JPH03171684A - Jusephson element - Google Patents

Jusephson element

Info

Publication number
JPH03171684A
JPH03171684A JP1310047A JP31004789A JPH03171684A JP H03171684 A JPH03171684 A JP H03171684A JP 1310047 A JP1310047 A JP 1310047A JP 31004789 A JP31004789 A JP 31004789A JP H03171684 A JPH03171684 A JP H03171684A
Authority
JP
Japan
Prior art keywords
layer
lower electrode
ybco
insulating layer
diffusion preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310047A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsui
俊之 松井
Michito Muroi
室井 道人
Yuji Koinuma
鯉沼 裕司
Yuko Okamura
祐子 岡村
Kazuo Koe
向江 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1310047A priority Critical patent/JPH03171684A/en
Publication of JPH03171684A publication Critical patent/JPH03171684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a Josephson element which is provided with a built-in superconductor and large in electrode effective area by a method wherein a diffusion preventing layer is formed on an insulating layer. CONSTITUTION:A YBCO thin film serving as a lower electrode 4 is formed on a substrate 5 of SrTiO3 through an r.f. magnetron sputtering method. Then, an insulating layer 1 is formed in such a manner that the YBCO superconductive layer is subjected to a plasma treatment in a CF4 atmosphere. A diffusion preventing layer 2 is formed of Au as thick as 60Angstrom using a metal mask through an electron beam evaporation method. In succession, an upper electrode 1 is formed of Nb through an electron beam evaporation method. When Au of the diffusion preventing layer 2 is joined to Nb, Cooper pairs becomes long in coherence length, so that the diffusion preventing layer 2 with no defect can be formed even if the surface of an RE-Ba-Cu-O oxide superconductive layer serving as the lower electrode 4 is rough, and Au of the layer 2 does not react with the fluorine injected YBCO insulating layer. A diffusion preventing layer prevents the component elements of an upper and a lower electrode from diffusing.

