JPH05164658A - Power absorption device of chassis dynamometer using magnetic particle - Google Patents

Power absorption device of chassis dynamometer using magnetic particle

Info

Publication number
JPH05164658A
JPH05164658A JP3349999A JP34999991A JPH05164658A JP H05164658 A JPH05164658 A JP H05164658A JP 3349999 A JP3349999 A JP 3349999A JP 34999991 A JP34999991 A JP 34999991A JP H05164658 A JPH05164658 A JP H05164658A
Authority
JP
Japan
Prior art keywords
power
chassis dynamometer
cooling water
absorption
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3349999A
Other languages
Japanese (ja)
Inventor
Shigeru Yanagihara
茂 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukasa Sokken KK
Original Assignee
Tsukasa Sokken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukasa Sokken KK filed Critical Tsukasa Sokken KK
Priority to JP3349999A priority Critical patent/JPH05164658A/en
Publication of JPH05164658A publication Critical patent/JPH05164658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To realize a power-absorption device which is compact and has an improved controllability by controlling a cooling capacity of a cooling device which is utilized for temperature control and energy absorption of a magnetic circuit according to absarftim power such as a rotary velocity and an excitation current. CONSTITUTION:A magnetic flux density is controlled by an excitation current, a magnetic particle 13 is gathered between a magnetic pole 14 and a rotor 12a according to the magnetic flux density, a resistance for rotation is generated in semi-solid shape, a force is generated between an input axis 11 and a fixed stator 17, a power of an input axis 11 is absorbed, but the energy becomes a friction heat of the particle 13, etc., so that it is excluded by a cooling water 19. A flow rate control of the cooling water 19 is performed by detecting the number of revolutions of the input axis 11 and an excitation current and then taking them into a calculation circuit and then changing an amount of opening of a control valve 21 continuously or in steps at a temperature T1 near the particle 13 and a cooling water exit temperature T2. When the temperature T1 reaches a certain limit, the excitation current is reduced to a proper value, thus enabling absorption power, namely a heat generation amount to be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は自動車の公害防止対策
に関連して自動車の試験評価及び整備などを行う動力吸
収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power absorption device for carrying out test evaluation, maintenance, etc. of an automobile in relation to pollution prevention measures for the automobile.

【0002】[0002]

【従来の技術】自動車を車両として運転して負荷試験を
行うシャシダイナモメ―タには各種あるが、その動力吸
収装置しては、直流電気動力計、渦電流電気動力計、水
動力計、電磁式リタ―ダなどが利用されてきた。
2. Description of the Related Art There are various chassis dynamometers for carrying out load tests by operating an automobile as a vehicle. The power absorbing devices are direct current electric dynamometer, eddy current electric dynamometer, water dynamometer, and electromagnetic dynamometer. Expression retarders have been used.

【0003】[0003]

【発明が解決しようとする課題】これらの動力計はいず
れも動力吸収容量は大きくできる利点をもつ一方で、大
型になり、重量も大きく、自動車の駆動車輪を乗せる左
右ロ―ラの内側に収容することが困難であった。一般に
乗用車など軽量で、低速度領域における動力吸収が比較
的小さい車両については、動力吸収装置の容量は小さく
てよく、また小型化が特に望まれていた。従来はリタ―
ダを用いる場合でもロ―ラ外側に配置しなければなら
ず、大型化が避けられなかった。また従来のリタ―ダや
渦電流電気動力計による動力吸収では、低速度領域にお
ける制動トルク特性が安定性に欠ける為に、低速度にお
ける負荷設定を高精度にすることが困難であった。
While all of these dynamometers have the advantage that they can have a large power absorption capacity, they are large and heavy, and are housed inside the left and right rollers on which the driving wheels of an automobile can be placed. It was difficult to do. Generally, for a vehicle such as a passenger car that is lightweight and has relatively small power absorption in a low speed region, the capacity of the power absorption device may be small, and downsizing has been particularly desired. Conventionally,
Even if a da was used, it had to be placed on the outside of the roller, and inevitably an increase in size. Further, in the conventional power absorption by the retarder and the eddy current electric dynamometer, it is difficult to set the load at high speed with high accuracy because the braking torque characteristic in the low speed region lacks stability.

【0004】このように、シャシダイナモメ―タとして
小型軽量化を図り特に都市内走行などを主とする100
Km/h以下の車両速度範囲で負荷設定が、精度良く、
簡単にできることが、広くシャシダイナモメ―タを活用
するための課題である。
As described above, the chassis dynamometer is designed to be compact and lightweight, and is mainly used for driving in urban areas.
Load setting with high accuracy in the vehicle speed range of Km / h or less,
What can be easily done is a challenge to widely utilize chassis dynamometers.

