JPH051665A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH051665A
JPH051665A JP15501491A JP15501491A JPH051665A JP H051665 A JPH051665 A JP H051665A JP 15501491 A JP15501491 A JP 15501491A JP 15501491 A JP15501491 A JP 15501491A JP H051665 A JPH051665 A JP H051665A
Authority
JP
Japan
Prior art keywords
hydrogen
vacuum pump
cold head
pump
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15501491A
Other languages
Japanese (ja)
Inventor
Yasushi Yamanaka
裕史 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15501491A priority Critical patent/JPH051665A/en
Publication of JPH051665A publication Critical patent/JPH051665A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide a cryogenic pump which can lengthen the processing period of reactivating treatment as the condition of molecule arresting is saturated. CONSTITUTION:This vacuum pump is constituted to be furnished with an absorbing panel 8 made of hydrogen absorbent metal for arresting hydrogen. The hydrogen absorbent metal is composed of palladium and of titanium nickel alloys or composed of lanthanum nickel alloys. Other than the above, the pump is made up of a pump inlet port 1, buffles 3, a cold head second step (about 100K) 4, a cold head first step (about 4.2K) 5, and of an absorbing panel 7 identical to one used as in the past.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低温に冷却される面
を持ちそこに気体分子を凝縮捕獲して容器内の排気を行
う真空ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pump which has a surface cooled to an extremely low temperature and condenses and captures gas molecules therein to exhaust the inside of a container.

【0002】上記真空ポンプは、クライオポンプと呼称
されて10-8Torr程度の真空度を実現するものであり、例
えば半導体装置の製造に用いるアルミニウム・スパッタ
装置の排気用として使用されている。
The above vacuum pump is called a cryopump and realizes a degree of vacuum of about 10 -8 Torr, and is used, for example, for exhausting an aluminum sputtering apparatus used for manufacturing a semiconductor device.

【0003】そして、上記凝縮捕獲が飽和状態となるに
従い排気能力が低下するので、適宜な周期で再生処理を
施す必要があり、使用装置の稼働率向上のためにその周
期を延ばすことが望まれている。
Since the exhaust capacity decreases as the condensation trap becomes saturated, it is necessary to regenerate the gas at an appropriate cycle, and it is desirable to extend the cycle in order to improve the operating rate of the apparatus used. ing.

【0004】[0004]

【従来の技術】図3はクライオポンプの従来例の模式断
面図である。図3において、1はポンプ入口、2はシー
ルド、3はバッフル、4はコールドヘッド2段目、5は
コールドヘッド1段目、6はコンプレッサ、である。
2. Description of the Related Art FIG. 3 is a schematic sectional view of a conventional cryopump. In FIG. 3, 1 is a pump inlet, 2 is a shield, 3 is a baffle, 4 is a cold head second stage, 5 is a cold head first stage, and 6 is a compressor.

【0005】ポンプ入口1は、例えば前記アルミニウム
・スパッタ装置など超高真空排気を必要とする装置の容
器に接続される。コールドヘッド2段目4は約100K
に、またコールドヘッド1段目5は約 4.2Kに冷却され
る。この冷却はコンプレッサ6から送出する液体ヘリウ
ムによって行う。
The pump inlet 1 is connected to a container of a device that requires ultra-high vacuum exhaust, such as the aluminum sputtering device. Cold head 2nd stage 4 is about 100K
In addition, the cold head first stage 5 is cooled to about 4.2K. This cooling is performed by liquid helium sent from the compressor 6.

【0006】そして、バッフル3の面は水蒸気などを凝
縮し、コールドヘッド2段目4の冷却面は窒素,酸素,
アルゴンなどを、また、コールドヘッド1段目5の冷却
面は水素,ネオン,ヘリウムなどを捕獲して、ポンプ入
口1から上記装置の容器内を10-8Torr程度の真空度に排
気する。
The surface of the baffle 3 condenses water vapor and the like, and the cooling surface of the cold head second stage 4 contains nitrogen, oxygen,
Argon and the like, and the cooling surface of the first stage 5 of the cold head captures hydrogen, neon, helium and the like, and the inside of the container of the above apparatus is evacuated from the pump inlet 1 to a vacuum degree of about 10 -8 Torr.

