JPH05163550A - Sulfide-containing free-cutting steel excellent in machinability - Google Patents

Sulfide-containing free-cutting steel excellent in machinability

Info

Publication number
JPH05163550A
JPH05163550A JP35076191A JP35076191A JPH05163550A JP H05163550 A JPH05163550 A JP H05163550A JP 35076191 A JP35076191 A JP 35076191A JP 35076191 A JP35076191 A JP 35076191A JP H05163550 A JPH05163550 A JP H05163550A
Authority
JP
Japan
Prior art keywords
sulfide
powder
less
machinability
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35076191A
Other languages
Japanese (ja)
Inventor
Akira Katayama
昌 片山
Masayuki Hashimura
雅之 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35076191A priority Critical patent/JPH05163550A/en
Publication of JPH05163550A publication Critical patent/JPH05163550A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a continuously cast sulfide-contg. free-cutting steel wherein large Ca or Mg sulfide inclusions are uniformly dispersed and excellent in machinability. CONSTITUTION:The powder contg., by weight, 0.06-0.20% C, <=0.01% Si, 0.05-2.0% Mn, <=0.02-0.10% P, one of >=2 kinds among Ni, Mo, Cu, Cr and Pb as the elements for improving strength, etc., and the balance Fe with inevitable impurities and wherein an iron powder having 200-400mum average particle diameter and the powder of Ca or Mg sulfide having 10-30mum average particle diameter are mixed in >=3 volume ratio is kneaded. The pretreated powder is added to molten steel, and a sulfide-contg. free-cutting steel contg. 0.01-0.04% of the sulfide, having 10-30mum average particle diameter and excellent in machinability is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被削性と機械的性質に優
れた硫化物含有快削鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sulfide-containing free-cutting steel excellent in machinability and mechanical properties.

【0002】[0002]

【従来の技術】従来、主として炭素鋼に低溶融点金属で
あるPb,Bi及びS,Se,Te等の元素を添加して
鋼材の被削性を改善することについて既に良く知られて
いる。しかし、Pbは鋼の被削性を著しく向上させるが
溶融点が低いために高温における強度を低下させる欠点
がある。SもPbと同様に鋼の被削性改善効果は大きい
ものの鋼材の圧延時に塑性変形して数十μm長さに延伸
するために靭性を低下させる欠点がある。また、硫化物
系介在物質として、マンガン硫化物、カルシュウム硫化
物、マグネシュウム硫化物が知られている。これらの硫
化物系介在物は切削2次剪断域における垂直方向の負荷
によって、塑性変形し、摩擦力を低減させるために、被
削性を向上させる。しかし、特にマンガン硫化物に比較
してカルシュウム硫化物、マグネシュウム硫化物にあっ
ては、連続鋳造により製造されるためには、溶鋼よりも
比重の小さいカルシュウム硫化物、マグネシュウム硫化
物を鋼中に均一に分散させることが非常に困難である。
従って、連続鋳造法による被削性の優れたカルシュウム
硫化物やマグネシュウム硫化物含有快削鋼の開発が要求
されているが未だ寸法の大きく、しかも均一な硫化物介
在物を含有させた硫黄含有快削鋼が充分得られていない
のが実状である。
2. Description of the Related Art It has been well known that carbon steel is mainly added with elements such as Pb, Bi and S, Se, Te, which are low melting point metals, to improve machinability of steel materials. However, although Pb remarkably improves the machinability of steel, it has the drawback of lowering the strength at high temperatures due to its low melting point. Similar to Pb, S also has a great effect on improving the machinability of steel, but it has a drawback that it plastically deforms during the rolling of the steel material and stretches to a length of several tens of μm, which lowers the toughness. In addition, manganese sulfide, calcium sulfide, and magnesium sulfide are known as sulfide-based intervening substances. These sulfide-based inclusions are plastically deformed by a vertical load in the secondary cutting shearing region and reduce the frictional force, thus improving machinability. However, compared to manganese sulfide, in particular, calcium sulfide and magnesium sulfide are produced by continuous casting, so that calcium sulfide and magnesium sulfide, which have a smaller specific gravity than molten steel, are uniformly distributed in the steel. Very difficult to disperse in.
Therefore, there is a demand for the development of free-cutting steel containing calcium sulfide and magnesium sulfide, which has excellent machinability by the continuous casting method. The reality is that sufficient steel has not been obtained.

