JPH05167111A - Tunnel type josephson junction element - Google Patents

Tunnel type josephson junction element

Info

Publication number
JPH05167111A
JPH05167111A JP3330999A JP33099991A JPH05167111A JP H05167111 A JPH05167111 A JP H05167111A JP 3330999 A JP3330999 A JP 3330999A JP 33099991 A JP33099991 A JP 33099991A JP H05167111 A JPH05167111 A JP H05167111A
Authority
JP
Japan
Prior art keywords
film
tunnel
base electrode
electrode
josephson junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3330999A
Other languages
Japanese (ja)
Inventor
Hisanao Tsuge
久尚 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3330999A priority Critical patent/JPH05167111A/en
Publication of JPH05167111A publication Critical patent/JPH05167111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-quality tunnel type Josephson junction element which is free from mutual diffusion between its junction constituting layers and is provided with a tunnel barrier having no pin hole. CONSTITUTION:In the title Josephson junction element provided with a base electrode 12 made of an oxide superconductor, tunnel barrier 13 formed on part of the surface of the electrode 12, and counter electrode 14 formed on the surface of the barrier 13 on the opposite side of the electrode 12 by using a metallic superconductor, a calcium fluoride (CaF2) film is used for the barrier 13. Since the CaF2 film is thermally stable against the oxide superconductor constituting the base electrode 12 and has an excellent drape, a high-quality junction element which has a gap voltage originally required for the junction element and is small in sub-gap leak current can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ベース電極に酸化物超
伝導体、カウンタ電極に金属系超伝導体を用いたトンネ
ル型ジョセフソン接合素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunnel type Josephson junction device using an oxide superconductor for a base electrode and a metal superconductor for a counter electrode.

【0002】[0002]

【従来の技術】トンネル型ジョセフソン接合素子は、低
消費電力かつ高速で動作するデジタル回路や各種の高感
度検出器などの基本素子として使われる。従来、この素
子の電極には金属系超伝導体が用いられていたが、近年
発見された酸化物超伝導体は金属系超伝導体に比べて超
伝導転移温度Tcが一桁大きく、この値に相当する大き
なエネルギーギャップΔを有するため興味がもたれてい
る。例えば、金属系超伝導体を代表するNb,NbNの
エネルギーギャップがそれぞれ1.5meV,2.5m
eVであるのに対して、YBa2 Cu3 x の値は約2
0meVである。従って、酸化物超伝導体を電極とする
トンネル型ジョセフソン接合素子を作製すれば、一桁大
きなキャップ電圧Vgを持つ電圧−電流特性が得られる
ことを意味している。
2. Description of the Related Art Tunnel-type Josephson junction devices are used as basic devices for digital circuits that operate at low power consumption and high speed, and various high-sensitivity detectors. Conventionally, a metal-based superconductor was used for the electrode of this element, but the oxide superconductor discovered in recent years has a superconducting transition temperature Tc that is one digit higher than that of a metal-based superconductor. It is of interest because it has a large energy gap Δ corresponding to For example, the energy gaps of Nb and NbN, which represent a metal-based superconductor, are 1.5 meV and 2.5 m, respectively.
eV, while YBa 2 Cu 3 O x has a value of about 2
It is 0 meV. Therefore, it means that if a tunnel-type Josephson junction device using an oxide superconductor as an electrode is manufactured, a voltage-current characteristic having a cap voltage Vg that is an order of magnitude larger can be obtained.

【0003】ベース電極及びカウンタ電極の双方に酸化
物超伝導体を用いたトンネル型ジョセフソン接合素子が
理想であるが、カウンタ電極まで酸化物超伝導体を適用
して品質の高い素子を作製するのは容易ではない。酸化
物超伝導体結晶の形成には500℃以上の高い基板温度
が必要であるため、カウンタ電極被着時にトンネル障壁
が破壊されてしまう。デバイスの動作温度を従来と同じ
液体ヘリウム温度(4.2K)近傍に限定すれば、カウ
ンタ電極に金属系超伝導体を用いても、ベース電極に酸
化物超伝導体を用いたことによるギャップ電圧増加の効
果はデバイス特性の向上につながる。
A tunnel type Josephson junction device using an oxide superconductor for both the base electrode and the counter electrode is ideal, but a high quality device is manufactured by applying the oxide superconductor to the counter electrode. It's not easy. Since a high substrate temperature of 500 ° C. or higher is required to form an oxide superconductor crystal, the tunnel barrier is destroyed when the counter electrode is deposited. If the operating temperature of the device is limited to the liquid helium temperature (4.2K) which is the same as the conventional one, the gap voltage due to the use of the oxide superconductor for the base electrode even if the metal superconductor is used for the counter electrode. The effect of increase leads to improvement of device characteristics.

