JPS6233521 A JP S6233521A
Authority
JP
Japan
Prior art keywords
gas
film
porous
components
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60171741A
Other languages
Japanese (ja)
Inventor
Masaji Asae
浅枝 正司
Kazutaka Mori
一剛 森
Hiroshi Makihara
牧原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60171741A priority Critical patent/JPS6233521A/en
Publication of JPS6233521A publication Critical patent/JPS6233521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To pass the condensing components in gas to be separated through a porous film and to selectively separate the same by forming a condensed liquid film to the ultrafine pores of the porous film consisting of a material having affinity to the condensing components in the gas. CONSTITUTION:The porous film 1 is stuck to the surface of the porous base material 2 for rendering mechanical strength and the ultrafine pores 3 are formed to the film 1. The pores are preferably formed to about 10-20Angstrom size in order to separate steam from air. The sepn. of the condensable gas is executed by passing the gas to be separated to the left side of the film 1 and evacuating the gas from several Torr to several tens Torr from the side of the material 2 on the right side by a vacuum pump. The condensing components in the gas are condensed in the pores 3 and the liquid film is easily formed by the wettability of said components and the porous film. Since the right side of the liquid film is sucked by the vacuum pump, the liquid film evaporates. The other components have no affinity to the liquid film and cannot, therefore, pass through the liquid film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、凝縮性ガスの分離方法に関し、特に、ガソリ
ンペーパーの回収、水とアルコールの分離、室内の除湿
、スプレードライヤー空気の除湿等に適用することがで
きるものです。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for separating condensable gases, and is particularly applicable to the recovery of gasoline paper, separation of water and alcohol, indoor dehumidification, spray dryer air dehumidification, etc. It is something that can be applied.

(従来の技術) 従来、多孔質膜を用いたガス分離法は、種々あるものの
、本発明のように微細孔に分離ガス中の凝縮成分の液膜
を形成して液膜との親和力の差を用いてガス成分の選択
分離を行う技術は本出願以前に類を見ない。
(Prior Art) Conventionally, there are various gas separation methods using porous membranes, but as in the present invention, a liquid film of condensed components in the separated gas is formed in micropores, and the difference in affinity with the liquid film is eliminated. The technology for selectively separating gas components using the method is unprecedented before this application.

(発明が解決しようとする問題点) 本発明は多孔質膜の極微細孔にガス中のI!8縮成分成
分膜を形成し液膜とガス中の成分との親和力の差を利用
してガス成分の選択分離をする方法を提供しようとする
もので、被分離ガス中の凝縮成分が該極微細孔で液膜を
形成できるようIcS凝縮成分と親和性のある材質で多
孔質膜を構成する必要がある。例えば、親水性物質を透
過分離のためには親水性を有する多孔質膜を用い、疎水
性物質の透過分離には表面が疎水性の多孔質膜を用いて
微細孔にそれぞれの液膜を容易に形成しうるようにする
0 また、多孔質膜の極微細孔で凝縮が生ずるように細孔径
の上限を選択する必要がある0(問題点を解決するだめ
の手段) 本発明は (1)被分離ガス中の凝、縮成分と親和性を有する材質
で構成した極微細孔の多孔質膜に前記被分離ガスを通し
て該極微細孔に凝縮液膜を形成して被分離ガス中の凝縮
成分を選択的に分離することを特徴とする凝縮性ガスの
分離方法0 (2)  多孔質膜の極微細孔の孔径を約20Å以下と
することを特徴とする特許請求の範囲第1項記載の凝縮
性ガスの分離方法。
(Problems to be Solved by the Invention) The present invention solves the problem of I! This method aims to provide a method for selectively separating gas components by forming a 8-condensed component film and utilizing the difference in affinity between the liquid film and the components in the gas. The porous membrane needs to be made of a material that has an affinity for the IcS condensed component so that a liquid membrane can be formed with fine pores. For example, a porous membrane with hydrophilic properties is used to permeate and separate a hydrophilic substance, and a porous membrane with a hydrophobic surface is used to permeate and separate a hydrophobic substance, so that each liquid film can be easily inserted into the micropores. In addition, it is necessary to select the upper limit of the pore diameter so that condensation occurs in the ultrafine pores of the porous membrane. The gas to be separated is passed through a porous membrane with extremely fine pores made of a material that has an affinity for condensation and condensation components in the gas to be separated, and a condensed liquid film is formed in the extremely fine pores to separate the condensed components in the gas to be separated. (2) The method according to claim 1, characterized in that the pore diameter of the ultrafine pores of the porous membrane is about 20 Å or less. Method for separating condensable gases.

