JPH05161947A - Manufacture of magnesium-containing free-cutting steel by continuous casting - Google Patents

Manufacture of magnesium-containing free-cutting steel by continuous casting

Info

Publication number
JPH05161947A
JPH05161947A JP35076091A JP35076091A JPH05161947A JP H05161947 A JPH05161947 A JP H05161947A JP 35076091 A JP35076091 A JP 35076091A JP 35076091 A JP35076091 A JP 35076091A JP H05161947 A JPH05161947 A JP H05161947A
Authority
JP
Japan
Prior art keywords
magnesium
powder
continuous casting
magnesium sulfide
containing free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35076091A
Other languages
Japanese (ja)
Inventor
Akira Katayama
昌 片山
Masayuki Hashimura
雅之 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35076091A priority Critical patent/JPH05161947A/en
Publication of JPH05161947A publication Critical patent/JPH05161947A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a manufacturing method for a magnesium-containing free- cutting steel by a continuous casting uniformly dispersing magnesium sulfide inclusions. CONSTITUTION:Mixed powder beforehand uniformly mixing iron powder of 50-300mum the average grain diameter and the magnesium sulfide powder of 5-30mum the average grain diameter and having >=4vol. ratio of the iron powder and the magnesium sulfide powder, is added into a molten steel in a tundish and/or a mold in the continuous casting. By this method, the magnesium- containing free-cutting steel having excellent machinability is manufactured by the continuous casting method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明、マグネシュウム硫化物系
介在物を均一分散させた連続鋳造によるマグネシュウム
含有快削鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnesium-containing free-cutting steel by continuous casting in which magnesium sulfide inclusions are uniformly dispersed.

【0002】[0002]

【従来の技術】従来、硫化物系介在物質としてマンガン
硫化物、カルシュウム硫化物は良く知られている。これ
らの物質は切削2次剪断域における垂直方向の負荷によ
って塑性変形し、摩擦力を低減させるために被削性を向
上させる。マグネシュウム硫化物もこれらの快削物質と
同様の効果を示すことが推測されるが、マグネシュウム
を鋼に添加する適当な方法がないために利用されていな
いのが実状である。また、マグネシュウムの酸化物生成
自由エネルギ−はカルシュウムのそれより小さいのでカ
ルシュウムよりは酸化されにくい上に、マンガンよりも
硫化物を形成しやすいので、カルシュウムよりも硫化物
として鋼中に残存しやすいと予測される。また、溶鋼よ
りも比重の小さいマグネシュウム硫化物を鋼中に均一に
分散させる方法が開発されれば快削物質として利用でき
ることが期待される。
2. Description of the Related Art Conventionally, manganese sulfide and calcium sulfide are well known as sulfide-based intervening substances. These substances are plastically deformed by the vertical load in the secondary cutting shearing region, and improve the machinability in order to reduce the frictional force. It is presumed that magnesium sulfide has the same effect as these free-cutting substances, but it is the fact that it is not used because there is no suitable method for adding magnesium to steel. In addition, since the oxide free energy of magnesium is smaller than that of calcium, it is less likely to be oxidized than calcium, and more easily forms sulfides than manganese. is expected. Further, if a method for uniformly dispersing magnesium sulfide having a specific gravity smaller than that of molten steel in steel is developed, it is expected that it can be used as a free-cutting substance.

【0003】[0003]

【発明が解決しようとする課題】上述したように、マグ
ネシュウムを鋼に添加する適当な方法がないために利用
されていないのが実状である。しかし、溶鋼よりも比重
の小さいマグネシュウム硫化物を鋼中に均一に分散させ
る方法が開発されれば快削物質として利用できることか
ら種々検討がされたが溶鋼への添加歩留が極めて悪く、
かつ、溶鋼への均一分散が不可能に近く工業的に実用化
されていない。
As described above, it is the actual situation that it is not utilized because there is no suitable method for adding magnesium to steel. However, if a method of uniformly dispersing magnesium sulfide having a smaller specific gravity than molten steel was developed in the steel, it could be used as a free-cutting substance, and various studies have been conducted, but the addition yield to molten steel is extremely poor,
Moreover, it is almost impossible to uniformly disperse it in molten steel, and it has not been industrially put to practical use.