【0005】この発明は上記の如き事情に鑑みてなされ
たものであって、低速度領域で精度良い小型化した動力
吸収装置として、磁性粉体を磁気回路内に用いて磁束に
応じて滑りに対する抵抗トルクが変化する一種の電磁ブ
レ―キを利用することによって、小さい回転慣性で早い
応答性を備えた、小型な制御性の良好な動力吸収装置を
実現することを目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and as a power absorbing device which is accurately downsized in a low speed region, magnetic powder is used in a magnetic circuit to prevent slippage depending on magnetic flux. It is an object of the present invention to realize a small-sized power absorption device with good controllability, which has a small rotational inertia and a quick response by using a kind of electromagnetic brake whose resistance torque changes.

【0006】[0006]

【課題を解決するための手段】この目的に対応して、こ
の発明のシャシダイナモメ―タの動力吸収装置は、磁性
粉体を用いて磁気回路の一部を構成し、電磁的にその磁
束を制御することによって回転軸の制動力を調節する動
力吸収装置を備えたシャシダイナモメ―タにおいて、磁
気回路の温度制御とエネルギ―吸収に冷却装置を利用す
るとき、冷却装置の冷却能力を回転速度と励磁電流など
吸収動力に応じて連続的又は段階的に制御することを特
徴としている。
To solve this problem, the power absorber for a chassis dynamometer according to the present invention constitutes a part of a magnetic circuit using magnetic powder and electromagnetically absorbs its magnetic flux. In a chassis dynamometer equipped with a power absorption device that adjusts the braking force of the rotating shaft by controlling, when the cooling device is used for temperature control and energy absorption of the magnetic circuit, the cooling capacity of the cooling device is changed to the rotation speed. The feature is that continuous or stepwise control is performed according to absorption power such as exciting current.

【0007】[0007]

【作用】磁性粉体を用いた電磁ブレ―キには空冷式と水
冷式があるが、このシャシダイナモメ―タに利用する場
合は冷却性の良い水冷式を用いて、吸収エネルギ―のほ
とんどを水の温度上昇によって排除すると共に、制動ト
ルクを励磁電流によって精度良く安定して発生させる。
そして冷却水の流量を最適な条件に維持できるように制
御する。
[Operation] There are two types of electromagnetic brakes using magnetic powder: air-cooled type and water-cooled type. When using this chassis dynamometer, use the water-cooled type with good cooling properties to absorb most of the absorbed energy. The water is eliminated by the temperature rise, and the braking torque is generated accurately and stably by the exciting current.
Then, the flow rate of the cooling water is controlled so that it can be maintained under optimum conditions.

【0008】発生する制動トルクTは励磁電流iによっ
て図1のように変化するので、この関係を近似式(1)
によって関数発生器25に設定しておき、必要な制動ト
ルクに対する電流値を定めておく。この関係は近似的
に、 T=a0+b0i+c02+d03 …(1) と表わすことができる。a0,b0,c0,d0は実測によ
り予め定めることができ、この関係式を関数発生器25
に入れ、電流値iの信号により発生トルク値Tが定まる
ので、Tからiを求めることができる。
Since the generated braking torque T changes according to the exciting current i as shown in FIG. 1, this relation is approximated by the equation (1).
Is set in the function generator 25 according to, and the current value for the required braking torque is determined. This relationship can be approximately expressed as T = a 0 + b 0 i + c 0 i 2 + d 0 i 3 (1). a 0 , b 0 , c 0 , d 0 can be determined in advance by actual measurement, and this relational expression can be obtained by the function generator 25.
Since the generated torque value T is determined by the signal of the current value i, i can be obtained from T.

【0009】車両の走行抵抗は、タイヤ等の転がり抵抗
や空気抵抗、加速抵抗、登坂抵抗などによって変化する
が、一般には駆動力Fを近似的に(2)式によって表わ
すことができる。 F=A0+B0M+C0MV+D0AV2+E0M(dv/dt)+F0Msinθ …(2)
The running resistance of the vehicle changes depending on the rolling resistance of tires or the like, air resistance, acceleration resistance, uphill resistance, etc. Generally, the driving force F can be approximately represented by the equation (2). F = A 0 + B 0 M + C 0 MV + D 0 AV 2 + E 0 M (dv / dt) + F 0 Msinθ (2)