【0004】従来、ベース電極を酸化物超伝導体、カウ
ンタ電極を金属系超伝導体とするトンネル型ジョセフソ
接合素子に関しては、アプライド・フィジックス・レタ
ーズ(Applied Physics Letter
s Vol.56no.8(1990)788〜79
0)などの報告がある。ここで提案されたトンネル型ジ
ョセフソン接合素子の接合部の基本構造を図3を用いて
説明する。この構造は、マグネシア(MgO)(10
0)単結晶基板31上にエピタキシャル成長されたc軸
配向のYBa2 Cu3 x 膜(50nm)からなるベー
ス電極32と、このベース電極表面に形成したネイティ
ブ層からなるトンネル障壁33と、このトンネル障壁3
3を介してベース電極32と対向して形成した鉛(P
b)からなるカウンタ電極34で構成される。この素子
は次のような工程で作製される。まず、MBE法を用い
てMgO(100)壁開基板31上に厚さ50nmのc
軸配向YBa2 Cu3 x 膜を成長させる。成膜後、こ
のYBa2 Cu3 x 膜表面を大気に露出させるか酸素
雰囲気中500℃で熱処理することによりトンネル障壁
33を形成する。次に、接合部を除く領域をポリスチレ
ンで被覆した後、Pbを蒸着してカウンタ電極34を形
成し素子を完成する。
Conventionally, regarding a tunnel type Josephson junction device in which a base electrode is an oxide superconductor and a counter electrode is a metal superconductor, an Applied Physics Letters is used.
s Vol. 56 no. 8 (1990) 788-79
There are reports such as 0). The basic structure of the junction of the tunnel type Josephson junction device proposed here will be described with reference to FIG. This structure is based on magnesia (MgO) (10
0) A base electrode 32 made of a c-axis oriented YBa 2 Cu 3 O x film (50 nm) epitaxially grown on a single crystal substrate 31, a tunnel barrier 33 made of a native layer formed on the surface of this base electrode, and this tunnel. Barrier 3
Lead (P) formed facing the base electrode 32 through
It consists of the counter electrode 34 which consists of b). This element is manufactured by the following steps. First, a 50 nm-thick c film was formed on the MgO (100) wall-opened substrate 31 using the MBE method.
An axially oriented YBa 2 Cu 3 O x film is grown. After the film formation, the tunnel barrier 33 is formed by exposing the surface of the YBa 2 Cu 3 O x film to the atmosphere or by performing heat treatment at 500 ° C. in an oxygen atmosphere. Next, after covering the area excluding the joint with polystyrene, Pb is vapor-deposited to form the counter electrode 34 and the device is completed.

【0005】この素子では、トンネル障壁がYBa2
3 x の構成元素であるY,Ba,Cuの酸化物や水
酸化物からなるため化学的安定性に乏しい。また、トン
ネル障壁を形成する際、下地のYBa2 Cu3 x 膜表
面で酸素の脱離や化学量論的組成からのずれを生じ、超
伝導特性が損なわれる。ジョセフソン接合素子の品質は
コヒーレンス長(0.2〜2nm)程度の酸化物超伝導
体表面の超伝導体特性で決まるため、これらの現象は好
ましくない。
In this device, the tunnel barrier is YBa 2 C.
Since it is composed of oxides or hydroxides of Y, Ba, and Cu, which are the constituent elements of u 3 O x , it has poor chemical stability. Further, when forming the tunnel barrier, desorption of oxygen and deviation from the stoichiometric composition occur on the surface of the underlying YBa 2 Cu 3 O x film, and the superconducting property is impaired. These phenomena are not preferable because the quality of the Josephson junction device is determined by the superconductor characteristics of the oxide superconductor surface having a coherence length (0.2 to 2 nm).