【0004】[0004]

【課題を解決するための手段】本発明者らはかかる実状
に鑑み、種々検討を重ねた結果、被削性の優れた連続鋳
造法によるマグネシュウム含有快削鋼の製造方法を提供
せんとするものである。その発明の要旨とするところ
は、平均粒径50〜300μmの鉄粉と平均粒径5〜3
0μmのマグネシュウム硫化物粉を、鉄粉とマグネシュ
ウム硫化物粉との体積比を4以上として、あらかじめ均
一に混合した混合粉を連続鋳造のタンデシュ内または、
及びモ−ルド内溶鋼に添加することを特徴とする連続鋳
造によるマグネシュウム含有快削鋼の製造方法にある。
SUMMARY OF THE INVENTION The inventors of the present invention have made various investigations in view of the above circumstances, and as a result, intend to provide a method for producing a magnesium-containing free-cutting steel by a continuous casting method having excellent machinability. Is. The gist of the invention is that iron powder having an average particle size of 50 to 300 μm and an average particle size of 5 to 3 are used.
In the tundish of continuous casting, a mixed powder obtained by uniformly preliminarily mixing 0 μm magnesium sulfide powder in a volume ratio of iron powder and magnesium sulfide powder of 4 or more, or
And a method for producing a magnesium-containing free-cutting steel by continuous casting, which is characterized by adding to molten steel in a mold.

【0005】[0005]

【作用】以下本発明について詳細に説明する。本発明に
おいて、被削性を確保するためにマグネシュウム硫化物
粉の平均粒径の下限を5μmとした。また、上限につい
ては30μmを越えると被削性が飽和することから30
μm以下とした。マグネシュウム硫化物粉を単独添加し
ないで混合粉として添加する理由は、マグネシュウム硫
化物粉は凝集して粉体を形成し体積が増加している上に
比重が溶鋼よりも小さいために単独で添加すると浮上し
て溶鋼中に歩留らないためである。凝集しているマグネ
シュウム硫化物粉を個々のマグネシュウム硫化物粉に分
離して体積を小さくするために鉄粉と混合させた。鉄粉
を選択した理由は溶鋼に添加した際、分離浮上しないた
めである。
The present invention will be described in detail below. In the present invention, the lower limit of the average particle size of the magnesium sulfide powder is set to 5 μm in order to secure machinability. If the upper limit is more than 30 μm, the machinability will be saturated, so 30
It was set to not more than μm. The reason for adding magnesium sulfide powder as a mixed powder instead of adding it separately is that magnesium sulfide powder aggregates to form powder and increases in volume, and since it has a smaller specific gravity than molten steel, it is added separately. This is because they do not float and remain in molten steel. The agglomerated magnesium sulfide powder was separated into individual magnesium sulfide powders and mixed with iron powder to reduce the volume. The reason why iron powder is selected is that when it is added to molten steel, it does not float separately.

【0006】平均粒径5〜30μmのマグネシュウム硫
化物粉末が鉄粉表面に機械的に付着して均一分散するた
めには鉄粉の平均粒径の下限は50μm以上であること
が望ましい。上限については寸法が大きくなりすぎると
マグネシュウム硫化物粉と鉄粉とが不均一混合となりや
すいので300μm以下であることが望ましい。鉄粉と
マグネシュウム硫化物粉との体積比を4以上としたの
は、鉄粉表面積を大きくしてマグネシュウム硫化物粉が
付着しやすくするためである。取鍋内溶鋼へ混合粉を添
加すると、酸化物系介在物と複合介在物を生成しやすい
ので混合粉の添加場所はタンデッシュ内及び、又はモ−
ルド内溶鋼に限定した。次に実施例により本発明を具体
的に説明する。
In order for the magnesium sulfide powder having an average particle diameter of 5 to 30 μm to be mechanically attached to the surface of the iron powder and uniformly dispersed, the lower limit of the average particle diameter of the iron powder is preferably 50 μm or more. The upper limit is preferably 300 μm or less, because if the size becomes too large, the magnesium sulfide powder and the iron powder are likely to be non-uniformly mixed. The volume ratio of the iron powder and the magnesium sulfide powder is set to 4 or more in order to increase the surface area of the iron powder and facilitate the attachment of the magnesium sulfide powder. When the mixed powder is added to the molten steel in the ladle, oxide-based inclusions and complex inclusions are easily generated. Therefore, the mixed powder is added in the tundish and / or
Limited to molten steel in rud. Next, the present invention will be specifically described with reference to examples.