【0003】[0003]

【発明が解決しようとする課題】上述したように、連続
鋳造の冷却過程及び凝固過程において、析出による金属
硫化物介在物サイズの小さい快削鋼では充分な快削性が
得られないこと、並びに金属硫化物を直接添加するので
は、溶鋼への添加歩留が極めて悪く、かつ、溶鋼への均
一分散が不可能に近く工業的に問題がある。
As described above, in the cooling process and solidification process of continuous casting, free-cutting steel having a small size of metal sulfide inclusions due to precipitation cannot obtain sufficient free-cutting property, and If the metal sulfide is directly added, the yield of addition to the molten steel is extremely poor, and uniform dispersion in the molten steel is almost impossible, which is an industrial problem.

【0004】[0004]

【課題を解決するための手段】本発明はかかる実状に鑑
み、寸法の大きいCa又はMg硫化物介在物を均一分散
させた連続鋳造法による被削性の優れた金属硫化物含有
快削鋼を提供せんとするものである。その発明の要旨と
するところは、 (1) 重量%で、 C :0.06〜0.20% Si:0.01%以下 Mn:0.5〜2.0% P :0.02〜0.10% 残部Fe及び不可避的不純物からなり、かつ、平均粒径
200〜400μmの鉄粉と平均粒径10〜30μmの
硫化物粉を、鉄粉とCa又はMg硫化物粉との体積比を
3以上として、混合、混練した予備処理粉末を溶鋼に添
加することにより、鋼材中に硫化物平均粒径10〜30
μmを0.01〜0.040%含有させたことを特徴と
する被削性の優れた硫化物含有快削鋼。 (2) 重量%で、 C :0.06〜0.20% Si:0.01%以下 Mn:0.5〜2.0% P :0.02〜0.10% を基本成分とし、さらに Ni:2.0%以下 Mo:0.5%以下 Cu:0.05〜0.30% Cr:2.0%以下 Pb:0.30%以下 の1種又は2種以上を含み、残部Fe及び不可避的不純
物からなることを特徴とする請求項第1項記載の被削性
の優れた硫化物含有快削鋼にある。
In view of such circumstances, the present invention provides a metal sulfide-containing free-cutting steel excellent in machinability by a continuous casting method in which large-sized Ca or Mg sulfide inclusions are uniformly dispersed. It is intended to be provided. The gist of the invention is as follows: (1)% by weight, C: 0.06 to 0.20% Si: 0.01% or less Mn: 0.5 to 2.0% P: 0.02 to 0 10% The balance is Fe and inevitable impurities, and the iron powder having an average particle size of 200 to 400 μm and the sulfide powder having an average particle size of 10 to 30 μm are mixed in a volume ratio of the iron powder to the Ca or Mg sulfide powder. The average sulfide particle size in the steel material is 10 to 30 by adding the pretreated powder mixed and kneaded to the molten steel as 3 or more.
A sulfide-containing free-cutting steel having excellent machinability, characterized by containing 0.01 to 0.040% of μm. (2) By weight%, C: 0.06 to 0.20% Si: 0.01% or less Mn: 0.5 to 2.0% P: 0.02 to 0.10% as a basic component, and Ni: 2.0% or less Mo: 0.5% or less Cu: 0.05 to 0.30% Cr: 2.0% or less Pb: 0.30% or less Includes one or two or more and balance Fe And unavoidable impurities. The sulfide-containing free-cutting steel excellent in machinability according to claim 1.