Description

【発明の詳細な説明】 この発明はジョセフソン素子に係り、特に酸化物超伝導
体を用いるジョセフソン素子に関する.〔従来の技術〕 超電導材料を応用する素子としてはジ口セフソン素子や
超電導FET.超電導トランジスタ等が知られている.
例えばトンネル型のジ麿セフソン素子が第7図と第8図
に示される.第7図は従来の素子の断面図である.第8
図は平面図である.この型のジョセフソン素子において
は絶縁層7であるk10I1が超電導体である上部電極
6 (Nb)と下部電極8 (Nb)にはさまれる.9
は基板である.第7図に示されたジョセフソン素子につ
き酸化物超伝導体を適用すると第9図に示される素子が
得られる.第9図は従来の異なるジ貯セフソン素子を示
す断面図である.この素子は下部電極13として酸化物
超伝導体であるYBa*CusOy−g (以下YBC
Oと略称する)を用い、さらに拡散防止層12としてA
uを用いる.この拡散防止層は絶縁層l1であるA70
IIと下部電極13であるYBCOとの反応を防止する
. 第10図は従来の異なるジョセフソン素子の特性を示す
線図である.ジョセフソン特性が得られている.しかし
ながらこの素子においては、YBCO表面に凹凸が存在
するため、均一で欠陥のない絶縁層11.拡散防止層1
2が得られず、下部電極13であるYBCOと上部電極
10であるNb,SI1又はPbとが部分的に短絡して
相互に反めし、絶縁体化する結果、実効的な接合面積が
電極面積に比較して小さくなるという問題がある.絶縁
[11や拡散防止層12はスバッタ.蒸着等で形成され
るうえ、その厚さを低減することが求められるのでYB
COの表面状態の影響を受け、層に欠陥を生じるのであ
る.特に拡散防止層12のAuについては下部電極13
であるYBCOとの間に反応性が認められることやYB
COからのクーバ電子対の拡散性が小さいことなどのた
めに膜厚を大赤くすることができない. 第l1図は従来の異なるジ畔セフソン素子につき臨界電
流(Ie)と磁場の強さH ( X 10”A/s)と
の関係を示す線図である.第11図において臨界電流値
が零となる磁場の強さが実効的な接合面積に関係してい
る. IIXI(1”A/一の大きさは実効的な接合面
積が1/100(m ”)であり、電極面積の1/10
0であることを示している. この問題を解決するために第12図に示すようなジョセ
フソン素子が考えられた。第12図は従来のさらに異な
るジョセフソン素子を示し、第12図《δ》は断面図、
第12図山)は平面図である。このジョセフソン素子は
下部電極17であるYBCOをCF4プラズマで処理し
て得た絶縁1111Gを有している。この絶縁層はYB
COにフッ素を注入して生或したものである.基板18
はSrTiOzを用いる.絶縁Jiil6はCPaふん
囲気中で生成されるので下部電極17であるYBC○の
凹凸にもかかわらず、欠陥のない絶縁層が形成される. 〔発明が解決しようとするII題) しかしながら絶縁層16はジョセフソン特性を得るため
にその厚さを低減しようとすると、下部電極17である
YBCOと上部電極15であるWb,SnまたはPbと
が絶縁層16を拡散して相互に反応することがわかった
。そのためにジラセフソン特性は得られず、第13図に
示すような非線型の電流電圧特性が得られる。この特性
はYBCOとNbとが反応して形成された絶縁体に起因
rるものと考えられる. この発明は上述の点に鑑みてなされ、その目的は絶縁層
16を介して上部電極15であるNb,SnまたはPb
と下部電極17であるYBCOとが相互に反応しないよ
うにして、酸化物超伝導体の組込まれた電極実効面積の
大きなジョセフソン素子を提供することにある. 〔諜題を解決するための手段〕 上述の目的はこの発明によれば上部電極1と、下部電極
4ε、絶縁層3と、拡散防止層2とを有し、 下部電極はIIEを希土類元素とするときにRE−Ba
−Cu−0系の酸化物超伝導層であり、絶縁層は前記下
部電極の表面をフフ素化合物ガスふん囲気中でプラズマ
処理して得られる層であり、 拡散防止層はAuからなる層であり、前記w!i&lN
の上に形成されるものであり、 上部電極はNb, SnまたはPbからなる層で前記拡
散防止層の上に形成されるものであるとすることにまり
達威される. 〔作用〕 拡散防止層2であるAuはNbと接合したときにクーパ
電子対のコヒーレンス長が大きくなるのでその範囲で厚
さを増大させることができる.そのために下部電極4で
あるRF!−Ha−Cu−0酸化物超伝導層の表面粗度
にもかかわらず、欠陥のない拡散防止層2を形成するこ
とができる。拡散防止層2であるAuはフッ素の注入さ
れたYBCOである絶縁層とは反応しない. 拡散防止層であるAuは上部電極であるNb,Sn.P
bと、下部電極であるRE−Ba−Cu−0系酸化物の
構威元素の拡散を防止する. 〔実施例〕 次にこの発明の実施例を図面に基いて説明する.第l図
はこの発明の実施例に係るジョセフソン素子の断面図で
ある.この素子は基板5と下部電極4として(110)
方向に配向されたYBCO酸化物超伝導層と、絶縁層3
と、^Uからなる拡散防止層2と上部電11であるNb
とからなっている.このようなジタセフソン素子は次の
ようにして鯛製される.第5図はこの発明の実施例に係
るジョセフソン素子の調製方法を示す工程図である.S
rTlOsからなる基板5の上に下部電極4であるYB
CO薄膜がr.f.マグネトロンスパッタリング法で形
成される.*Mの形成条件が第1表に示される.第1表 得られたYBCO超伝導層の表面には不純物層19が生
或している.この層は組威のずれた層である.この状態
が第5図1aJに示される.この不純物層19は酸素プ
ラズマ処理で除去される.ai!素プラズマ処理の条件
が第2表に示される. 第2表 酸素プラズマ処理後の状態が第5図(blに示される酸
素プラズマ処理はYBCO超伝導層への酸素供給の意味
もある.次に絶縁層3がCF4ふん囲気中でYBCO超
伝導層をプラズマ処理することにより形成される. C
F,プラズマ処理の条件が第3表に示される. 第3表 絶縁層3形*aの状態が第5図(c)に示される.さら
にメタルマスク20を用いて拡散防止層2がAuを用い
て電子ビーム蒸着により60人厚に形成される.拡散防
止層2の形成条件が第4表に示される.第4表 拡散防止層形成後の状態が第5図+dlに示される.続
いてメタルマスク20を用いて上部filがNbを用い
、電子ビーム蒸着法で形成される.上部電極形或条件が
第5表に示される. 第5表 上部電極l形成後の状態が第5図(11)に示される.
このようにして得られたジョセフソン素子の特性(温度
、4.2K)が第6図に示される.上部電極1であるN
bと下部電極4であるYBCOとの反応が拡散防止層2
で防止され、良好なジ薯セフソン特性が得られる.この
素子につき臨界電流の磁場依存性を調べると実効的な接
合面積が電極面積の80%であることがわかった. 第2図,第3図.第4図はこの発明の実施例に係るジョ
セフソン素子のオージエ電子分光分析による元素濃度分
布プロフィルを示す線図である.それぞれCF4プラズ
マ処理時間が0.2.15min.の堝合に対応する.
プラズマ処理によってフッ素がYBCO内部に拡散する
様子がわかる.フッ素が注入されて生底する絶縁層はN
b,Ba, Oetc.の拡散を防止する. CFaプラズマ処理時間が長いとYBCOの超伝導性が
失われる. 拡散防止層2の厚さが50A以下ではYBCO表面の凹
凸により上部電極と下部電極間の反応がおこる.また5
00人以上になると超伝導電流が観測されないので拡散
防止層の厘さは50人と50o人の間に設定される.上
部電極はNbの他Sn,Pbも使用できる.酸化物超伝
導層はRE−Ba−Cu−0が使用できる. 〔発明の効果〕 この発明によれば上部電極と、下部電極と、絶縁層と、
拡散防止層とを有し、 下部電極はREを希土類元素とするときにRE−Ba−
Cu−0系の酸化物超伝導層であり、絶縁層は前記下部
電極の表面をフッ素化合物ガスふん囲気中でプラズマ処
理して得られる層であり、 拡散防止層はAC+からなる層であり、前記絶縁層の上
に形成されるものであり、 上部電極はNb, SnまたはPbからなる眉で前記拡
散防止層の上に形成されるものであるので拡散防止層で
あるAuはNbと接合された状態でクーパ電子対のコヒ
ーレンス長が長くなり、その範囲で拡散防止層の厚さを
増大させることができる.そのために下部電極であるR
f!−Ba−Cu−0系酸化物超伝導層あるいは酸化物
超伝魂層表面に形成された絶縁層の表面粗度にもかかわ
らず、欠陥のない拡散防止層を形戊することができ、上
部電極と下部電極との反応を防止して、電極実効面積の
大きい、酸化物超伝導体の組込まれたジ言セフソン素子
を得ることができる.
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Josephson device, and particularly to a Josephson device using an oxide superconductor. [Prior art] Elements that apply superconducting materials include the Sefson element and the superconducting FET. Superconducting transistors are known.
For example, tunnel-type Jimaro-Sefson elements are shown in Figures 7 and 8. Figure 7 is a cross-sectional view of a conventional element. 8th
The figure is a plan view. In this type of Josephson element, an insulating layer 7, k10I1, is sandwiched between an upper electrode 6 (Nb) and a lower electrode 8 (Nb), which are superconductors. 9
is the substrate. If an oxide superconductor is applied to the Josephson element shown in Figure 7, the element shown in Figure 9 will be obtained. Figure 9 is a cross-sectional view showing a different conventional di-storage Sefson element. This element uses YBa*CusOy-g (hereinafter referred to as YBC), which is an oxide superconductor, as the lower electrode 13.
A (abbreviated as O) is used, and A is used as the diffusion prevention layer 12.
Use u. This diffusion prevention layer is an A70 insulating layer l1.
This prevents the reaction between II and YBCO, which is the lower electrode 13. Figure 10 is a diagram showing the characteristics of different conventional Josephson elements. Josephson property is obtained. However, in this device, since there are irregularities on the YBCO surface, the uniform and defect-free insulating layer 11. Diffusion prevention layer 1