【0010】ここで、Mは車両の質量、Vは車両の速
度、Aは車両の前面投影面積、θは道路の勾配角であ
る。平坦地、定常走行の場合は、sinθ=0、(dv
/dt)=0であり、F=A0+B0M+C0MV+D0
2となる。A0,B0,C0,D0は車両や道路、タイヤ
の条件による定数であるが、経験値を仮定できる。
Here, M is the mass of the vehicle, V is the speed of the vehicle, A is the front projected area of the vehicle, and θ is the slope angle of the road. In the case of flat ground and steady running, sin θ = 0, (dv
/ Dt) = 0 and F = A 0 + B 0 M + C 0 MV + D 0 A
It becomes V 2 . A 0 , B 0 , C 0 , D 0 are constants depending on the conditions of the vehicle, road, and tire, but empirical values can be assumed.

【0011】一方、車両のタイヤから駆動力Fの回転力
を受けるロ―ラ側のトルクは、ダブルロ―ラの場合には
アイドラ側のタイヤでの損失も含めて、タイヤの変形な
どによる損失xがあって、ロ―ラの半径r0と駆動力F
の積F・r0よりも減少する。またロ―ラ軸から動力吸
収装置までの動力伝達効率ηmを考慮し、更にロ―ラを
含めたシャシダイナモメ―タ側の回転等価慣性質量I0
とすると、動力吸収装置が制動すべき軸トルクTは、ロ
―ラ軸に換算してTrとすると次のようになる。 Tr=r0[ηm{A0+B0M+C0MV+D0AV2+E0M(dv/dt) +F0Msinθ−x}−I0(dv/dt)] …(3)
On the other hand, the torque on the roller side that receives the rotational force of the driving force F from the tire of the vehicle, including the loss on the tire on the idler side in the case of a double roller, is a loss x due to deformation of the tire. Therefore, the radius r 0 of the roller and the driving force F
Of the product F · r 0 . Considering the power transmission efficiency η m from the roller shaft to the power absorber, the rotational equivalent inertial mass I 0 on the chassis dynamometer side including the roller is also taken into consideration.
Then, the shaft torque T to be braked by the power absorption device is as follows when converted to the roller shaft and expressed as T r . T r = r 0m {A 0 + B 0 M + C 0 MV + D 0 AV 2 + E 0 M (dv / dt) + F 0 Msinθ−x} −I 0 (dv / dt)] (3)

【0012】ロ―ラ軸と動力吸収装置の軸との減速比を
1/mとすると、T=mTrである。すなわち、 T=mr0[ηm{A0+B0M+C0MV+D0AV2+E0M(dv/dt) +F0Msinθ−x}−I0(dv/dt)] …(4)
If the reduction ratio between the roller shaft and the shaft of the power absorber is 1 / m, then T = mT r . That is, T = mr 0m {A 0 + B 0 M + C 0 MV + D 0 AV 2 + E 0 M (dv / dt) + F 0 Msinθ−x} −I 0 (dv / dt)] (4)

【0013】平坦地、定常走行の場合は、 T=mr0ηm{A0+B0M+C0MV+D0AV2−x} …(5) となる。In the case of flat ground and steady running, T = mr 0 η m {A 0 + B 0 M + C 0 MV + D 0 AV 2 -x} (5)

【0014】また低速度領域では空気抵抗の割合は比較
的小さいので、係数D0等は仮定値を用いることもでき
る。更に、xの値などについてもロ―ラ径やタイヤ剛性
特に空気圧などによって経験値が利用できる。この関係
を用いて、車両質量Mの場合の速度Vに応じて制動トル
クTを関数発生器24により求めることができるように
しておく。
Further, since the ratio of the air resistance is relatively small in the low speed region, it is possible to use an assumed value for the coefficient D 0 and the like. Further, with respect to the value of x and the like, empirical values can be used depending on the roller diameter and tire rigidity, particularly air pressure. Using this relationship, the braking torque T can be obtained by the function generator 24 according to the speed V in the case of the vehicle mass M.

【0015】磁性粉体を用いた電磁ブレ―キでは、粉体
が制動エネルギ―に応じて発熱する。このために冷却が
非常に重要であり、本発明では冷却水を用い、しかもこ
れを吸収動力すなわち発熱量に応じて、制御可能にす
る。すなわち、回転速度の信号nsと励磁電流信号is
積に応じて発熱量が変化することから、これによって冷
却水流量を制御する。
In an electromagnetic brake using magnetic powder, the powder heats up in accordance with braking energy. For this reason, cooling is very important. In the present invention, cooling water is used, and this can be controlled according to the absorption power, that is, the heat generation amount. That is, since the calorific value according to the product of the signal n s of the rotational speed exciting current signal i s varies, thereby controlling the cooling water flow rate.