【0006】この解決策として、トンネル障壁にアーテ
ィフィシャルに被着した絶縁体膜を用いた素子が、アイ
・イー・イー・イー・トランズアクションズ・オン・マ
グネティクス(IEEE Transactions
on Magneticsvol.27,no.2(1
991)3102〜3105)などに提案されている。
これは、図4に示すように図3とほぼ同様な構造である
が、トンネル障壁43として図3のネイティブ層の代わ
りに厚さ数nmのAL2 3 ,MgO,Y2 3 などの
薄膜を備えている。これらの膜はYBa2 Cu3 x
ース電極42上に反応性蒸着法などの成膜法を用いて基
板温度50〜350℃で形成される。
As a solution to this problem, an element using an insulator film that is artificially deposited on a tunnel barrier has been proposed by IEEE Transactions on Magnetics (IEEE Transactions).
on Magnetics vol. 27, no. 2 (1
991) 3102-3105) and the like.
As shown in FIG. 4, the structure is almost the same as that of FIG. 3, but the tunnel barrier 43 is made of AL 2 O 3 , MgO, Y 2 O 3 having a thickness of several nm instead of the native layer of FIG. It has a thin film. These films are formed on the YBa 2 Cu 3 O x base electrode 42 at a substrate temperature of 50 to 350 ° C. by using a film forming method such as a reactive vapor deposition method.

【0007】[0007]

【発明が解決しようとする課題】トンネル障壁43にA
2 3膜やMgO膜を用いる場合には、ベース電極4
2であるYBa2 Cu3 x 膜の構成元素であるイット
リウム(Y)の方がアルミニウム(Al)やマグネシウ
ム(Mg)よりも酸化物として安定であるため、Al2
3 やMgOが高温で分解して絶縁性が損なわれ易い。
また、ベース電極材料とトンネル障壁材料との相互拡散
により接合界面に低Tc層やノーマル層からなる遷移領
域が形成される。その結果、ジョセフソン接合素子のギ
ャップ電圧の減少やサブギャップリーク電流の増加とい
った問題を生じる。また、MgO膜やY2 3 膜はベー
ス電極に対する被覆性が悪く、トンネル障壁として要求
される数nmの膜厚ではベース電極表面全体を完全に覆
うことはできない。そのため、ベース電極42とカウン
タ電極44との間で電気的ショートが発生し、本来の特
性を持つトンネル型ジョセフソン接合素子は得られな
い。
The tunnel barrier 43 has an A
When using the l 2 O 3 film or the MgO film, the base electrode 4
Yttrium (Y), which is a constituent element of the YBa 2 Cu 3 O x film which is 2, is more stable as an oxide than aluminum (Al) or magnesium (Mg), and therefore Al 2
O 3 and MgO are easily decomposed at high temperature and the insulating property is easily damaged.
In addition, a transition region including a low Tc layer and a normal layer is formed at the junction interface due to the mutual diffusion of the base electrode material and the tunnel barrier material. As a result, problems such as a decrease in the gap voltage of the Josephson junction element and an increase in the subgap leak current occur. Further, the MgO film or the Y 2 O 3 film has a poor coverage with the base electrode, and the entire surface of the base electrode cannot be completely covered with a film thickness of several nm required as a tunnel barrier. Therefore, an electrical short circuit occurs between the base electrode 42 and the counter electrode 44, and a tunnel type Josephson junction device having the original characteristics cannot be obtained.

【0008】本発明の目的は、このような従来の欠点を
取り除いたトンネル型ジョセフソン接合素子を提供する
ことにある。
It is an object of the present invention to provide a tunnel type Josephson junction device which eliminates the above-mentioned conventional drawbacks.

【0009】[0009]

【課題を解決するための手段】本発明は、酸化物超伝導
体でなるベース電極と、このベース電極表面の一部に形
成したトンネル障壁と、このトンネル障壁を介して前記
ベース電極と対向して形成した金属系超伝導体でなるカ
ウンタ電極とを有するトンネル型ジョセフソン接合素子
において、前記トンネル障壁がフッ化カルシウム(Ca
2 )膜でなることを特徴とする。
According to the present invention, a base electrode made of an oxide superconductor, a tunnel barrier formed on a part of the surface of the base electrode, and a base electrode facing the base electrode via the tunnel barrier are provided. In a tunnel-type Josephson junction device having a counter electrode made of a metal-based superconductor formed as described above, the tunnel barrier is calcium fluoride (Ca).
F 2 ) film.