2 is not obtained, and as a result, the YBCO as the lower electrode 13 and the Nb, SI1 or Pb as the upper electrode 10 are partially short-circuited and repelled from each other, becoming insulators. As a result, the effective bonding area becomes smaller than the electrode area. The problem is that it is smaller compared to . The insulation [11] and the diffusion prevention layer 12 are splattered. YB is formed by vapor deposition, etc., and it is required to reduce its thickness.
Defects occur in the layer due to the influence of the surface condition of CO. In particular, regarding the Au of the diffusion prevention layer 12, the lower electrode 13
Reactivity was observed between YBCO and YBCO.
It is not possible to increase the thickness of the film due to the low diffusivity of the Couva electron pairs from CO. Figure 11 is a diagram showing the relationship between the critical current (Ie) and the magnetic field strength H (X 10''A/s) for different conventional diagonal Sefson elements. In Figure 11, the critical current value is zero. The strength of the magnetic field is related to the effective junction area. 10
This shows that it is 0. In order to solve this problem, a Josephson element as shown in FIG. 12 was devised. Fig. 12 shows a further different conventional Josephson element, Fig. 12 <<δ>> is a cross-sectional view,
Figure 12 (mountain) is a plan view. This Josephson element has an insulation 1111G obtained by treating YBCO, which is the lower electrode 17, with CF4 plasma. This insulating layer is YB
It is produced by injecting fluorine into CO. Substrate 18
uses SrTiOz. Since the insulation layer 6 is generated in a CPa atmosphere, a defect-free insulation layer is formed despite the unevenness of the YBC○ which is the lower electrode 17. [Problem II to be Solved by the Invention] However, when trying to reduce the thickness of the insulating layer 16 in order to obtain Josephson characteristics, YBCO, which is the lower electrode 17, and Wb, Sn, or Pb, which is the upper electrode 15, are It has been found that they diffuse through the insulating layer 16 and react with each other. Therefore, a diracefson characteristic cannot be obtained, but a nonlinear current-voltage characteristic as shown in FIG. 13 is obtained. This characteristic is thought to be due to the insulator formed by the reaction between YBCO and Nb. This invention has been made in view of the above-mentioned points, and its purpose is to form an upper electrode 15 of Nb, Sn or Pb through an insulating layer 16.
The object of the present invention is to provide a Josephson device in which an oxide superconductor is incorporated and the effective area of the electrode is large by preventing the YBCO and the lower electrode 17 from reacting with each other. [Means for Solving the Problem] According to the present invention, the above-mentioned object has an upper electrode 1, a lower electrode 4ε, an insulating layer 3, and a diffusion prevention layer 2, and the lower electrode contains IIE as a rare earth element. RE-Ba when
-Cu-0 based oxide superconducting layer, the insulating layer is a layer obtained by plasma treatment of the surface of the lower electrode in a fluorine compound gas atmosphere, and the diffusion prevention layer is a layer made of Au. Yes, as mentioned above lol! i&lN
This is achieved by assuming that the upper electrode is a layer made of Nb, Sn or Pb and is formed on the diffusion prevention layer. [Function] When Au, which is the diffusion prevention layer 2, is bonded to Nb, the coherence length of Cooper electron pairs increases, so the thickness can be increased within that range. For this purpose, the lower electrode 4, RF! Despite the surface roughness of the -Ha-Cu-0 oxide superconducting layer, a defect-free diffusion prevention layer 2 can be formed. Au, which is the diffusion prevention layer 2, does not react with the insulating layer, which is YBCO doped with fluorine. The diffusion prevention layer is Au, and the upper electrode is Nb, Sn. P
b, and the constituent elements of the RE-Ba-Cu-0 series oxide, which is the lower electrode, are prevented from diffusing. [Example] Next, an example of this invention will be explained based on the drawings. FIG. 1 is a cross-sectional view of a Josephson element according to an embodiment of the present invention. This element is used as a substrate 5 and a lower electrode 4 (110).
YBCO oxide superconducting layer oriented in the direction and the insulating layer 3
and the diffusion prevention layer 2 made of ^U and the Nb which is the upper electrode 11.
It consists of Such a Jitasefuson element is manufactured as follows. FIG. 5 is a process diagram showing a method for preparing a Josephson device according to an embodiment of the present invention. S
YB, which is the lower electrode 4, is placed on the substrate 5 made of rTlOs.
CO thin film r. f. It is formed using magnetron sputtering method. *The formation conditions for M are shown in Table 1. Table 1: An impurity layer 19 is formed on the surface of the obtained YBCO superconducting layer. This layer is a layer where the group strength is shifted. This state is shown in Figure 5 1aJ. This impurity layer 19 is removed by oxygen plasma treatment. ai! The conditions for elementary plasma treatment are shown in Table 2. The state after the oxygen plasma treatment in Table 2 is shown in Figure 5 (bl) The oxygen plasma treatment also has the meaning of supplying oxygen to the YBCO superconducting layer. It is formed by plasma treatment of C.