【0016】または、動力吸収装置の発熱部に近い部分
の温度を検出して、冷却水流量の制御を行う。更に、冷
却水量が最大になった場合は、発熱部に近い部分の温度
が一定限度に達した場合には、励磁電流を制御して、磁
性粉体等が過熱されないように保護的な制御を行う。
Alternatively, the cooling water flow rate is controlled by detecting the temperature of a portion near the heat generating portion of the power absorption device. Furthermore, when the amount of cooling water is maximum, and when the temperature of the part near the heat generating part reaches a certain limit, the exciting current is controlled to perform a protective control so that the magnetic powder etc. is not overheated. To do.

【0017】[0017]

【実施例】以下、本発明の実施例を図3、図4、図5を
参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3, 4 and 5.

【0018】動力吸収装置10は軸受18,18aで支
持された入力軸11に連結された回転子12aが透磁率
の大きい材質で構成され、励磁コイル15によって形成
される磁束16が固定側の磁極14と回転子12aとの
空隙に配置された磁性粉体13を通過してリング状の空
隙を通過する磁気回路を形成する。このとき磁束密度は
励磁電流によって制御され、その磁束密度に応じて磁性
粉体は磁極と回転子の間に凝集し、半固体状態になって
回転に対する抵抗を生じさせる。これによって、入力軸
11と固定されたステ―タ17との間に制動力が生じ、
入力軸の動力が吸収されるが、そのエネルギ―は磁性粉
体等の摩擦熱となるので、これを冷却水19によって排
除する。磁極14近傍に冷却水通路20a,20bを設
けて、励磁コイル、励極、磁性粉体、及び回転子を適当
な温度に冷却するように、温度センサT1,T2を設置す
ると共に、冷却水の制御弁21を配置する。
In the power absorber 10, a rotor 12a connected to an input shaft 11 supported by bearings 18 and 18a is made of a material having a high magnetic permeability, and a magnetic flux 16 formed by an exciting coil 15 is a magnetic pole on a fixed side. A magnetic circuit that passes through the magnetic powder 13 disposed in the gap between the rotor 14 and the rotor 12a and passes through the ring-shaped gap is formed. At this time, the magnetic flux density is controlled by the exciting current, and the magnetic powder agglomerates between the magnetic pole and the rotor in accordance with the magnetic flux density, and becomes a semi-solid state to generate resistance to rotation. As a result, a braking force is generated between the input shaft 11 and the fixed stator 17,
The power of the input shaft is absorbed, but its energy becomes frictional heat of the magnetic powder or the like, and this is removed by the cooling water 19. Pole 14 near the cooling water passage 20a, the provided 20b, the exciting coil,励極, magnetic powder, and to cool the rotor to a suitable temperature, as well as installing a temperature sensor T 1, T 2, cooling A water control valve 21 is placed.

【0019】冷却水流量の制御は磁性粉体近傍の温度T
1、冷却水出口温度T2の他に入力軸の回転数と励磁電流
を検出して、これらの信号を計算回路に取り込んで行
う。
The cooling water flow rate is controlled by the temperature T near the magnetic powder.
1 detects the rotational speed and exciting current of the input shaft in addition to the cooling water outlet temperature T 2, performs capture the signals to computation circuit.

【0020】シャシダイナモメ―タ30は図4,図5の
ように車輪39を乗せて回転する動力ロ―ラ31a,3
1bと32a,32bを有し、動力吸収ロ―ラ31a,
31bはクラッチ34、カプリング35を介して、軸3
3によって連結され、軸受38a,38b,38c,3
8dによって支持され、かつ軸33に装着された歯車3
6aと、これら噛合う歯車36bを経由して動力は入力
軸11から動力吸収装置10に伝達される。一方アイド
ラのロ―ラ32a,32bは、それぞれの軸受38e〜
38hで支持され軸を連結して自由に回転できる。
As shown in FIGS. 4 and 5, the chassis dynamometer 30 is a power roller 31a, 3 which rotates with wheels 39 mounted thereon.
1b and 32a, 32b, power absorption roller 31a,
31b is connected to the shaft 3 via the clutch 34 and the coupling 35.
Bearings 38a, 38b, 38c, 3
Gear 3 supported by 8d and mounted on shaft 33
The power is transmitted from the input shaft 11 to the power absorption device 10 via the gear 6a and the gear 36b meshing with each other. On the other hand, the idler rollers 32a and 32b are provided with respective bearings 38e ...
It is supported by 38h and can rotate freely by connecting the shafts.

