WO2018042929A1 - Roll outer layer material for rolling, and composite roll for rolling - Google Patents

Roll outer layer material for rolling, and composite roll for rolling Download PDF

Info

Publication number
WO2018042929A1
WO2018042929A1 PCT/JP2017/026246 JP2017026246W WO2018042929A1 WO 2018042929 A1 WO2018042929 A1 WO 2018042929A1 JP 2017026246 W JP2017026246 W JP 2017026246W WO 2018042929 A1 WO2018042929 A1 WO 2018042929A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
outer layer
rolling
layer material
carbide
Prior art date
Application number
PCT/JP2017/026246
Other languages
French (fr)
Japanese (ja)
Inventor
市野 健司
鈴木 健史
直道 岩田
哲男 持田
石田 清仁
郁雄 大沼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201780053764.9A priority Critical patent/CN109641251B/en
Priority to EP17846538.1A priority patent/EP3488942A4/en
Priority to KR1020197006147A priority patent/KR102228851B1/en
Priority to BR112019004312-8A priority patent/BR112019004312B1/en
Priority to JP2017558592A priority patent/JP6304466B1/en
Priority to PCT/JP2017/031081 priority patent/WO2018043534A1/en
Priority to TW106129885A priority patent/TWI650430B/en
Publication of WO2018042929A1 publication Critical patent/WO2018042929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to a rolling roll outer layer material suitable for hot rolling or cold rolling and a composite roll for rolling using the same, and particularly relates to improvement of wear resistance.
  • a cold roll work roll is required to have excellent wear resistance and high hardness.
  • the wear resistance is improved by making the roll material highly alloyed.
  • the grindability is deteriorated or the damage caused by a roll accident is increased (decrease in accident resistance). Therefore, it is necessary to use a material that has both grindability and accident resistance.
  • the surface properties of the roll in direct contact with the steel sheet uniform and fine. Specifically, the roll material is highly clean and fine. It is required to make cast iron and cast steel having a fine microstructure.
  • Patent Document 1 describes a hot roll composite roll in which an outer layer is formed around a steel core by a continuous overlaying method.
  • the outer layer material is, by weight, C: 1.0 to 4.0%, Si: 3.0% or less, Mn: 1.5% or less, Cr: 2 to 10%, Mo : 9% or less, W: 20% or less, V: 2 to 15% included, P: 0.08% or less, S: 0.06% or less, B: 0.0500% or less, with the composition composed of the remaining Fe and inevitable impurities It is said that the hardness of the base has a Vickers hardness (Hv) of 550 or more, which is composed of a structure containing 5-30% granular carbide and 6% or more non-particulate carbide.
  • Hv Vickers hardness
  • the outer layer material may further contain Ni: 5.0% or less, Co: 5.0% or less, and Nb: 5.0% or less. Due to this, due to the presence of non-particulate carbides of a predetermined amount or more, even if cracks are generated, it is suppressed from progressing to the deep part of the roll, heat crack resistance is improved, and VC-based hard carbides are included. Therefore, the wear resistance is also good.
  • Such a high-speed roll outer layer material needs to disperse a large amount of hard carbide throughout the base in order to improve wear resistance.
  • hard carbides produced with a high-speed composition generally have a lighter specific gravity than the base, and are likely to cause segregation during casting.
  • the centrifugal casting method which is a typical casting method for roll outer layer material because of its excellent productivity and economy, the phase with light specific gravity tends to accumulate and segregate inside due to centrifugal force. It has been considered difficult to manufacture by a centrifugal casting method.
  • Patent Document 2 discloses, in mass%, C: 1.5- Including 3.5%, Si: 1.5% or less, Mn: 1.2% or less, Ni: 5.5% or less, Cr: 5.5-12.0%, Mo: 2.0-8.0%, V: 3.0-10.0%, Nb: 0.5-7.0%
  • a roll outer layer material containing Nb and V such that the contents of Nb, V, and C satisfy a specific relationship and the ratio of Nb and V is within a specific range is described.
  • Patent Document 3 by mass, C: 1.5 to 3.5%, Si: 1.5% or less, Mn: 1.2% or less, Cr: 5.5 to 12.0%, Mo: 2.0 to 8.0%, V: 3.0 to 10.0 %, Nb: 0.5 to 7.0%, and Nb and V are contained so that the contents of Nb, V, and C satisfy a specific relationship, and the ratio of Nb and V falls within a specific range.
  • a roll outer layer material is described. By adopting such a composition, segregation in the roll outer layer material is suppressed even when the centrifugal casting method is applied, and wear resistance and crack resistance are improved, which greatly contributes to improvement in hot rolling productivity. .
  • Patent Document 4 describes a centrifugal cast composite roll.
  • the centrifugally cast composite roll described in Patent Document 4 is composed of an outer layer and an inner layer of cast iron or cast steel, and the outer layer is, by weight, C: 1.0 to 3.0%, Si: 0.1 to 3.0%, Mn: 0.1 to 2.0% , Cr: 2.0-10.0%, Mo: 0.1-10.0%, V: 1.0-10.0%, W: 0.1-10.0%, and Mo + W: 10.0% or less of the alloy components and the balance are from Fe and inevitable impurities It has the composition which becomes.
  • Patent Document 5 describes a centrifugal cast outer layer material for a roll.