【0005】以下本発明について詳細に説明する。本発
明は、Ca又はMg硫化物粉の溶鋼への添加を容易に
し、且つ溶鋼中への均一分散を図るために、鉄粉を利用
して鉄粉の周りにCa又はMg硫化物粉を付着させて全
体の比重を大きくしようとするものである。その方法と
して機械合金化法、いわゆる鉄粉とCa又はMg硫化物
粒子を、ボ−ルミル中で混合し、機械的圧縮、破壊、接
合を繰返しCa又はMg硫化物粒子が鉄粉中に均一に分
散した粉末が生成する。そのために、平均粒径10〜3
0μmのCa又はMg硫化物粉を鉄粉表面に機械的に付
着させる前処理が必要である。Ca又はMg硫化物粉の
平均粒径10〜30μmとした理由は、仕上げ面粗さを
確保するためにはCa又はMg硫化物粉の平均粒径の下
限を10μmとした。また、上限については、寸法が大
きくなりすぎるとCa又はMg硫化物介在物を起点とし
て引き抜き加工時に割れが発生しやすくなることから3
0μm以下とした。
The present invention will be described in detail below. In order to facilitate the addition of Ca or Mg sulfide powder to molten steel and to achieve uniform dispersion in molten steel, the present invention uses iron powder to attach Ca or Mg sulfide powder around iron powder. It is intended to increase the overall specific gravity. As the method, a mechanical alloying method, so-called iron powder and Ca or Mg sulfide particles are mixed in a ball mill, and mechanical compression, fracture, and joining are repeated, and Ca or Mg sulfide particles are uniformly distributed in the iron powder. A dispersed powder forms. Therefore, the average particle size is 10 to 3
Pretreatment is required to mechanically attach 0 μm Ca or Mg sulfide powder to the iron powder surface. The reason for setting the average particle size of Ca or Mg sulfide powder to 10 to 30 μm is that the lower limit of the average particle size of Ca or Mg sulfide powder is set to 10 μm in order to secure the finished surface roughness. Regarding the upper limit, if the size is too large, cracks tend to occur during the drawing process starting from Ca or Mg sulfide inclusions.
It was set to 0 μm or less.

【0006】これらCa又はMg硫化物粉を溶鋼に直接
添加する理由は、例えばFeSとFeCaを添加してC
aSを析出させる方法では、大型のCaSを分散させる
ことが出来ないためである。また、Ca又はMg硫化物
粉を単独添加しないで、混合粉として添加する理由は、
Ca又はMg硫化物粉は凝集して、体積が増加している
上に比重が溶鋼よりも小さいために浮上して溶鋼中に歩
留らないためである。凝集しているCa又はMg硫化物
粉体を個々のCa又はMg硫化物粉に分離体積を小さく
するために粉と混合させた。鉄粉を選定した理由は、溶
鋼に添加した際、分離浮上しないで溶融するためであ
る。
The reason why these Ca or Mg sulfide powders are directly added to the molten steel is that, for example, FeS and FeCa are added and C is added.
This is because large-scale CaS cannot be dispersed by the method of precipitating aS. Further, the reason for adding Ca or Mg sulfide powder alone as a mixed powder is as follows.
This is because the Ca or Mg sulfide powder aggregates and increases in volume, and because the specific gravity is smaller than that of the molten steel, it floats and does not remain in the molten steel. The agglomerated Ca or Mg sulfide powder was mixed with the individual Ca or Mg sulfide powder to reduce the separation volume. The reason why iron powder is selected is that when it is added to molten steel, it melts without being separated and floated.