(3)  多孔質基材の表面に形成した多孔質膜を用い
ることを特徴とする特許請求の範囲第1項記載の凝縮性
ガスの分離方法。
(3) The method for separating condensable gas according to claim 1, which uses a porous membrane formed on the surface of a porous base material.

(4)  多孔質膜に対し、被分離ガスとは反対側を真
空ポンプで吸引することを特徴とする特許請求の範囲第
3項記載の凝縮性ガスの分離方法O である。
(4) A condensable gas separation method O according to claim 3, characterized in that a side of the porous membrane opposite to the gas to be separated is suctioned with a vacuum pump.

々お、水、エタノールなどの親水性物質の分離のために
は、アルミナ、シリカのように表面が親水性である物質
で多孔質膜を形成することが有利であり、また、ガソリ
ンペーパーなどの疎水性物質の分離にはシリコン樹脂、
テフロン、ポリプロピレン等の有機樹脂を用いることが
できる。
In order to separate hydrophilic substances such as water and ethanol, it is advantageous to form a porous membrane with a substance whose surface is hydrophilic, such as alumina or silica. Silicone resin for separation of hydrophobic substances,
Organic resins such as Teflon and polypropylene can be used.

そして、多孔質膜は薄層で用いる場合が多く、その際は
多孔質アルミナ管の表面に微細孔を有する多孔質膜を形
成して機械的強度をもたせることもできる。
The porous membrane is often used in the form of a thin layer, and in that case, a porous membrane having micropores may be formed on the surface of the porous alumina tube to provide mechanical strength.

第1図には多孔質膜の断面膜型図を示す。機械的強度を
付与するための多孔質基材2の表面に多孔質膜1が付着
されており、該多孔質膜1には極微細孔3が形成されて
いる。ここで、多孔質膜の極微細孔の孔径は次に示すに
81Vin式%式% σ:液体の表面張力(dyn //III )M:分子
量(I/ff+01) P:液体の密度C9/(が) R:ガス定数(a314x10’ erg/aeg@m
ol)!=温度(deg ) ン:相対圧 ある温度の飽和蒸気圧に対するP。
FIG. 1 shows a cross-sectional membrane diagram of a porous membrane. A porous membrane 1 is attached to the surface of a porous base material 2 for imparting mechanical strength, and extremely fine pores 3 are formed in the porous membrane 1. Here, the pore diameter of the ultra-fine pores of the porous membrane is as follows: 81Vin formula % σ: Surface tension of liquid (dyn //III) M: Molecular weight (I/ff+01) P: Density of liquid C9/( ) R: Gas constant (a314x10' erg/aeg@m
ol)! = Temperature (deg) N: Relative pressure P with respect to saturated vapor pressure at a certain temperature.

蒸気圧の割合 また、微細孔径の分布を水分の吸着量として測定した。vapor pressure percentage In addition, the distribution of micropore diameter was measured as the amount of water adsorbed.