【0010】[0010]

【作用】本発明では、トンネル障壁にCaF2 膜を用い
る。CaF2 はベース電極として働く酸化物超伝導体の
構成元素に対するフッ化物と比較してフッ素一原子当た
りの生成エネルギーの絶対値が大きく、熱的に安定であ
る。従って、トンネル障壁やカウンタ電極の成膜中に基
板が高温にさらされても、CaF2 膜の絶縁性が損なわ
れたり、ベース電極材料、カウンタ電極材料との相互拡
散により接合界面で低Tc層やノーマル層が形成された
りすることがない。また、CaF2 膜は従来のトンネル
障壁材料に比べて酸化物超伝導体膜に対する被覆性に優
れており、数nmのトンネル障壁膜厚でも電極間ショー
トを生じにくい。さらに、CaF2 膜をベース電極上に
エピタキシャル成長させる場合でも、この結晶は酸化物
超伝導体との格子整合性が良好であるため比較的低い基
板温度で高品質の薄膜形成が可能である。これは、ベー
ス電極とトンネル障壁との間に相互拡散のないきれいな
接合界面が得られることを意味している。以上のCaF
2 膜の性質は、酸化物超伝導体の本来のギャップ電圧を
もち、サブギャップリーク電流の小さいトンネル型ジョ
セフソン接合素子の実現を可能にする。
In the present invention, the CaF 2 film is used as the tunnel barrier. CaF 2 has a large absolute value of energy generated per one fluorine atom and is thermally stable as compared with a fluoride for a constituent element of an oxide superconductor which functions as a base electrode. Therefore, even if the substrate is exposed to a high temperature during the film formation of the tunnel barrier and the counter electrode, the insulating property of the CaF 2 film is impaired, and the low Tc layer is formed at the bonding interface due to the mutual diffusion with the base electrode material and the counter electrode material. And a normal layer is not formed. Further, the CaF 2 film is superior in covering property to the oxide superconductor film as compared with the conventional tunnel barrier material, and the short circuit between electrodes hardly occurs even if the tunnel barrier film thickness is several nm. Further, even when the CaF 2 film is epitaxially grown on the base electrode, this crystal has good lattice matching with the oxide superconductor, so that a high quality thin film can be formed at a relatively low substrate temperature. This means that a clean junction interface without interdiffusion can be obtained between the base electrode and the tunnel barrier. CaF above
The property of the two films makes it possible to realize a tunnel type Josephson junction device having the original gap voltage of an oxide superconductor and a small subgap leakage current.

【0011】[0011]

【実施例】本発明のトンネル型ジョセフソン接合素子の
実施例を図面を参照して説明する。この素子の接合部の
基本構造は、図1に示すように、チタン酸ストロンチウ
ム(SrTiO3 )単結晶などからなる基板11上に形
成したYBa2 Cu3 x 膜などの酸化物超伝導体ベー
ス電極12と、このベース電極表面に形成したCa1 2
でなるトンネル障壁13と、このトンネル障壁13を介
してベース電極12と対向して形成したNbやNbNな
どからなるカウンタ電極14とで構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the tunnel type Josephson junction element of the present invention will be described with reference to the drawings. As shown in FIG. 1, the basic structure of the junction of this device is based on an oxide superconductor such as a YBa 2 Cu 3 O x film formed on a substrate 11 made of strontium titanate (SrTiO 3 ) single crystal or the like. Electrode 12 and Ca 1 2 formed on the surface of this base electrode
And a counter electrode 14 made of Nb, NbN or the like formed facing the base electrode 12 via the tunnel barrier 13.