【0007】このように平均粒径10〜30μmのCa
又はMg硫化物粉が鉄粉表面に機械的に付着して均一分
散するためには鉄粉の平均粒径の下限は200μm以上
であることが好ましい。上限については、寸法が大きく
なりすぎるとCa又はMg硫化物粉と鉄粉とが不均一混
合となり易いので400μm以下であることが望まし
い。また、鉄粉とCa又はMg硫化物粉との体積比を3
以上とした理由は、鉄粉表面積を大きくしてCa又はM
g硫化物粉が付着しやすいためである。このようにして
予備処理粉末を溶鋼に添加して硫化物平均粒径10〜3
0μmのCa又はMg硫化物を0.010〜0.040
%含有させた理由は、被削性を確保するためにCa又は
Mg硫化物を0.010%以上にしなければならない。
Ca又はMg硫化物の含有量が増加すると靭性が低下す
るのでその上限値を0.040%とした。更に、取鍋内
溶鋼へ混合粉を添加すると溶鋼温度が高くCa又はMg
硫化物粉が溶解してしまうので、混合粉の添加場所はC
a又はMg硫化物粉が溶解しない、しかも鉄粉が十分に
溶解するタンデッシュ内及び/又はモ−ルド内溶鋼が望
ましい。
Thus, Ca having an average particle size of 10 to 30 μm
Alternatively, the lower limit of the average particle diameter of the iron powder is preferably 200 μm or more so that the Mg sulfide powder mechanically adheres to the surface of the iron powder and is uniformly dispersed. The upper limit is preferably 400 μm or less because if the size becomes too large, Ca or Mg sulfide powder and iron powder are likely to be non-uniformly mixed. The volume ratio of iron powder to Ca or Mg sulfide powder is 3
The reason for the above is that by increasing the surface area of iron powder, Ca or M
This is because the sulfide powder tends to adhere. In this way, the pretreatment powder was added to the molten steel to obtain an average sulfide particle size of 10 to 3
0 μm Ca or Mg sulfide 0.010 to 0.040
%, Ca or Mg sulfide must be 0.010% or more in order to secure machinability.
Since the toughness decreases as the content of Ca or Mg sulfide increases, its upper limit was made 0.040%. Furthermore, when the mixed powder is added to the molten steel in the ladle, the molten steel temperature becomes high and Ca or Mg
Since the sulfide powder will dissolve, the place where the mixed powder is added is C
A molten steel in the tundish and / or in the mold in which the a or Mg sulfide powder does not dissolve and the iron powder sufficiently dissolves is desirable.

【0008】[0008]

【作用】次に本発明の目的とする特性を達成するために
は、各々の構成元素量についても以下に述べるように適
正範囲に限定する必要がある。 C :0.06〜0.20% Cはその含有量が0.06%未満では強度が確保するこ
とができず、また、0.20%を越えると被削性が悪く
なるので0.20%以下とする。 Si:0.01%以下 Siは鋼が硬さを増加して被削性が劣化するので0.0
10%以下とする。 Mn:0.5〜2.0% Mnは脱酸のためと共に、鋼の熱間加工性を改善し、更
に焼入性を向上し、鋼の強度と靭性を改善するために添
加される。かかる効果を有効に発現させるためには、
0.5〜2.0%の範囲で添加することが必要である。 P :0.02〜0.10% Pは被削性改善のため0.02%以上必要、熱間加工性
の点から0.10%以下とすることが好ましい。
Next, in order to achieve the desired characteristics of the present invention, it is necessary to limit the amount of each constituent element to an appropriate range as described below. C: 0.06 to 0.20% If the content of C is less than 0.06%, the strength cannot be secured, and if it exceeds 0.20%, the machinability deteriorates, so 0.20. % Or less. Si: 0.01% or less Since Si increases hardness and deteriorates machinability, Si is 0.0
It is 10% or less. Mn: 0.5 to 2.0% Mn is added for deoxidizing, improving hot workability of steel, further improving hardenability, and improving strength and toughness of steel. In order to effectively develop such effects,
It is necessary to add it in the range of 0.5 to 2.0%. P: 0.02 to 0.10% P is required to be 0.02% or more for improving the machinability, and is preferably 0.10% or less from the viewpoint of hot workability.