微細孔を有する試料を一定量分取し、恒温装置に入れた
。温度は32°0で一定とし、関係湿度を15〜90e
s″!で変化させて、その間の重量増を測定したO第2
図はこの間の関係湿度と無次元水蒸気吸着量との関係を
グラフにしたもので、2oX、tp4XはKelvin
 式から求めた。この図から明らかなように関係湿度が
小さな値においても水蒸気吸着がなされており、それら
は特に極微細孔によっている0 微細孔径を100ム以上で、本発明に従った分離試験を
行うと、空気がもれてほとんど分離ができなかった。ま
た、極微細孔の下限は透過分離成分の分子の大きさよシ
小さくては透過することができないので必然的に定唸る
が、通常は、この分子が数個から10数個程並んだ10
〜20ム程度の極微細な孔を有する多孔質膜を用いるこ
とが好ましい。
A certain amount of the sample having micropores was taken out and placed in a constant temperature device. The temperature is constant at 32°0, and the relative humidity is 15-90e.
s″! and measured the weight increase during that time.
The figure is a graph of the relationship between relative humidity and dimensionless water vapor adsorption amount, and 2oX and tp4X are Kelvin
Obtained from the formula. As is clear from this figure, water vapor is adsorbed even when the relative humidity is small, and the adsorption of water vapor is particularly caused by extremely fine pores. was almost impossible to separate. In addition, if the lower limit of the ultra-fine pore is smaller than the molecular size of the permeable separation component, it will not be able to pass through, so it will inevitably be a certain number.
It is preferable to use a porous membrane having extremely fine pores of about 20 μm.

(作用) 次に、本発明に係る凝縮性ガスの分離法を第1図の多孔
質膜の断面模型Mをもとに説明する。
(Function) Next, the condensable gas separation method according to the present invention will be explained based on a cross-sectional model M of a porous membrane shown in FIG.

被分離ガスは多孔質膜1の左側を流し、右側の多孔質基
材2の側から真空ポンプで数to rr〜数j Q t
orr  に引くと、ガス中の、凝縮成分が極微細孔3
で凝縮し、核成分と多孔質膜のぬれ性によシ容易に液膜
が形成される。液膜の右側は真空ポンプで吸引されるた
めに蒸発気化し、左側からの凝縮と右側への蒸発気化が
バランスして、あたかも凝縮成分が多孔質膜を透過する
ようにみえる。また、被分離ガス中の他の成分は液膜と
親和性がないため液膜を透過することができない。
The gas to be separated flows through the left side of the porous membrane 1, and is pumped from the right side of the porous base material 2 using a vacuum pump for several torr to several j Qt.
orr, the condensed components in the gas form ultra-fine pores 3
The liquid film is easily formed due to the wettability of the core component and the porous film. The right side of the liquid film evaporates as it is sucked in by the vacuum pump, and the condensation from the left side and the evaporation from the right side are balanced, making it appear as if the condensed components are passing through the porous membrane. In addition, other components in the gas to be separated have no affinity with the liquid membrane and cannot pass through the liquid membrane.

(実施例) 本発明に係る2つの実施例につbて説明する。(Example) Two embodiments according to the present invention will be described.

(11アルミニウムイソプロピレート12.51を10
01の水で加水分解し、17 m/ の濃塩酸を加えて
アルミナゾルを作シ、外径101111%内径8m、長
さ201、平均細孔径1.5 μm。
(11 aluminum isopropylate 12.51 to 10
Alumina sol was prepared by adding 17 m/m of concentrated hydrochloric acid and having an outer diameter of 101111%, an inner diameter of 8 m, a length of 201 m, and an average pore diameter of 1.5 μm.

細孔容fJCL2CC/lの多孔質アル、ミナ管を、1
0秒間前記アルミナゾルに含浸した後風乾し、さらに4
50°Cで30分間加熱した。゛この操作を5回ab返
して平均膜厚10μm の′アルミニウム、酸化物の極
微細多孔質膜を得九。
A porous aluminum tube with a pore volume fJCL2CC/l is
After being immersed in the alumina sol for 0 seconds, it was air-dried, and further soaked for 4 seconds.
Heated at 50°C for 30 minutes. ``This operation was repeated 5 times to obtain an ultrafine porous membrane of aluminum and oxide with an average thickness of 10 μm.9.