【0012】本実施例で用いたベース電極12とカウン
タ電極14の膜厚は共に200nm、トンネル障壁13
の膜厚は数nmである。ベース電極12に用いたYBa
2 Cu3 x 膜の各構成元素に対するフッ化物及びそれ
らのフッ素一原子当たりの生成エネルギーはYF3 (−
137Kcal/mol),BaF2 (−144Kca
l/mol),CuF2 (−65Kcal/mol)で
ある。これらの生成エネルギーの絶対値はCaF2 (−
146Kcal/mol)の絶対値に比べ小さい。これ
は、YBa2 Cu3 x 膜上のCaF2 膜が外部からの
熱に対してきわめて安定であることを示している。YB
2 Cu3 x /CaF2 の積層構造が形成された後に
高温にさらされても両者間で相互拡散しない。従って、
従来の構造に比べ接合界面で低Tc層やノーマル層が形
成されにくく、酸化物超伝導体本来のギャップ電圧を持
ちサブギャップリーク電流の小さいトンネル型ジョセフ
ソン、接合素子が得られる。
The base electrode 12 and the counter electrode 14 used in this embodiment both have a thickness of 200 nm, and the tunnel barrier 13 has a thickness of 200 nm.
Has a thickness of several nm. YBa used for the base electrode 12
The fluorides for the respective constituent elements of the 2 Cu 3 O x film and the energy of formation thereof per fluorine atom are YF 3 (−
137 Kcal / mol), BaF 2 (-144 Kca)
1 / mol) and CuF 2 (−65 Kcal / mol). The absolute values of these generated energies are CaF 2 (-
It is smaller than the absolute value of 146 Kcal / mol). This indicates that the CaF 2 film on the YBa 2 Cu 3 O x film is extremely stable against external heat. YB
Even if the laminated structure of a 2 Cu 3 O x / CaF 2 is formed and then exposed to high temperature, they do not mutually diffuse. Therefore,
As compared with the conventional structure, a low Tc layer or normal layer is less likely to be formed at the junction interface, and the tunnel type Josephson junction element having the original gap voltage of the oxide superconductor and the small subgap leakage current can be obtained.

【0013】本実施例では、ベース電極を構成する酸化
物超伝導体としてYBa2 Cu3 x 膜を用いた場合に
ついて説明したが、Bi−Sr−Ca−Cu−OやTl
−Ba−Ca−Cu−Oなどの他の酸化物超伝導体を用
いても同様な効果が得られる。
In this embodiment, the case where the YBa 2 Cu 3 O x film is used as the oxide superconductor forming the base electrode has been described, but Bi-Sr-Ca-Cu-O and Tl are used.
Similar effects can be obtained by using other oxide superconductors such as -Ba-Ca-Cu-O.

【0014】次に本発明のトンネル型ジョセフソン接合
素子の作製方法を図2を用いて説明する。
Next, a method of manufacturing the tunnel type Josephson junction element of the present invention will be described with reference to FIGS.

【0015】まず、図2(a)に示すように、反応性共
蒸着法によりSrTiO3 (110)単結晶基板21上
に厚さ200nmのYBa2 Cu3 x (110)膜を
エピタキシャル成長させる。酸素ラジカルビームを基板
21に照射しながら、イットリウム(Y),バリウム
(Ba),銅(Cu)を一定の速度比で同時蒸着する。
引き続き、同一真空中で基板温度400℃で厚さ数nm
のCaF2 を蒸着した後、基板加熱しないで厚さ200
nmのNb膜を蒸着して接合三層膜を完成する。CaF
2膜蒸着後、この表面をin−situでRHEED観
察することによってCaF2 膜がエピタキシャル成長し
ていること、及び下地のYBa2 Cu3 x 膜の回折パ
ターンが現れないことを確認した。この事実からCaF
2 膜がYBa2 Cu3 x 膜表面をほぼ完全に被覆して
いることを示している。次に、この三層膜上に通常のリ
ソグラフィー技術を用いてレジストマスクを形成し、順
次、反応性イオンエッチング法でNb膜、イオンミリン
グ法でYBa2 Cu3 x /CaF2 膜を加工して、ベ
ース電極22,トンネル障壁23,カウンタ電極24の
三層パターンを形成する。
First, as shown in FIG. 2A, a 200 nm thick YBa 2 Cu 3 O x (110) film is epitaxially grown on the SrTiO 3 (110) single crystal substrate 21 by the reactive co-evaporation method. While irradiating the substrate 21 with an oxygen radical beam, yttrium (Y), barium (Ba), and copper (Cu) are simultaneously vapor-deposited at a constant rate ratio.
Subsequently, the substrate temperature is 400 ° C and the thickness is several nm in the same vacuum
Of CaF 2 is vapor-deposited and the thickness of 200
A Nb film having a thickness of nm is vapor-deposited to complete the junction trilayer film. CaF
After 2 layer deposition, CaF 2 film by RHEED observation of the surface by in-situ that epitaxial growth, and the diffraction pattern of the YBa 2 Cu 3 O x film underlying it was confirmed that not appear. From this fact CaF
It is shown that the two films almost completely cover the surface of the YBa 2 Cu 3 O x film. Next, a resist mask is formed on the three-layer film by using a normal lithography technique, and the Nb film is sequentially processed by the reactive ion etching method, and the YBa 2 Cu 3 O x / CaF 2 film is processed by the ion milling method. Then, a three-layer pattern of the base electrode 22, the tunnel barrier 23, and the counter electrode 24 is formed.