【0021】車両の駆動輪である車輪39はロ―ラ31
a,32aと31b,32bとの間でそれぞれのロ―ラ
に接して、動力吸収ロ―ラ31a,31bに駆動力を伝
えるが、その制動力は動力吸収装置10の励磁電流iに
よって図1のように定まる。
The wheels 39, which are the driving wheels of the vehicle, are the rollers 31.
a, 32a and 31b, 32b are in contact with the respective rollers to transmit the driving force to the power absorbing rollers 31a, 31b, the braking force of which is generated by the exciting current i of the power absorbing device 10 shown in FIG. It is decided like.

【0022】励磁電流iは通常は図2の制御装置におけ
る関数発生器25によって決定される。この関数発生器
25では制動トルクTを式(1)によって決定するが、
Tは式(4)に従って、関数発生器24によって定ま
り、関数発生器25に入力される。関数発生器24で
は、m,r0,I0はシャシダイナモメ―タによって定ま
る定数であり、ηmも経験的な一定値を入力しておく。
またA0,B0,C0,D0,E0,F0は経験値による定数
または単位系によってはE0,F0を1として入力でき
る。xがタイヤ空気圧による経験値、D0は車両形状に
より変化する係数でもある。Mは車両質量で、Aは車両
の前面投影面積として車両ごとに入力する。道路の勾配
θは、必要に応じて入力する。その結果、関数発生器2
4において、車速信号がロ―ラ軸33の回転数計37か
ら入力されると、式(4)に従った必要制御トルクTが
計算される。このTに応じて関数発生器25によって励
磁電流iが定まり、磁性粉体を用いた電磁ブレ―キ10
の吸収制動トルクが発生する。
The excitation current i is usually determined by the function generator 25 in the controller of FIG. In the function generator 25, the braking torque T is determined by the equation (1),
T is determined by the function generator 24 according to the equation (4), and is input to the function generator 25. In the function generator 24, m, r 0 and I 0 are constants determined by the chassis dynamometer, and η m is an empirical constant value.
Further, A 0 , B 0 , C 0 , D 0 , E 0 , and F 0 can be input as constants based on empirical values or E 0 and F 0 as 1 depending on the unit system. x is an empirical value due to tire pressure, and D 0 is also a coefficient that changes depending on the vehicle shape. M is the mass of the vehicle, and A is the front projected area of the vehicle, which is input for each vehicle. The slope θ of the road is input as necessary. As a result, the function generator 2
4, when the vehicle speed signal is input from the revolution counter 37 of the roller shaft 33, the required control torque T according to the equation (4) is calculated. The exciting current i is determined by the function generator 25 according to this T, and the electromagnetic brake 10 using magnetic powder is used.
The absorption braking torque of is generated.

【0023】この制動トルクによって車両の車輪39
は、路上を実際に走行する場合と同等な制動力を受け
る。そして例えばエンジンや排出ガスは路上走行と同じ
条件となって試験や評価をすることができる。
The braking torque causes the wheels 39 of the vehicle.
Receives a braking force equivalent to that when actually traveling on the road. Then, for example, the engine and the exhaust gas can be tested and evaluated under the same conditions as on the road.

【0024】このとき、電磁ブレ―キでは吸収動力すな
わち発熱量に応じた適切な冷却水量で冷却が行なわれる
ように、流量制御信号回路26によって励磁電流is
回転速度信号nsとの積を指標として、流量制御の制御
弁21の開弁量を連続的まはた段階的に変化させる。さ
らにこのとき、電磁ブレ―キの磁極近傍の温度T1があ
る限度以上に達したときは、励磁電流を適当な値に減少
させて、吸収動力すなわち発熱量を抑制する。
At this time, in the electromagnetic brake, the product of the exciting current i s and the rotation speed signal n s is controlled by the flow rate control signal circuit 26 so that cooling is performed with an appropriate amount of cooling water according to the absorption power, that is, the amount of heat generation. Is used as an index to change the valve opening amount of the control valve 21 for flow control continuously or in steps. Further, at this time, when the temperature T 1 near the magnetic pole of the electromagnetic brake reaches a certain limit or more, the exciting current is reduced to an appropriate value to suppress the absorption power, that is, the heat generation amount.