F. The conditions for plasma treatment are shown in Table 3. The state of the insulating layer type 3*a in Table 3 is shown in FIG. 5(c). Further, using a metal mask 20, a diffusion prevention layer 2 of Au is formed to a thickness of 60 mm by electron beam evaporation. Table 4 shows the conditions for forming the diffusion prevention layer 2. Table 4 The state after formation of the diffusion prevention layer is shown in Figure 5+dl. Next, using a metal mask 20, an upper film is formed using Nb by electron beam evaporation. The upper electrode type and conditions are shown in Table 5. Figure 5 (11) shows the state after the formation of the upper electrode l in Table 5.
The characteristics of the Josephson element thus obtained (temperature, 4.2K) are shown in Figure 6. N which is the upper electrode 1
The reaction between YBCO and YBCO, which is the lower electrode 4, forms the diffusion prevention layer 2.
This can be prevented and good di-sefson characteristics can be obtained. When we investigated the dependence of the critical current on the magnetic field for this device, we found that the effective junction area was 80% of the electrode area. Figures 2 and 3. FIG. 4 is a diagram showing the element concentration distribution profile obtained by Auger electron spectroscopy of the Josephson device according to the embodiment of the present invention. The CF4 plasma treatment time is 0.2.15 min. It corresponds to the combination of
It can be seen that fluorine diffuses into YBCO due to plasma treatment. The insulating layer that is injected with fluorine and has a raw bottom is N.
b, Ba, Oetc. prevent the spread of If the CFa plasma treatment time is long, the superconductivity of YBCO is lost. When the thickness of the diffusion prevention layer 2 is less than 50A, a reaction occurs between the upper electrode and the lower electrode due to the unevenness of the YBCO surface. Also 5
Since superconducting current is not observed when the number of people exceeds 00, the thickness of the diffusion prevention layer is set between 50 and 500 people. In addition to Nb, Sn and Pb can also be used for the upper electrode. RE-Ba-Cu-0 can be used as the oxide superconducting layer. [Effects of the Invention] According to the invention, an upper electrode, a lower electrode, an insulating layer,
and a diffusion prevention layer, and the lower electrode is RE-Ba- when RE is a rare earth element.
A Cu-0 based oxide superconducting layer, the insulating layer is a layer obtained by plasma treatment of the surface of the lower electrode in a fluorine compound gas atmosphere, and the diffusion prevention layer is a layer made of AC+, The upper electrode is formed on the insulating layer, and the upper electrode is made of Nb, Sn, or Pb, and is formed on the diffusion prevention layer, so the Au, which is the diffusion prevention layer, is bonded to the Nb. In this state, the coherence length of Cooper electron pairs increases, and the thickness of the diffusion prevention layer can be increased within that range. Therefore, the lower electrode R
f! -Despite the surface roughness of the insulating layer formed on the surface of the Ba-Cu-0 based oxide superconducting layer or the oxide superconducting layer, a defect-free diffusion prevention layer can be formed, and the upper By preventing the reaction between the electrode and the lower electrode, it is possible to obtain a Cefson device incorporating an oxide superconductor with a large effective electrode area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係るジョセフソン素子を示
す断面図、第2図,第3図9第4図はこの発明の実施例
に係るジョセフソン素子につきそれぞれ処理時間が0.
2.15min.であるときのオージ工電子分光分析に
よる元素濃度分布のプロフィルを示す線図、第5図はこ
の発明の実施例に係るジョセフソン素子の製造方法を示
す工程図、第6図はこの発明の実施例に係るジョセフソ
ン素子の特性を示す&l図、第7図は従来のジョセフソ
ン素子を示す断面図、第8図は従来のジョセフソン素子
を示す平面図、第9図は従来の異なるジョセフソン素子
を示す断面図、第10図は従来の異なるジョセフソン素
子の電流電圧特性を示す線図、第11図は従来の異なる
ジョセフソン素子につき臨界電流の磁界依存性を示す線
図、第12図は従来のさらに異なるジョセフソン素子を
示し、第l2図(alは断面図、第12図山)は平面図
、第13図は従来のさらに異なるジョセフソン素子の電
流電圧特性を示す線図である. l:上部電極、2:拡散防止層、3:絶縁層、4:下部
電極. 第 1 図 第 2 図 第 3 図 ピ7セル奴 第 4 図 第 5 図 第 7 図 第 9 図 0 . 2mV/d iv. 第10図 第11図 16上部%樋(Nb) ( 216總縁層 第 12図 第13図
FIG. 1 is a sectional view showing a Josephson device according to an embodiment of the present invention, and FIGS.
2.15min. Fig. 5 is a process diagram showing the method for manufacturing a Josephson device according to an embodiment of the present invention, and Fig. 6 is a diagram showing the profile of the element concentration distribution according to the optical electron spectroscopy when &l diagram showing the characteristics of the Josephson element according to the example, Fig. 7 is a sectional view showing the conventional Josephson element, Fig. 8 is a plan view showing the conventional Josephson element, and Fig. 9 is a different conventional Josephson element. 10 is a diagram showing current-voltage characteristics of different conventional Josephson elements; FIG. 11 is a diagram showing magnetic field dependence of critical current for different conventional Josephson elements; FIG. 12 12 shows a still different conventional Josephson element, FIG. 12 (al is a cross-sectional view, and the mountain in FIG. 12) is a plan view, and FIG. 13 is a diagram showing the current-voltage characteristics of a still different conventional Josephson element. .. l: upper electrode, 2: diffusion prevention layer, 3: insulating layer, 4: lower electrode. Fig. 1 Fig. 2 Fig. 3 Fig. 7 Cell Guy Fig. 4 Fig. 5 Fig. 7 Fig. 9 Fig. 0. 2mV/div. Fig. 10 Fig. 11 Fig. 16 Upper % gutter (Nb) (216 Edge layer Fig. 12 Fig. 13