【0007】[0007]

【実施例】混合粉は鉄粉とマグネシュウム硫化物粉を炭
化タングステンボ−ルと共に容器に入れて、アジテ−タ
で混合することにより製造した。そのときの鉄粉とマグ
ネシュウム硫化物粉の平均粒径を表1に示す。平均粒径
は各種メッシュのふるいにより分級して、粒度分布図を
作成し、その平均値をもって表示した。このときの鉄粉
の表面は出来るだけ凹凸のあるものが望ましい。また、
硬さは軟らかい方が好ましく、純鉄に近い成分が適して
いる。容量100kgの高周波溶解炉で低炭素鋼を溶製
して、100kg鋳型へ注入し、注入流へプレス成型し
た混合粉を添加した。各チャ−ジ共にマグネシュウム硫
化物の添加は70kgである。一方、比較材は100k
g鋳型にMgワイヤを注入することにより製造した。い
ずれの鋳片も熱間鋳造により径50mmの丸棒とした
後、920℃×2hr焼準した。
EXAMPLE A mixed powder was produced by placing iron powder and magnesium sulfide powder in a container together with a tungsten carbide ball and mixing them with an agitator. Table 1 shows the average particle diameters of the iron powder and the magnesium sulfide powder at that time. The average particle size was classified by sieving various meshes, a particle size distribution chart was prepared, and the average value was displayed. At this time, it is desirable that the surface of the iron powder be as uneven as possible. Also,
The hardness is preferably soft, and a component close to pure iron is suitable. Low-carbon steel was melted in a high-frequency melting furnace with a capacity of 100 kg, poured into a 100 kg mold, and press-molded mixed powder was added to the casting flow. The addition of magnesium sulfide was 70 kg in each charge. On the other hand, the comparison material is 100k
It was manufactured by injecting Mg wire into a g mold. Each of the cast pieces was formed into a round bar having a diameter of 50 mm by hot casting and then normalized at 920 ° C. for 2 hours.

【0008】表2に本発明製造法による鋼A,B,C,
と比較鋼D,E,F,G,Hの化学成分及びフランク摩
擦幅VB測定結果を示す。D,E,F,Gは混合粉を使
用しているが鉄粉またはマグネシュウム硫化物粉の粒径
が本発明の範囲外であり、Hは現状の製造方法、すなわ
ち鋳型にMgワイヤを添加することにより製造した鋼で
ある。切削条件は次の通りである。工具材:超硬合金P
20、切削方法:長手方向旋削、切削速度:130m/
min、送り:0.25mm/rev、切り込み:1.
5mm、切削油:なし、の条件で40min間切削し
て、工具摩耗(VB)を測定した。シャルピ−試験片は
鍛造方向と平行方向に採取した。
Table 2 shows the steels A, B, C according to the manufacturing method of the present invention.
And the chemical compositions of comparative steels D, E, F, G, and H and the flank friction width VB measurement results are shown. D, E, F, and G use mixed powder, but the particle size of iron powder or magnesium sulfide powder is outside the scope of the present invention, and H is the current manufacturing method, that is, adding Mg wire to the mold. It is the steel produced by this. The cutting conditions are as follows. Tool material: cemented carbide P
20, Cutting method: Longitudinal turning, Cutting speed: 130m /
min, feed: 0.25 mm / rev, cut: 1.
Tool wear (VB) was measured by cutting for 40 min under the conditions of 5 mm and no cutting oil. The Charpy test piece was sampled in the direction parallel to the forging direction.

【0009】[0009]

【表1】 表1のMgS:マグネシュウム硫化物粉、平均粒径:μ
m、体積比:鉄粉/マグネシュウム硫化物
[Table 1] MgS in Table 1: Magnesium sulfide powder, average particle size: μ
m, volume ratio: iron powder / magnesium sulfide

【0010】表2から明らかなように、本発明A,B,
C,は工具摩耗が著しく小さい。鉄粉またはマグネシュ
ウム硫化物粉の粒径が本発明の範囲外である鋼、D,
E,F,G,Hは工具摩耗か衝撃値のいずれかが劣って
いることがわかる。
As is clear from Table 2, the inventions A, B,
C, the tool wear is extremely small. Steel having a particle size of iron powder or magnesium sulfide powder outside the scope of the present invention, D,
It can be seen that E, F, G and H are inferior in either tool wear or impact value.