【0016】次に、図2(b)に示すように、カウンタ
電極24表面の一部に形成したレジストマスク25を用
いてNb膜をエッチングし接合部を規定する。
Next, as shown in FIG. 2B, the Nb film is etched using the resist mask 25 formed on a part of the surface of the counter electrode 24 to define the junction.

【0017】次に、図2(c)に示すように、膜厚35
0nmの二酸化ケイ素(SiO2 )を蒸着した後、レジ
ストマスク25をリフトオフして接合部以外をスペーサ
26で被覆する。この試料表面をアルゴン(Ar)イオ
ンビームで軽くクリーニングすることにより、露出した
Nbカウンタ電極24表面の酸化物を除去し、厚さ30
0nmのNb膜を蒸着する。
Next, as shown in FIG. 2C, the film thickness 35
After vapor-depositing 0 nm of silicon dioxide (SiO 2 ), the resist mask 25 is lifted off and the portions other than the bonding portion are covered with the spacer 26. By lightly cleaning the surface of this sample with an argon (Ar) ion beam, the exposed oxide on the surface of the Nb counter electrode 24 is removed to a thickness of 30.
A 0 nm Nb film is deposited.

【0018】最後に、図2(d)に示すように、レジス
トマスクを用いてこのNb膜をエッチングし、上部配線
27を形成する。
Finally, as shown in FIG. 2D, this Nb film is etched using a resist mask to form an upper wiring 27.

【0019】本実施例では、ベース電極22に反応性共
蒸着法により被着したYBa2 Cu3 x 膜を用いた。
しかし、スパッタ法やレーザ蒸着法など他の成膜技術を
用いてもよいし、Y系薄膜の代わりにBi系やTl系な
どの種々の酸化物超伝導体膜を用いることができる。ト
ンネル障壁としてのCaF2 膜の作製法も蒸着法に限定
されないことも明らかである。
In this example, a YBa 2 Cu 3 O x film deposited on the base electrode 22 by the reactive co-evaporation method was used.
However, other film forming techniques such as a sputtering method and a laser vapor deposition method may be used, and various oxide superconductor films such as Bi type and Tl type may be used instead of the Y type thin film. It is also clear that the method for producing the CaF 2 film as the tunnel barrier is not limited to the vapor deposition method.

【0020】[0020]

【発明の効果】本発明によれば、接合構成層間で相互拡
散がなく、しかもピンホールのないトンネル障壁を有す
る高品質のトンネル型ジョセフソン接合素子が得られ
る。
According to the present invention, it is possible to obtain a high-quality tunnel-type Josephson junction device having a tunnel barrier which has no mutual diffusion between junction layers and has no pinhole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のトンネル型ジョセフソン接合素子を示
す断面図である。
FIG. 1 is a cross-sectional view showing a tunnel type Josephson junction element of the present invention.

【図2】本発明のトンネル型ジョセフソン接合素子の作
製方法を工程順に示す断面図である。
2A to 2D are cross-sectional views showing a method of manufacturing a tunnel type Josephson junction element of the present invention in the order of steps.

【図3】従来のトンネル型ジョセフソン接合素子を示す
断面図である。
FIG. 3 is a cross-sectional view showing a conventional tunnel type Josephson junction element.

【図4】従来のトンネル型ジョセフソン接合素子を示す
断面図である。
FIG. 4 is a sectional view showing a conventional tunnel type Josephson junction element.