【0025】冷却装置としては前述の冷却水を使用する
ものの他に、図6のようなヒ―トパイプを利用したもの
を電磁粉体の動力吸収装置に適用することもできる。入
力軸11と同一な回転をするシリンダ12bは磁気回路
16を短絡させない磁束遮断体49a,49bを隔てて
磁束を通過させるとき、磁性粉体13を固定側ロ―タ4
8との間に集中させて制動力を発生させる。このとき発
生する熱をヒ―トパイプ40によって外部に放出させ
る。ヒ―トパイプ40の受熱部43では熱媒体が気化・
蒸発して大きな吸熱を行い、蒸気41(熱媒体)は急速
に放熱部44aに移動する。
As a cooling device, in addition to the cooling water described above, a device using a heat pipe as shown in FIG. 6 can be applied to a power absorbing device for electromagnetic powder. The cylinder 12b, which rotates in the same manner as the input shaft 11, passes the magnetic powder 13 when the magnetic flux passes through the magnetic flux blockers 49a and 49b which do not short-circuit the magnetic circuit 16 and the fixed side rotor 4
8 and 8 are concentrated to generate a braking force. The heat generated at this time is released to the outside by the heat pipe 40. In the heat receiving portion 43 of the heat pipe 40, the heat medium is vaporized.
It evaporates and absorbs a large amount of heat, and the vapor 41 (heat medium) rapidly moves to the heat radiating portion 44a.

【0026】放熱部44aには冷却ファン44bが設け
られ、モ―タ―45で回転される送風機翼46によって
生じる冷却風により冷却フィン44bは冷却され、放熱
部44aからの熱が放出される。ヒ―トパイプ40の受
熱部43が固定側ロ―タに接して配置されるとき、動力
吸収により発生する熱は極めて効果的に小さな温度差で
外部に放出することができる。このような冷却装置にお
いては冷却用のモ―タ45をコントロ―ラ47で断続ま
たはその他の制御をするが、このとき温度T1を制御入
力信号の一つとする。
A cooling fan 44b is provided in the heat radiating portion 44a, and the cooling fins 44b are cooled by the cooling air generated by the blower blades 46 rotated by the motor 45, and the heat from the heat radiating portion 44a is released. When the heat receiving portion 43 of the heat pipe 40 is arranged in contact with the fixed rotor, the heat generated by the power absorption can be effectively released to the outside with a small temperature difference. In such a cooling device, the cooling motor 45 is intermittently controlled or otherwise controlled by the controller 47. At this time, the temperature T 1 is used as one of the control input signals.

【0027】[0027]

【発明の効果】このようにして本装置では、小型で制御
性のよい吸収装置を、シャシダイナモメ―タのロ―タ間
に配置でき、自動車の走行試験を容易に小さい空間で実
施できる。
As described above, in the present apparatus, the compact and highly controllable absorber can be arranged between the rotors of the chassis dynamometer, and the running test of the automobile can be easily carried out in a small space.

【図面の簡単な説明】[Brief description of drawings]

【図1】電磁粉体利用ブレ―キの制御トルク特性を示す
グラフである。
FIG. 1 is a graph showing a control torque characteristic of a brake using electromagnetic powder.

【図2】制御装置の構成説明図である。FIG. 2 is an explanatory diagram of a configuration of a control device.

【図3】動力吸収装置の縦断面説明図である。FIG. 3 is a vertical cross-sectional explanatory view of a power absorption device.

【図4】シャシダイナモメ―タの正面説明図である。FIG. 4 is a front explanatory view of the chassis dynamometer.

【図5】シャシダイナモメ―タの側面説明図である。FIG. 5 is a side view of the chassis dynamometer.

【図6】他の動力吸収装置の縦断面説明図である。FIG. 6 is a vertical cross-sectional explanatory view of another power absorbing device.

【符号の説明】[Explanation of symbols]