この膜の細孔径は、第3図に示すような関係湿度と無次
元水蒸気吸着量との関係にある。
The pore diameter of this membrane has a relationship with the relative humidity and the dimensionless water vapor adsorption amount as shown in FIG.

このようにして作られた分離膜モジュールは第6図に示
す分離試験装置で分離性能の試験を行った。図中、分離
膜モジュール5は、恒温室8に収容し、凝縮性ガス発生
器4からのガスを受は入れ、真空コック10.コールド
トラップ(液体窒素)6を介して真空ポンプ7!/cよ
り吸引する。恒温室8内は送風ファン11により均一な
温度とするとともに必要に応じてヒータ12によυ加熱
することができる。温度調節器9け凝縮性ガス発生器の
制御をする0 この試験は水蒸気の透過についてのものでその結果を第
3図に示す。横軸は各温度における相対蒸気圧であシ、
縦軸は水蒸気透過量である。図中■は凝縮が全く無いと
仮定して計算した水蒸気の透過量であり、■は32°0
、■は58°0、■は77°OVcおけるそれぞれの透
過試験データを示した0この図からも明らかなようI/
C凝縮性成分である水蒸気の透、1M量が大きな値を示
して、分離効果を確認することができた。
The separation membrane module thus produced was subjected to a separation performance test using the separation test apparatus shown in FIG. In the figure, a separation membrane module 5 is housed in a thermostatic chamber 8, receives gas from a condensable gas generator 4, and has a vacuum cock 10. Vacuum pump 7 via cold trap (liquid nitrogen) 6! Aspirate from /c. The inside of the constant temperature room 8 can be kept at a uniform temperature by a blower fan 11 and can be heated by a heater 12 if necessary. Temperature controller 9 Controls the condensable gas generator 0 This test was about water vapor permeation, and the results are shown in Figure 3. The horizontal axis is the relative vapor pressure at each temperature,
The vertical axis is the amount of water vapor permeation. In the figure, ■ is the amount of water vapor permeation calculated assuming that there is no condensation, and ■ is 32°0.
, ■ indicates the transmission test data at 58°0, and ■ indicates the transmission test data at 77°OVc.0 As is clear from this figure, I/
The 1M amount of water vapor permeation, which is a C condensable component, showed a large value, confirming the separation effect.

々お、この図は膜の性質として温度が高くなるほど透過
速度が大きくなることも教えている。
Furthermore, this figure also teaches that as a property of membranes, the higher the temperature, the higher the permeation rate.

また、本試験装置において凝縮性ガスとして水蒸気の代
υに疎水性のn−へキサ/について試験をしたが、透過
はほとんど認められなかった。
In addition, in this test device, a test was conducted using hydrophobic n-hex/ instead of water vapor as a condensable gas, but almost no permeation was observed.

(2)  実施例(11で用いた多孔質アルミナ管の表
面に市販のシリコーン樹脂をはけで塗布した後溶剤をと
ばして平均10μm のシリコーン樹脂極微細多孔質膜
を形成した0との膜の細孔径は第4図に示すような関係
湿度と無次元水蒸気吸着量との関係にある0 凝縮性ガスとしてn−ヘキサンについて実施例(1)と
同様な分離試験を行うと、大きな透過量の値を示し九が
、水蒸気については全く透過が認められなかった。
(2) A commercially available silicone resin was applied to the surface of the porous alumina tube used in Example 11 with a brush, and then the solvent was blown off to form a silicone resin ultrafine porous film with an average size of 10 μm. The pore diameter has a relationship with the relative humidity and the dimensionless water vapor adsorption amount as shown in Figure 4.0 When a separation test similar to Example (1) was conducted using n-hexane as a condensable gas, a large amount of permeation was found. Although the value was 9, no permeation of water vapor was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