【0009】次に第2発明である強度改善元素群につい
て構成元素量の適正範囲に規定した理由を述べる。 Ni:2.0%以下 Niは靭性を向上させる元素であるが、2.0%を越え
るとコストが大きくなるので、それ以下とした。 Mo:0.5%以下 Moは焼入性を向上させる元素であるが0.5%を越え
るとコストが大となるので、それ以下とする。 Cu:0.05〜0.30% Cuは0.05%未満では被削性と研削性に効果がな
く、0.30%を越えると結晶粒界にCuが偏析し、連
続鋳造の凝固過程で鋼片表面疵が多発するので0.05
〜0.30%とした。 Cr:2.0%以下 CrはMoと同様に焼入性を向上させる元素であるが
2.0%を越えるとその効果が飽和する。 Pb:0.30%以下 Pbは被削性をより向上させると共に、強度と靭性を付
与するが0.30%を越えるとPbの偏析が大となり、
機械的性質が劣化する。
Next, the reason why the strength improving element group of the second invention is defined in the proper range of the amount of constituent elements will be described. Ni: 2.0% or less Ni is an element that improves the toughness, but if it exceeds 2.0%, the cost increases, so it was made less than that. Mo: 0.5% or less Mo is an element that improves hardenability, but if it exceeds 0.5%, the cost becomes large, so the content is made less than that. Cu: 0.05 to 0.30% If Cu is less than 0.05%, there is no effect on machinability and grindability, and if it exceeds 0.30%, Cu segregates at the grain boundaries, and the solidification process of continuous casting. Since there are many surface flaws on the slab, 0.05
Was set to 0.30%. Cr: 2.0% or less Cr is an element that improves hardenability like Mo, but if it exceeds 2.0%, its effect is saturated. Pb: 0.30% or less Pb further improves machinability and imparts strength and toughness, but if it exceeds 0.30%, segregation of Pb becomes large,
Mechanical properties deteriorate.

【0010】[0010]

【実施例】混合粉は鉄粉とCa硫化物粉又はMg硫化物
粉を炭化タングステンボ−ルと共に容器に入れて、ボ−
ルミルで混合することにより製造した。そのときの鉄粉
とCa硫化物粉又はMg硫化物粉の平均粒径を表1に示
す。平均粒径は各種メッシュのふるいにより分級して、
粒度分布図を作成し、その平均値をもって表示した。こ
のときの鉄粉の表面は出来るだけ凹凸のあるものが望ま
しい。また、硬さは軟らかい方が好ましく、純鉄に近い
成分が適している。容量300kgの高周波溶解炉で低
炭素鋼を溶製して、300kg鋳型へ注入し、注入流へ
プレス成型した混合粉を添加した。各チャ−ジ共にCa
又はMg硫化物の添加は5kgである。一方、比較材は
溶解炉に鉄−硫黄合金を添加後、300kg鋳型へ注入
して製造した。いずれの鋳片も熱間鋳造により径50m
mの丸棒とした後、920℃×2hr焼準した。
[Examples] A mixed powder was prepared by placing iron powder and Ca sulfide powder or Mg sulfide powder together with a tungsten carbide ball in a container.
It was prepared by mixing with a Lumil. Table 1 shows the average particle sizes of the iron powder and the Ca sulfide powder or the Mg sulfide powder at that time. The average particle size is classified by sieving various meshes,
A particle size distribution map was created and the average value was displayed. At this time, it is desirable that the surface of the iron powder be as uneven as possible. The hardness is preferably soft, and a component close to pure iron is suitable. Low-carbon steel was melted in a high-frequency melting furnace with a capacity of 300 kg, poured into a 300 kg mold, and press-molded mixed powder was added to the casting flow. Ca for each charge
Or, the addition of Mg sulfide is 5 kg. On the other hand, a comparative material was manufactured by adding an iron-sulfur alloy to a melting furnace and then pouring it into a 300 kg mold. Both cast pieces have a diameter of 50 m by hot casting.
After forming a round bar of m, normalizing was performed at 920 ° C. for 2 hours.

【0011】[0011]

【表1】 表1のCaS:カルシュウム硫化物粉、MgS:マグネ
シュウム硫化物粉、平均粒径:μm単位、体積比:鉄粉
/マグネシュウム硫化物粉。
[Table 1] CaS in Table 1: calcium sulfide powder, MgS: magnesium sulfide powder, average particle size: μm unit, volume ratio: iron powder / magnesium sulfide powder.