10 動力吸収装置 11 入力軸 12a 回転子 12b シリンダ 13 磁性粉体 14 磁極 15 磁性コイル 16 磁束 17 ステ―タ 18a 軸受 18b 軸受 19 冷却水 20a 通路 20b 通路 21 制御弁 24 関数発生器 25 関数発生器 26 流量制御信号回路 30 シャシダイナモメ―タ 31a ロ―ラ 31b ロ―ラ 32a ロ―ラ 32b ロ―ラ 33 ロ―ラ軸 34 クラッチ 35 カプリング 36a 歯車 36b 歯車 37 回転数計 38a軸受 38b 軸受 38c 軸受 39 車輪 40 ヒ―トパイプ 41 蒸気 43 受熱部 44a 放熱部 44b 冷却フィン 45 モ―タ 46 送風機翼 47 コントロ―ラ 48 固定側ロ―タ 49 磁束遮断体 T1,T2 温度センサ―10 Power Absorbing Device 11 Input Shaft 12a Rotor 12b Cylinder 13 Magnetic Powder 14 Magnetic Pole 15 Magnetic Coil 16 Magnetic Flux 17 Stater 18a Bearing 18b Bearing 19 Cooling Water 20a Passage 20b Passage 21 Control Valve 24 Function Generator 25 Function Generator 26 Flow rate control signal circuit 30 Chassis dynamometer 31a Roller 31b Roller 32a Roller 32b Roller 33 Roller shaft 34 Clutch 35 Coupling 36a Gear 36b Gear 37 Rotation meter 38a Bearing 38b Bearing 38c Bearing 39 Wheel 40 Heat pipe 41 Steam 43 Heat receiving part 44a Radiating part 44b Cooling fin 45 Motor 46 Blower blade 47 Controller 48 Fixed side rotor 49 Magnetic flux blocker T 1 , T 2 Temperature sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁性粉体を用いて磁気回路の一部を構成
し、電磁的にその磁束を制御することによって回転軸の
制動力を調節する動力吸収装置を備えたシャシダイナモ
メ―タにおいて、磁気回路の温度制御とエネルギ―吸収
に冷却装置を利用するとき、冷却装置の冷却能力を回転
速度と励磁電流など吸収動力に応じて連続的又は段階的
に制御することを特徴とするシャシダイナモメ―タの動
力吸収装置。
1. A chassis dynamometer provided with a power absorbing device that comprises a part of a magnetic circuit using magnetic powder and electromagnetically controls the magnetic flux to adjust the braking force of a rotating shaft. When using a cooling device for temperature control and energy absorption of a magnetic circuit, the chassis dynamometer is characterized in that the cooling capacity of the cooling device is controlled continuously or stepwise according to the absorption power such as rotation speed and exciting current. Power absorption device
【請求項2】 前記冷却装置として冷却水を使用する冷
却装置を利用するとき、冷却水流量を回転速度と励磁電
流など吸収動力に応じて連続的又は段階的に制御するこ
とを特徴とする請求項1記載のシャシダイナモメ―タの
動力吸収装置。
2. When a cooling device that uses cooling water is used as the cooling device, the flow rate of the cooling water is controlled continuously or stepwise according to the absorption power such as the rotation speed and the exciting current. Item 1. A power absorber for a chassis dynamometer according to Item 1.
【請求項3】 冷却水流量の制御を動力吸収装置の一部
分の温度を検出して行うことを特徴とした請求項2記載
のシャシダイナモメ―タの動力吸収装置。
3. A power absorber for a chassis dynamometer according to claim 2, wherein the flow rate of the cooling water is controlled by detecting the temperature of a part of the power absorber.
【請求項4】 冷却水流量の最大な条件において、電磁
的な制御により、発生エネルギ―の制御を行うことを特
徴とした請求項2又は3記載のシャシダイナモメ―タの
動力吸収装置。
4. The power absorption device for a chassis dynamometer according to claim 2, wherein the generated energy is controlled by electromagnetic control under the maximum cooling water flow rate condition.
【請求項5】 励磁電流iと発生する制動トルクTとの
関係をT=a0+b0i+c02+d03 で近似して、
関数発生器を設定して、要求される制御トルクTに対し
て自動的に励磁電流iが供給される電磁制御回路を有す
ることを特徴とする請求項2,3又は4記載のシャシダ
イナモメ―タの動力吸収装置。
5. The relationship between the exciting current i and the generated braking torque T is approximated by T = a 0 + b 0 i + c 0 i 2 + d 0 i 3 ,
The chassis dynamometer according to claim 2, 3 or 4, further comprising an electromagnetic control circuit for setting a function generator and automatically supplying an exciting current i to a required control torque T. Power absorber.
【請求項6】 車輪の駆動力Fと車両質量Mと速度Vと
の関係を路面の勾配角θにおいて、 F=A0+B0M+C0MV+D0AV2+E0M(dv/dt)+F0Msinθ とし、車輪より受けるロ―ラの回転力を減速比1/mで
連結した動力吸収装置で制御するとき、ロ―ラ半径
0、伝達効率η、シャシダイナモメ―タの等価慣性質
量I0 、ロ―ラ面などにおける過剰なタイヤ変形などの
損失xを考慮して、制動トルクTを T=m・r0[ηm{A0+B0M+C0MV+D0AV2 +E0M(dv/dt)+F0Msinθ−x}−I0(dv/dt)] なる関数発生器を利用し、車両質量Mその他必要係数を
入れて車速Vと制動トルクTとの関係を設定できる請求
項2,3,4,又は5記載のシャシダイナモメ―タの動
力吸収装置。
6. The relationship between the driving force F of the wheels, the vehicle mass M, and the speed V is expressed as follows: F = A 0 + B 0 M + C 0 MV + D 0 AV 2 + E 0 M (dv / dt) + F 0 When Msin θ is set and the rotational force of the roller received from the wheel is controlled by a power absorber connected at a reduction ratio 1 / m, the roller radius r 0 , transmission efficiency η, and equivalent inertia mass I 0 of the chassis dynamometer , And the loss x such as excessive tire deformation on the roller surface is taken into consideration, the braking torque T is calculated by T = m · r 0m {A 0 + B 0 M + C 0 MV + D 0 AV 2 + E 0 M (dv / dt) + F 0 Msin θ−x} −I 0 (dv / dt)], and the relationship between the vehicle speed V and the braking torque T can be set by using the vehicle mass M and other necessary factors. Power absorption device for chassis dynamometer according to 3, 4, or 5.
JP3349999A 1991-12-10 1991-12-10 Power absorption device of chassis dynamometer using magnetic particle Pending JPH05164658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3349999A JPH05164658A (en) 1991-12-10 1991-12-10 Power absorption device of chassis dynamometer using magnetic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3349999A JPH05164658A (en) 1991-12-10 1991-12-10 Power absorption device of chassis dynamometer using magnetic particle