tX1図は本発明の方法を実施するための多孔質膜の断
面模型図、第2図は極微細孔を有する試料についての、
関係湿度と無次元水蒸気吸着量との関係のグラフ、第3
図及び第4図は本発明の実施例(1)及び(2)で用い
た多孔質膜について関係湿度と無次元水蒸気吸着量との
関係を示したグラフ、第3図は本発明の実施例(1)K
おける水蒸気の透過量を示したグラフ、第6図は分離膜
モジュールの性能試験をする分離試験装置の概念図であ
る。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 関係湿度(6A) 関係温度(%) 第3図 ゛  オ目ヌ寸蕉ダ孔圧(%)
The tX1 diagram is a cross-sectional model diagram of a porous membrane for carrying out the method of the present invention, and Figure 2 is a diagram of a sample having extremely fine pores.
Graph of the relationship between relative humidity and dimensionless water vapor adsorption amount, 3rd
Figures 4 and 4 are graphs showing the relationship between relative humidity and dimensionless water vapor adsorption amount for the porous membranes used in Examples (1) and (2) of the present invention, and Figure 3 is an example of the present invention. (1) K
FIG. 6 is a conceptual diagram of a separation test device for testing the performance of separation membrane modules. Sub-agents 1) Meikoku agent Ryo Hagiwara - Sub-agent Atsushi Anzai Related humidity (6A) Related temperature (%) Figure 3 ゛ Eye hole pressure (%)

Claims (4)

【特許請求の範囲】[Claims] (1)被分離ガス中の凝縮成分と親和性を有する材質で
構成した極微細孔の多孔質膜に前記被分離ガスを通して
該極微細孔に凝縮液膜を形成して被分離ガス中の凝縮成
分を選択的に分離することを特徴とする凝縮性ガスの分
離方法。
(1) The gas to be separated is passed through a porous membrane with extremely fine pores made of a material that has an affinity for the condensed components in the gas to be separated, and a condensate film is formed in the extremely fine pores to condense the gas to be separated. A condensable gas separation method characterized by selectively separating components.
(2)多孔質膜の極微細孔の孔径を約20Å以下とする
ことを特徴とする特許請求の範囲第1項記載の凝縮性ガ
スの分離方法。
(2) The method for separating condensable gases according to claim 1, characterized in that the diameter of the ultrafine pores of the porous membrane is about 20 Å or less.
(3)多孔質基材の表面に形成した多孔質膜を用いるこ
とを特徴とする特許請求の範囲第1項記載の凝縮性ガス
の分離方法。
(3) A method for separating a condensable gas according to claim 1, characterized in that a porous membrane formed on the surface of a porous base material is used.
(4)多孔質膜に対し、被分離ガスとは反対側を真空ポ
ンプで吸引することを特徴とする特許請求の範囲第3項
記載の凝縮性ガスの分離方法。
(4) A method for separating a condensable gas according to claim 3, wherein the porous membrane is sucked from the side opposite to the gas to be separated using a vacuum pump.
JP60171741A 1985-08-06 1985-08-06 Separation of condensable gas Pending JPS6233521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171741A JPS6233521A (en) 1985-08-06 1985-08-06 Separation of condensable gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171741A JPS6233521A (en) 1985-08-06 1985-08-06 Separation of condensable gas

Publications (1)

Publication Number Publication Date
JPS6233521A true JPS6233521A (en) 1987-02-13

Family

ID=15928823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171741A Pending JPS6233521A (en) 1985-08-06 1985-08-06 Separation of condensable gas

Country Status (1)