Claims (1)

【特許請求の範囲】 1)上部電極と、下部電極と、絶縁層と、拡散防止層と
を有し、 下部電極はREを希土類元素とするときにRE−Ba−
Cu−O系の酸化物超伝導層であり、 絶縁層は前記下部電極の表面をフッ素化合物ガス雰囲気
中でプラズマ処理して得られる層であり、拡散防止層は
Auからなる層であり、前記絶縁層の上に形成されるも
のであり、 上部電極はNb,SnまたはPbからなる層で前記拡散
防止層の上に形成されるものであることを特徴とするジ
ョセフソン素子。
[Claims] 1) It has an upper electrode, a lower electrode, an insulating layer, and a diffusion prevention layer, and the lower electrode has RE-Ba- when RE is a rare earth element.
The insulating layer is a layer obtained by plasma treatment of the surface of the lower electrode in a fluorine compound gas atmosphere, and the diffusion prevention layer is a layer made of Au. A Josephson device, characterized in that it is formed on an insulating layer, and the upper electrode is a layer made of Nb, Sn, or Pb and is formed on the diffusion prevention layer.
JP1310047A 1989-11-29 1989-11-29 Jusephson element Pending JPH03171684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310047A JPH03171684A (en) 1989-11-29 1989-11-29 Jusephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310047A JPH03171684A (en) 1989-11-29 1989-11-29 Jusephson element