【0012】表2に本発明製造法による鋼(1)〜
(5)と比較鋼(6)〜(8)の化学成分、Ca又はM
g硫化物系介在物の寸法及び仕上げ面積の測定結果を示
す。比較鋼(6)〜(7)は混合粉を使用しているが鉄
粉または、Ca又はMg硫化物粉の粒径が本発明の範囲
外であり、(8)は現状の製造方法、すなわち、溶解炉
に鉄−カルシュウム合金を添加することにより製造した
鋼である。Ca又はMg硫化物系介在物の寸法は鍛造方
向断面内において光学顕微鏡により測定し、平均断面を
もって表示した。仕上げ面粗さは、工具材:高速度鋼、
切削方法:フランジ切削、切削速度80m/min、送
り:0.05mm/rev、切削油:使用の条件で切削
した仕上げ面を触針式粗さ計により測定した。表2から
明らかなように、本発明の方法により製造した径、50
mm丸棒の(1)〜(5)に含有されるCa又はMg硫
化物系介在物の寸法は、現状の製造方法による丸棒
(8)のそれと比較して著しく大きく、仕上げ面粗さは
著しく小さく優れていることがわかる。本発明の範囲外
の鉄粉またはCa又はMg硫化物粉を添加して製造した
丸棒(6)〜(7)のCa又はMg硫化物系介在物の寸
法は本発明鋼と同等の場合もあるが、混合粉内のCa又
はMg硫化物系介在物の分布が不均一なために切削仕上
げ面粗さの点において劣っていることがわかる。
Table 2 shows steels (1) to (1) manufactured by the manufacturing method of the present invention.
Chemical composition of (5) and comparative steels (6) to (8), Ca or M
The measurement results of the dimensions and the finished area of the sulfide inclusions are shown. Comparative steels (6) to (7) use mixed powders, but the particle size of iron powder or Ca or Mg sulfide powder is outside the scope of the present invention, and (8) is the current production method, that is, , A steel produced by adding an iron-calcium alloy to a melting furnace. The dimensions of Ca or Mg sulfide inclusions were measured with an optical microscope in the forging direction cross section, and the average cross section was shown. Finished surface roughness, tool material: high speed steel,
Cutting method: Flange cutting, cutting speed 80 m / min, feed: 0.05 mm / rev, cutting oil: the finished surface cut under the conditions of use was measured by a stylus roughness meter. As is apparent from Table 2, the diameter produced by the method of the present invention, 50
The size of the Ca or Mg sulfide inclusions contained in (1) to (5) of the mm round bar is significantly larger than that of the round bar (8) manufactured by the current manufacturing method, and the finished surface roughness is It can be seen that it is extremely small and excellent. The sizes of the Ca or Mg sulfide inclusions of the round bars (6) to (7) manufactured by adding the iron powder or Ca or Mg sulfide powder outside the scope of the present invention are the same as those of the steel of the present invention. However, the distribution of Ca or Mg sulfide-based inclusions in the mixed powder is non-uniform, so that it is found that the finished surface roughness is inferior.

【0013】[0013]

【表2A】 [Table 2A]

【0014】[0014]

【表2B】 [Table 2B]