Country Link
JP (1) JPS6233521A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254987A (en) * 1987-04-13 1988-10-21 Ube Ind Ltd Dehydration and concentration of alcoholic fermentation liquor
JPH01265999A (en) * 1988-04-18 1989-10-24 Mitsubishi Heavy Ind Ltd Clothes drier
JPH02110809U (en) * 1989-02-23 1990-09-05
US4961758A (en) * 1988-11-15 1990-10-09 Texaco Inc. Liquid membrane process for separating gases
JPH06170147A (en) * 1992-05-29 1994-06-21 Air Prod And Chem Inc Removal of water from water-containing gas
US5753009A (en) * 1996-05-14 1998-05-19 New Jersey Institute Of Technology Method and apparatus for selectively removing a component from a multicomponent gas/vapor mixture
US5993515A (en) * 1996-05-14 1999-11-30 New Jersey Institute Of Technology Apparatus and process for selectively removing a component from a multicomponent aqueous solution by pervaporation
WO2007052497A1 (en) * 2005-11-07 2007-05-10 National University Of Corporation Hiroshima University Composite separation membrane, process for producing the same, and method of separating organic liquid mixture with the composite separation membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254987A (en) * 1987-04-13 1988-10-21 Ube Ind Ltd Dehydration and concentration of alcoholic fermentation liquor
JPH0411192B2 (en) * 1987-04-13 1992-02-27
JPH01265999A (en) * 1988-04-18 1989-10-24 Mitsubishi Heavy Ind Ltd Clothes drier
US4961758A (en) * 1988-11-15 1990-10-09 Texaco Inc. Liquid membrane process for separating gases
JPH02110809U (en) * 1989-02-23 1990-09-05
JPH06170147A (en) * 1992-05-29 1994-06-21 Air Prod And Chem Inc Removal of water from water-containing gas
US5753009A (en) * 1996-05-14 1998-05-19 New Jersey Institute Of Technology Method and apparatus for selectively removing a component from a multicomponent gas/vapor mixture
US5993515A (en) * 1996-05-14 1999-11-30 New Jersey Institute Of Technology Apparatus and process for selectively removing a component from a multicomponent aqueous solution by pervaporation
WO2007052497A1 (en) * 2005-11-07 2007-05-10 National University Of Corporation Hiroshima University Composite separation membrane, process for producing the same, and method of separating organic liquid mixture with the composite separation membrane

Similar Documents

Publication Publication Date Title
US4583996A (en) Apparatus for separating condensable gas
ASAEDA et al. Separation of alcohol/water gaseous mixtures by thin ceramic membrane
JP5518186B2 (en) Thin film-containing pervaporation film
JPS6233521A (en) Separation of condensable gas
JP2012040549A (en) Silica membrane and method for manufacturing the same
JPH07112533B2 (en) Method for producing ceramic porous membrane
Szczerbińska et al. Assessment of air-gap membrane distillation with hydrophobic porous membranes utilized for damaged paintings humidification
WO2009150903A1 (en) Carbon film and method for producing the same
Gethard et al. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents
US20130004690A1 (en) Hydrophilic expanded fluoropolymer composite and method of making same
EP1025893B1 (en) Process for the manufacture of a membrane device with internal sweep
US10883911B2 (en) Method and arrangement for determining at least one pore-related parameter of a porous structure
Fujii et al. Selectivity and characteristics of direct contact membrane distillation type experiment. II. Membrane treatment and selectivity increase
Chong et al. Reactive blue dye removal by membrane distillation using PVDF membrane
JP6243481B2 (en) Water separation composite membrane
KR101047345B1 (en) Method for producing hydrophobic inorganic membrane
JPH0199618A (en) Production of ceramics porous film
Asaeda et al. Feasibility study on dehumidification of air by thin porous alumina gel membrane
Billard et al. Performance of PVA-and zeolite-membranes in selective drying processes
Asaeda et al. Separation of molecular mixtures by inorganic porous membrane of ultra fine pores
JPH0516892B2 (en)
JPH07194911A (en) Filter paper and air filter using the same
JP2009095829A (en) Water separating hollow fiber and water separating filter
JPH02280812A (en) Dehumidifier
JPH0367991B2 (en)