【0007】ところで、このようにして排気を行うクラ
イオポンプは、上記凝縮捕獲に限度がありそれが飽和状
態となるに従い排気能力が低下するので、適宜な周期で
再生処理を施す必要がある。その再生処理は、凝縮捕獲
した分子を除去する処理であり、凝縮捕獲部分を常温に
戻し窒素ガスでパージして行う。
By the way, in the cryopump that exhausts air in this way, the exhaustion capacity is reduced as the condensation trapping is limited and it becomes saturated, so it is necessary to perform regeneration processing at an appropriate cycle. The regeneration process is a process for removing the molecules that have been condensed and trapped, and is performed by returning the condensed and trapped portion to room temperature and purging with nitrogen gas.

【0008】従来例では、コールドヘッド1段目5の冷
却面を形成する収着パネル7は、図4の部分断面図に示
すように、銅板7aにニッケル7bをメッキしその表面に活
性炭7cを接着して構成されており、活性炭7cが水素など
の分子を捕獲する。そしてその分子捕獲が、バッフル3
及びコールドヘッド2段目4における分子の凝縮捕獲よ
りも早く飽和状態に達する。
In the conventional example, as shown in the partial sectional view of FIG. 4, the sorption panel 7 forming the cooling surface of the first stage 5 of the cold head has a copper plate 7a plated with nickel 7b and activated carbon 7c on its surface. It is configured by adhesion, and activated carbon 7c captures molecules such as hydrogen. And that molecular capture is baffle 3
And, the saturated state is reached earlier than the condensation capture of the molecules in the second stage 4 of the cold head.

【0009】従って、再生処理は、コールドヘッド1段
目5が飽和状態に達する期間に対応させて処理周期を定
める必要がある。そしてその周期は、例えば1〜2週間
に1度の割合といった具合にかなり短いのが現状であ
る。
Therefore, in the reproducing process, it is necessary to determine the processing cycle corresponding to the period in which the first stage 5 of the cold head reaches the saturated state. At present, the cycle is quite short, for example, once every 1 to 2 weeks.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記再生処
理には約半日の時間を必要としている。このため、従来
例のクライオポンプは、それを使用する装置の稼働率を
低下させる問題がある。
However, it takes about half a day for the above-mentioned regeneration process. Therefore, the conventional cryopump has a problem of lowering the operating rate of the device using the cryopump.

【0011】この稼働率を向上させるためには、上記再
生処理の処理周期を延伸させれば良い。そこで本発明
は、真空ポンプ、特に、クライオポンプに関し、分子捕
獲が飽和状態となることに伴う再生処理の処理周期を延
伸させる得るようにすることを目的とする。
In order to improve the operating rate, it is sufficient to extend the processing cycle of the regeneration processing. Therefore, the present invention relates to a vacuum pump, in particular, a cryopump, and an object thereof is to make it possible to extend the treatment cycle of the regeneration treatment accompanied by the saturation of the molecular trap.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の真空ポンプは、極低温に冷却される面を持
ちそこに気体分子を凝縮捕獲して容器内の排気を行う真
空ポンプであって、水素の捕獲用として水素吸蔵金属か
らなる収着パネルを備えることを特徴としている。
In order to achieve the above object, the vacuum pump of the present invention has a surface which is cooled to an extremely low temperature and condenses and traps gas molecules therein to exhaust the inside of the container. It is characterized by having a sorption panel made of a hydrogen storage metal for capturing hydrogen.

【0013】そして、前記水素吸蔵金属は、パラジウ
ム、チタン・ニッケル合金またはランタン・ニッケル合
金であれば良い。
The hydrogen storage metal may be palladium, titanium-nickel alloy or lanthanum-nickel alloy.

【0014】[0014]

【作用】従来例では収着パネル7の分子捕獲が真先に飽
和状態となり、それにより再生処理の処理周期が規制さ
れていた。また、収着パネル7が捕獲する分子の中では
水素が圧倒的に多い。そこで、水素を多量に捕獲し得る
収着パネルを設ければ、飽和状態に達するまでの期間が
延伸して再生処理の処理周期を延伸させ得るようにな
る。
In the conventional example, the trapping of molecules on the sorption panel 7 is saturated immediately before, so that the processing cycle of the regeneration processing is regulated. Moreover, hydrogen is overwhelmingly predominant among the molecules captured by the sorption panel 7. Therefore, if a sorption panel capable of capturing a large amount of hydrogen is provided, the period until the saturated state is reached is extended and the processing cycle of the regeneration process can be extended.