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【発明の効果】以上の実施例からも明らかなごとく本発
明によれば、被削性の優れた連続鋳造法によるマグネシ
ュウム含有快削鋼の製造が可能となり、工業上の効果は
極めて顕著なものがある。
As is apparent from the above examples, according to the present invention, it becomes possible to produce a magnesium-containing free-cutting steel by a continuous casting method having excellent machinability, and the industrial effect is extremely remarkable. There is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径50〜300μmの鉄粉と平均
粒径5〜30μmのマグネシュウム硫化物粉を、鉄粉と
マグネシュウム硫化物粉との体積比を4以上として、あ
らかじめ均一に混合した混合粉を連続鋳造のタンデシュ
内または、及びモ−ルド内溶鋼に添加することを特徴と
する連続鋳造によるマグネシュウム含有快削鋼の製造方
法。
1. An iron powder having an average particle size of 50 to 300 μm and a magnesium sulfide powder having an average particle size of 5 to 30 μm are mixed in advance by uniformly mixing the iron powder and the magnesium sulfide powder in a volume ratio of 4 or more. A method for producing a magnesium-containing free-cutting steel by continuous casting, characterized in that powder is added to molten steel in a continuous casting tandem or in a mold.
JP35076091A 1991-12-12 1991-12-12 Manufacture of magnesium-containing free-cutting steel by continuous casting Withdrawn JPH05161947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35076091A JPH05161947A (en) 1991-12-12 1991-12-12 Manufacture of magnesium-containing free-cutting steel by continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35076091A JPH05161947A (en) 1991-12-12 1991-12-12 Manufacture of magnesium-containing free-cutting steel by continuous casting

Publications (1)

Publication Number Publication Date
JPH05161947A true JPH05161947A (en) 1993-06-29

Family

ID=18412683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35076091A Withdrawn JPH05161947A (en) 1991-12-12 1991-12-12 Manufacture of magnesium-containing free-cutting steel by continuous casting

Country Status (1)

Country Link
JP (1) JPH05161947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086151B2 (en) * 2002-01-24 2006-08-08 Copeland Corporation Powder metal scrolls
US8684711B2 (en) 2007-01-26 2014-04-01 Emerson Climate Technologies, Inc. Powder metal scroll hub joint
US8955220B2 (en) 2009-03-11 2015-02-17 Emerson Climate Technologies, Inc. Powder metal scrolls and sinter-brazing methods for making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086151B2 (en) * 2002-01-24 2006-08-08 Copeland Corporation Powder metal scrolls
US7845918B2 (en) 2002-01-24 2010-12-07 Emerson Climate Technologies, Inc. Powder metal scrolls
US8568117B2 (en) 2002-01-24 2013-10-29 Emerson Climate Technologies, Inc. Powder metal scrolls
US8684711B2 (en) 2007-01-26 2014-04-01 Emerson Climate Technologies, Inc. Powder metal scroll hub joint
US8955220B2 (en) 2009-03-11 2015-02-17 Emerson Climate Technologies, Inc. Powder metal scrolls and sinter-brazing methods for making the same

Similar Documents

Publication Publication Date Title
AU2018398231B2 (en) Cast iron inoculant and method for production of cast iron inoculant
TWI690603B (en) Cast iron inoculant, use thereof and method for production of cast iron inoculant
AU2018398230B2 (en) Cast iron inoculant and method for production of cast iron inoculant
AU2018398233B2 (en) Cast iron inoculant and method for production of cast iron inoculant
AU2018398229B2 (en) Cast iron inoculant and method for production of cast iron inoculant
JPH05161947A (en) Manufacture of magnesium-containing free-cutting steel by continuous casting
JPH04365835A (en) Production of free cutting steel containing boron nitride
JPH05163550A (en) Sulfide-containing free-cutting steel excellent in machinability
JPH0570820A (en) Production of free-machining calcium deoxidized steel
JPH06128612A (en) Production of mill scale reduced iron powder stabilized in cuttability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311