Publications (1)

Publication Number Publication Date
JPH03171684A true JPH03171684A (en) 1991-07-25

Family

ID=18000527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310047A Pending JPH03171684A (en) 1989-11-29 1989-11-29 Jusephson element

Country Status (1)

Country Link
JP (1) JPH03171684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167111A (en) * 1991-12-16 1993-07-02 Nec Corp Tunnel type josephson junction element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167111A (en) * 1991-12-16 1993-07-02 Nec Corp Tunnel type josephson junction element

Similar Documents

Publication Publication Date Title
US5795848A (en) Oxide superconductor devices fabricated by impurity ion implantation
EP0467777B1 (en) Method for manufacturing superconducting device composed of oxide superconductor material and superconducting device manufactured thereby
CA2013643C (en) Tunnel junction type josephson device and method for fabricating the same
US6188919B1 (en) Using ion implantation to create normal layers in superconducting-normal-superconducting Josephson junctions
US5717222A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
EP0478466B1 (en) A superconducting device and a method for manufacturing the same
Maruyama et al. Interface-treated Josephson junctions in trilayer structures
JPH03171684A (en) Jusephson element
US5219834A (en) Process for producing a superconducting transistor
EP0488837B1 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
US5565415A (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP3011411B2 (en) Superconducting element
JP2908346B2 (en) Superconducting structure
JPH02186682A (en) Josephson junction device
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP4104323B2 (en) Method for fabricating Josephson junction
JPH04317381A (en) Manufacture of barrier type electronic element
JPH04226089A (en) Manufacture of superconductive integrated circuit element
JP2835203B2 (en) Superconducting element manufacturing method
Sato et al. Anisotropic electrical properties in BSCCO/Au-Ag/Pb Junctions
JPH02244682A (en) Superconductive element
JP2825391B2 (en) Superconducting element
JPH05160446A (en) Superconducting wiring and manufacture thereof
JPH02137380A (en) Manufacture of superconducting device
JPS63194376A (en) Josephson junction element