【0015】そして、パラジウム、チタン・ニッケル合
金またはランタン・ニッケル合金による水素吸蔵金属
は、低温において水素を吸着すると共に吸着した水素を
内部に吸収し常温においてその水素を放出するので、上
記水素を多量に捕獲し得る収着パネルはこの水素吸蔵金
属で構成することにより実現される。
Since the hydrogen storage metal made of palladium, titanium-nickel alloy or lanthanum-nickel alloy adsorbs hydrogen at low temperature and absorbs the adsorbed hydrogen inside and releases the hydrogen at room temperature, a large amount of the above hydrogen is produced. A sorption panel that can be trapped in is realized by using this hydrogen storage metal.

【0016】[0016]

【実施例】以下本発明による真空ポンプの実施例につい
て図1及び図2を用いて説明する。図1は実施例の模式
断面図、図2は実施例で設ける収着パネルの部分断面図
であり、全図を通し同一符号は同一対象物を示す。
Embodiments of the vacuum pump according to the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view of the embodiment, and FIG. 2 is a partial cross-sectional view of a sorption panel provided in the embodiment, and the same reference numerals denote the same objects throughout the drawings.

【0017】図1において、この実施例は、図3で説明
した従来例に収着パネル8を追加新設したクライオポン
プである。収着パネル8は、パラジウム、チタン・ニッ
ケル合金またはランタン・ニッケル合金による水素吸蔵
金属からなって表面が地金のままであり、コールドヘッ
ド1段目5に追加新設されて収着パネル7と共にコール
ドヘッド5の冷却面を形成する。
In FIG. 1, this embodiment is a cryopump in which a sorption panel 8 is newly added to the conventional example described in FIG. The sorption panel 8 is made of palladium, titanium-nickel alloy or lanthanum-nickel alloy and has a hydrogen absorbing metal, and the surface remains as a bare metal. The cooling surface of the head 5 is formed.

【0018】そして約 4.2Kに冷却された収着パネル8
は、図2に示すように、表面近傍の水素を表面に吸着す
ると共に吸着した水素を内部に吸収する。図2における
2 は表面近傍の水素を、Hadは表面に吸着された水素
を、Habは内部に吸収された水素を示す。水素Habは、
発熱反応により金属水素化物を形成して収着パネル8内
に温存される。その際に発生した熱は、コールドヘッド
1段目5を冷却するヘリウムに吸収される。従って、収
着パネル8は極めて多量の水素を捕獲することができ
る。
The sorption panel 8 cooled to about 4.2K
As shown in FIG. 2, hydrogen adsorbs hydrogen near the surface on the surface and adsorbs the adsorbed hydrogen inside. In FIG. 2, H 2 indicates hydrogen near the surface, Had indicates hydrogen adsorbed on the surface, and Hab indicates hydrogen absorbed inside. Hydrogen Hab is
The metal hydride is formed by the exothermic reaction and is preserved in the sorption panel 8. The heat generated at that time is absorbed by helium that cools the first stage 5 of the cold head. Therefore, the sorption panel 8 can capture an extremely large amount of hydrogen.

【0019】これに伴い、収着パネル7の水素を捕獲す
る割合が低減して、コールドヘッド1段目5は飽和状態
に達するまでの期間が延伸される。このことにより、実
施例は、再生処理の処理周期を従来例よりも延伸させる
ことができるようになる。
Along with this, the rate of trapping hydrogen in the sorption panel 7 is reduced, and the period until the cold head first stage 5 reaches a saturated state is extended. As a result, in the example, the processing cycle of the reproduction process can be extended as compared with the conventional example.

【0020】そしてその再生処理は、従来例の場合と同
様に、凝縮捕獲部分を常温に戻し窒素ガスでパージして
行うが、その所要時間を大きく短縮することができる。
収着パネル8は常温になると、金属水素化物として温存
していた水素を吸熱反応により自発的に放出するからで
ある。
As in the case of the conventional example, the regeneration treatment is performed by returning the condensation trap portion to room temperature and purging with nitrogen gas, but the required time can be greatly shortened.
This is because the sorption panel 8 spontaneously releases hydrogen stored as a metal hydride by an endothermic reaction at normal temperature.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、極
低温に冷却される面を持ちそこに気体分子を凝縮捕獲し
て容器内の排気を行う真空ポンプ(クライオポンプ)に
関し、分子捕獲が飽和状態となることに伴う再生処理の
処理周期を延伸させる得るようになり、当該ポンプを使
用する装置の稼働率向上を可能にさせる効果がある。
As described above, according to the present invention, a vacuum pump (cryopump) having a surface cooled to an extremely low temperature and condensing and capturing gas molecules therein and exhausting the inside of a container is provided. Is saturated, the processing cycle of the regeneration processing can be extended, and the operation rate of the apparatus using the pump can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の模式断面図FIG. 1 is a schematic sectional view of an example.