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば寸法
の大きいCa又はMg硫化物系介在物を分散せしめた仕
上げ面粗さの優れたCa又はMg硫化物含有快削鋼は靭
性、被削性の両特性に優れており、工業上の効果は極め
て顕著なものがある。
As described above, according to the present invention, the free-cutting steel containing Ca or Mg sulfide and having excellent finished surface roughness in which Ca or Mg sulfide inclusions having a large size are dispersed is toughness, It excels in both machinability and industrial effects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.06〜0.20% Si:0.01%以下 Mn:0.5〜2.0% P :0.02〜0.10% 残部Fe及び不可避的不純物からなり、かつ、平均粒径
200〜400μmの鉄粉と平均粒径10〜30μmの
硫化物粉を、鉄粉とCa又はMg硫化物粉との体積比を
3以上として、混合、混練した予備処理粉末を溶鋼に添
加することにより、鋼材中に硫化物平均粒径10〜30
μmを0.01〜0.040%含有させたことを特徴と
する被削性の優れた硫化物含有快削鋼。
1. By weight%, C: 0.06 to 0.20% Si: 0.01% or less Mn: 0.5 to 2.0% P: 0.02 to 0.10% balance Fe and unavoidable And kneading of iron powder having an average particle size of 200 to 400 μm and sulfide powder having an average particle size of 10 to 30 μm with a volume ratio of iron powder to Ca or Mg sulfide powder of 3 or more. The sulfide average particle size of 10 to 30 is added to the steel material by adding the prepared pretreatment powder to the molten steel.
A sulfide-containing free-cutting steel having excellent machinability, characterized by containing 0.01 to 0.040% of μm.
【請求項2】 重量%で、 C :0.06〜0.20% Si:0.01%以下 Mn:0.5〜2.0% P :0.02〜0.10% を基本成分とし、さらに Ni:2.0%以下 Mo:0.5%以下 Cu:0.05〜0.30% Cr:2.0%以下 Pb:0.30%以下 の1種又は2種以上を含み、残部Fe及び不可避的不純
物からなることを特徴とする請求項第1項記載の被削性
の優れた硫化物含有快削鋼。
2. By weight%, C: 0.06 to 0.20% Si: 0.01% or less Mn: 0.5 to 2.0% P: 0.02 to 0.10% as a basic component Further, Ni: 2.0% or less Mo: 0.5% or less Cu: 0.05 to 0.30% Cr: 2.0% or less Pb: 0.30% or less One or more types are included, The sulfide-containing free-cutting steel with excellent machinability according to claim 1, wherein the balance is Fe and unavoidable impurities.
JP35076191A 1991-12-12 1991-12-12 Sulfide-containing free-cutting steel excellent in machinability Withdrawn JPH05163550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35076191A JPH05163550A (en) 1991-12-12 1991-12-12 Sulfide-containing free-cutting steel excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35076191A JPH05163550A (en) 1991-12-12 1991-12-12 Sulfide-containing free-cutting steel excellent in machinability

Publications (1)

Publication Number Publication Date
JPH05163550A true JPH05163550A (en) 1993-06-29

Family

ID=18412691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35076191A Withdrawn JPH05163550A (en) 1991-12-12 1991-12-12 Sulfide-containing free-cutting steel excellent in machinability

Country Status (1)

Country Link
JP (1) JPH05163550A (en)

Similar Documents

Publication Publication Date Title
RU2230797C2 (en) Method for steel graininess reduction, an alloy for steel graininess reduction and a method to produce the alloy for steel graininess reduction
CA2788673C (en) Hard metal materials
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
CN104220192A (en) Centrifugally cast composite roller and method for manufacturing same
WO2018018997A1 (en) High-efficient self-protection flux-cored wire capable of achieving good overlay forming, and manufacturing method therefor
JP2019119924A (en) Spheroidal graphite cast iron
JP2010189706A (en) Spheroidal graphite cast iron tube and method for producing the same
JP2012041571A (en) Flake graphite cast iron for large-sized casting product and method for producing the same
JP2002146473A (en) Steel for machine structural use having excellent treatability of chip and mechanical property
CA1082005A (en) Alloy for rare earth treatment of molten metals
CN104651729B (en) Steel for bucket teeth of construction machinery and preparation method of bucket teeth
WO2018042929A1 (en) Roll outer layer material for rolling, and composite roll for rolling
CN109694936B (en) Deoxidizing alloying agent capable of purifying molten steel and preparation method thereof
CN1995407A (en) Trace carbon Al-Mn-Fe alloy and its preparing process
US3459540A (en) Production of clean fine grain steels
JPH05331572A (en) Copper-iron alloy
JPH05163550A (en) Sulfide-containing free-cutting steel excellent in machinability
JP2018114528A (en) Continuously cast slab of steel and method for producing the same
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP6518314B2 (en) Composite roll for rolling
US3313620A (en) Steel with lead and rare earth metals
JPH05161947A (en) Manufacture of magnesium-containing free-cutting steel by continuous casting
JP3740042B2 (en) Method for controlling the morphology of sulfide inclusions
US4363658A (en) Process for combined production of metal alloys and zirconium corundum
RU2136440C1 (en) Method of centrifugal casting of blanks of cast iron cylindrical bushings

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311