【符号の説明】[Explanation of symbols]

11,21,31,41 基板 12,22 酸化物超伝導体でなるベース電極 13,23 CaF2 でなるトンネル障壁 14,24 金属系超伝導体でなるカウンタ電極 25 レジストマスク 26 スペーサ 27 上部配線 32,42 ベース電極 33,43 トンネル障壁 34,44 カウンタ電極11, 21, 31, 41 Substrate 12,22 Base electrode made of oxide superconductor 13,23 Tunnel barrier made of CaF 2 14,24 Counter electrode made of metal-based superconductor 25 Resist mask 26 Spacer 27 Upper wiring 32 , 42 Base electrodes 33, 43 Tunnel barriers 34, 44 Counter electrodes

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化物超伝導体でなるベース電極と、この
ベース電極表面の一部に形成したトンネル障壁と、この
トンネル障壁を介して前記ベース電極と対向して形成し
た金属系超伝導体でなるカウンタ電極とを有するトンネ
ル型ジョセフソン接合素子において、前記トンネル障壁
がフッ化カルシウム(CaF2 )膜でなることを特徴と
するトンネル型ジョセフソン接合素子。
1. A base electrode made of an oxide superconductor, a tunnel barrier formed on a part of the surface of the base electrode, and a metal-based superconductor formed facing the base electrode via the tunnel barrier. A tunnel-type Josephson junction device having a counter electrode comprising a tunnel electrode made of calcium fluoride (CaF 2 ) film.
JP3330999A 1991-12-16 1991-12-16 Tunnel type josephson junction element Pending JPH05167111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330999A JPH05167111A (en) 1991-12-16 1991-12-16 Tunnel type josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330999A JPH05167111A (en) 1991-12-16 1991-12-16 Tunnel type josephson junction element

Publications (1)

Publication Number Publication Date
JPH05167111A true JPH05167111A (en) 1993-07-02

Family

ID=18238704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330999A Pending JPH05167111A (en) 1991-12-16 1991-12-16 Tunnel type josephson junction element

Country Status (1)

Country Link
JP (1) JPH05167111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822603A2 (en) * 1996-07-29 1998-02-04 Eastman Kodak Company Bilayer electron-injecting electrode for use in an electroluminescent device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109780A (en) * 1987-10-23 1989-04-26 Nippon Telegr & Teleph Corp <Ntt> Formation of tunnel junction of oxide superconductor and nb superconductor
JPH02186682A (en) * 1989-01-13 1990-07-20 Agency Of Ind Science & Technol Josephson junction device
JPH03171684A (en) * 1989-11-29 1991-07-25 Fuji Electric Co Ltd Jusephson element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109780A (en) * 1987-10-23 1989-04-26 Nippon Telegr & Teleph Corp <Ntt> Formation of tunnel junction of oxide superconductor and nb superconductor
JPH02186682A (en) * 1989-01-13 1990-07-20 Agency Of Ind Science & Technol Josephson junction device
JPH03171684A (en) * 1989-11-29 1991-07-25 Fuji Electric Co Ltd Jusephson element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822603A2 (en) * 1996-07-29 1998-02-04 Eastman Kodak Company Bilayer electron-injecting electrode for use in an electroluminescent device
EP0822603B1 (en) * 1996-07-29 2005-09-07 Eastman Kodak Company Bilayer electron-injecting electrode for use in an electroluminescent device

Similar Documents

Publication Publication Date Title
JP3031884B2 (en) High temperature SSNS and SNS Josephson junction and manufacturing method thereof
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
JPH02177381A (en) Tunnel junction element of superconductor
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH05167111A (en) Tunnel type josephson junction element
JP2730360B2 (en) Fabrication method of tunnel type Josephson junction device
US5480859A (en) Bi-Sr-Ca-Cu-O superconductor junction through a Bi-Sr-Cu-O barrier layer
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JPH104223A (en) Oxide superconducting josephson element
JP2831967B2 (en) Superconducting element
JP2908346B2 (en) Superconducting structure
JP3425422B2 (en) Superconducting element manufacturing method
JPH0555645A (en) Thin film element
JP2899287B2 (en) Josephson element
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JPH03166776A (en) Tunnel junction element and manufacture thereof
JP3216089B2 (en) Superconducting device manufacturing method and superconducting transistor using the same
JP2976427B2 (en) Method of manufacturing Josephson device
JP2544390B2 (en) Oxide superconducting integrated circuit
JP2909455B1 (en) Superconducting element
JPH05190927A (en) Tunnel type josephson junction element and its manufacture
JP2861235B2 (en) Superconducting element
JP3107322B2 (en) Method for manufacturing superconducting device
KR100233845B1 (en) Twin-crystal-grain-boundary-junction superconducting field effect device and manufacturing method thereof
JPH10178220A (en) Tunnel-type superconducting junction element