【図2】 実施例で設ける収着パネルの部分断面図FIG. 2 is a partial sectional view of a sorption panel provided in an embodiment.

【図3】 従来例の模式断面図FIG. 3 is a schematic sectional view of a conventional example.

【図4】 従来例における収着パネルの部分断面図FIG. 4 is a partial sectional view of a sorption panel in a conventional example.

【符号の説明】[Explanation of symbols]

1 ポンプ入口 2 シールド 3 バッフル 4 コールドヘッド2段目 5 コールドヘッド1段目 6 コンプレッサ 7 従来からの収着パネル 7a 銅板 7b メッキしたニッケル 7c 接着した活性炭 8 追加新設した収着パネル 1 pump inlet 2 shield 3 baffles 4 second cold head 5 Cold head 1st stage 6 compressor 7 Conventional sorption panel 7a copper plate 7b plated nickel 7c bonded activated carbon 8 Additional newly installed sorption panel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 極低温に冷却される面を持ちそこに気体
分子を凝縮捕獲して容器内の排気を行う真空ポンプであ
って、水素の捕獲用として水素吸蔵金属からなる収着パ
ネル(8) を備えることを特徴とする真空ポンプ。
1. A sorption panel comprising a hydrogen storage metal for trapping hydrogen, which is a vacuum pump having a surface cooled to an extremely low temperature and condensing and trapping gas molecules to exhaust the inside of the container. ) Is equipped with the vacuum pump.
【請求項2】 前記水素吸蔵金属は、パラジウム、チタ
ン・ニッケル合金またはランタン・ニッケル合金である
ことを特徴とする請求項1記載の真空ポンプ。
2. The vacuum pump according to claim 1, wherein the hydrogen storage metal is palladium, titanium-nickel alloy or lanthanum-nickel alloy.
JP15501491A 1991-06-27 1991-06-27 Vacuum pump Withdrawn JPH051665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15501491A JPH051665A (en) 1991-06-27 1991-06-27 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15501491A JPH051665A (en) 1991-06-27 1991-06-27 Vacuum pump

Publications (1)

Publication Number Publication Date
JPH051665A true JPH051665A (en) 1993-01-08

Family

ID=15596797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15501491A Withdrawn JPH051665A (en) 1991-06-27 1991-06-27 Vacuum pump

Country Status (1)

Country Link
JP (1) JPH051665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499478A (en) * 2018-11-17 2019-03-22 金华职业技术学院 A kind of vacuum reaction and test device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499478A (en) * 2018-11-17 2019-03-22 金华职业技术学院 A kind of vacuum reaction and test device
CN109499478B (en) * 2018-11-17 2023-10-27 金华职业技术学院 Vacuum reaction and testing device

Similar Documents

Publication Publication Date Title
JP3151033B2 (en) Apparatus and method for removing hydrogen from vacuum envelopes, especially high energy accelerators, at cryogenic temperatures
US4614093A (en) Method of starting and/or regenerating a cryopump and a cryopump therefor
JP4287422B2 (en) Cryopump, sputtering apparatus, and semiconductor manufacturing apparatus
WO2005052369A1 (en) Method and apparatus for regenerating water
JPH0261629B2 (en)
JPH051665A (en) Vacuum pump
KR102536330B1 (en) Method for regenerating cryogenic pump
JPH06346848A (en) Regenerating cryopump method and evacuation system thereof
CN115497650A (en) Combined regeneration method of high-temperature gas cooled reactor molecular sieve bed and low-temperature activated carbon bed
JP2002081857A (en) Rear gas recovering method and device therefor
JP2001123951A (en) Method for regenerating cryopump
JPH06154505A (en) Method for regenerating cryopump
JP3295136B2 (en) Cryopump regeneration method and regeneration device
JPS62258176A (en) Cryopump
JP2509951B2 (en) Cryopump for fusion device
JPH07158562A (en) Cryopump
JP3172767B2 (en) Selective gas exhaust method
JP2803039B2 (en) Multi-stage cryopump and method for regenerating adsorption surface of multi-stage cryopump
JPH05299364A (en) Trap device
JP2002070737A (en) Regenerating method of cryopump
JP3156409B2 (en) Evacuation system
JP2006046242A (en) Cryopump
JPS59180082A (en) Cryo-pump
JPH0774635B2 (en) Vacuum exhaust device
JPH05311403A (en) Gas regenerating device for film forming device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903