Publications (1)

Publication Number Publication Date
JPH05164658A true JPH05164658A (en) 1993-06-29

Family

ID=18407549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3349999A Pending JPH05164658A (en) 1991-12-10 1991-12-10 Power absorption device of chassis dynamometer using magnetic particle

Country Status (1)

Country Link
JP (1) JPH05164658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376715B1 (en) * 2000-12-19 2003-03-17 현대자동차주식회사 Chassis dynamo test system
CN108827655A (en) * 2018-07-06 2018-11-16 湖北环电磁装备工程技术有限公司 The outer rotor chassis dynamometer that permanent magnet synchronous motor directly drives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376715B1 (en) * 2000-12-19 2003-03-17 현대자동차주식회사 Chassis dynamo test system
CN108827655A (en) * 2018-07-06 2018-11-16 湖北环电磁装备工程技术有限公司 The outer rotor chassis dynamometer that permanent magnet synchronous motor directly drives
CN108827655B (en) * 2018-07-06 2024-02-13 湖北环一电磁装备工程技术有限公司 Outer rotor chassis dynamometer directly driven by permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
US6247357B1 (en) Dynamometer for simulating the inertial and road load forces encountered by motor vehicles and method
US5431241A (en) Hybrid traction control system
JP7045946B2 (en) Chassis dynamometer device, its control method, and program for chassis dynamometer device
US5337600A (en) Flat belt type drive chassis dynamometer with compact construction
CN105705815B (en) Method for the clutch apparatus that explosive motor is connected in the power train of motor vehicle and for inhibiting the rotational vibrations in the power train of motor vehicle
WO2012042278A2 (en) Electromechanical device
CN102196934A (en) Wheel having electric drive means
CN106828445A (en) A kind of car emergency complemental brake system and method
WO2003064228A1 (en) Method and device for controlling or regulating auxiliary brake torque in a motor vehicle
JPH05164658A (en) Power absorption device of chassis dynamometer using magnetic particle
US5052988A (en) Differential control system
JP3816938B1 (en) In-wheel motor with a drive unit enclosed in a high-pressure pressurized chamber
US6049150A (en) Flywheel with electrically controlled input and output
CN110155010B (en) Hydraulic retarder axle of magnetorheological fluid medium
JP5693168B2 (en) Retarder control apparatus, vehicle, retarder control method, and program
JP3687385B2 (en) Power generation device and tire internal pressure detection device using the same
JPH0676014B2 (en) Rotational fluctuation reducing device for engine power transmission system
US5136878A (en) Air cooled dynamometer vehicle emissons test stand
JP2736634B2 (en) Chassis dynamometer device
CN206589862U (en) A kind of car emergency complemental brake system
CN208623476U (en) A kind of low noise motor for treadmill
CN205262654U (en) Air -cooled current vortex vehicle chassis brake
CN2436373Y (en) Motor vehicle comprehensive property test platform
CN113984405B (en) Retarder braking performance test method
KR100337298B1 (en) Tire cooling system for chassis dynamo meter