  • the centrifugal cast outer layer material for rolling rolls described in Patent Document 5 contains C: 4.5 to 9%, Si: 0.1 to 3.5%, Mn: 0.1 to 3.5%, and V: 18 to 40% by mass. It has a composition, and preferably has a structure in which MC carbides are dispersed in an area ratio of 20 to 60% in a base having a Vickers hardness of HV550 to 900.
  • MC carbide with a small specific gravity is concentrated on the inner surface side, and positively utilizes centrifugal casting segregation. After centrifugal casting, cutting is performed so as to leave only a layer in which MC carbide is concentrated. For example, it is said that an outer layer of a roll containing many MC carbides can be reliably formed at low cost.
  • Cemented carbide has long been known as a material having extremely excellent wear resistance.
  • tungsten carbide WC is generally molded and sintered together with Co as a binder.
  • Patent Document 6 Patent Document 7, Patent Document 8, Patent Document 9, Patent Document 10, and the like are described.
  • Patent Document 6 describes a tungsten carbide-based cemented carbide for hot rolling rolls and hot rolling guide rolls.
  • the weight ratio of chromium to the sum of cobalt and nickel is 1/1 to 1/99
  • the weight ratio of cobalt to nickel is 9/1 to 1/9
  • tungsten carbide is 88 weights. %
  • a tungsten carbide based alloy in which the total of cobalt, nickel and chromium is 12 to 65% by weight.
  • Patent Document 6 describes an example in which such a cemented carbide is applied to a roll for hot rolling of a normal steel material (wire material).
  • Patent Document 7 describes a hot wire roll made of cemented carbide.
  • the cemented carbide used is replaced with WC having an average particle diameter of 1 ⁇ m to 5 ⁇ m, or a part of WC is replaced by 10% by weight or less with one or more of TiC, TaC, and NbC.
  • the cemented carbide has a polarization potential of 0.33 to 0.90 with respect to the sum of Ni and Co, and a polarization potential of 0.3 V or more with respect to cooling general industrial water.
  • Patent Document 8 discloses that an outer layer made of cemented carbide is joined to an outer periphery of an inner layer made of a steel or iron-based material via an intermediate layer, and the intermediate layer has a mean particle size of 3 ⁇ m or less.
  • a rolling composite roll made of cemented carbide formed using powder is described. Further, the content of WC particles in the intermediate layer is preferably set to 70% or less by weight. Thereby, it is said that the roll for cemented carbide rolling excellent in abrasion resistance and highly reliable in strength can be obtained.
  • Patent Document 9 an outer layer is formed of a cemented carbide having excellent wear resistance, and an intermediate layer made of a cemented carbide containing WC and Ni is provided to provide a highly reliable cemented carbide.
  • An alloy rolling roll is disclosed.
  • Patent Document 1 has a problem that productivity is low and cost is high because an outer layer is formed around a steel core by a continuous overlaying method.
  • the contents of Nb, V and C are limited to a specific range, and MC type carbides are uniformly dispersed to improve wear resistance and crack resistance. It is said.
  • M 7 C 3 type carbides and M 6 C type carbides that contain a large amount of Cr and Mo, so that further improvement in properties can be achieved only from the viewpoint of uniformly dispersing MC type carbides. That's not enough.
  • Mo + W is limited to 10.0% or less in order to suppress crystallization of M 6 C-type carbides that are likely to cause aggregation and segregation. Making it possible.
  • limiting the contents of Mo and W has left a problem for the recent demand for further improvement in wear resistance.
  • the amount of carbide forming elements such as Mo, V, and W is increased because the formed carbide is light, so that the formed carbide is accumulated on the inner surface side, There was a concern that it would agglomerate at the boundary of the film and cause a decrease in the bonding strength at the boundary.
  • Patent Document 6 and Patent Document 7 using cemented carbide are intended for small rolls for wire rod rolling, and this technique can be used as a cold rolling roll or a hot rolling roll. It is difficult to apply as it is to the manufacture of a large roll.
  • HIP processing which is an expensive process compared with centrifugal casting products, is required, there is a problem that manufacturing costs are high even for small products.
  • Patent Document 8 Patent Document 9, and Patent Document 10 that use cemented carbide as an outer layer material for a roll for sheet rolling assume that the outer layer material is formed by a sintered-HIP method. Therefore, the problem that the manufacturing cost is extremely high remains.
  • these techniques use soft Co or Ni as a binder, and there is a problem that dents (recesses) are easily generated during rolling, and the practical application has not progressed.
  • the present invention solves such problems of the prior art, and provides a roll outer layer material excellent in wear resistance, which has significantly improved wear resistance compared to the prior art, and a composite roll for rolling using the roll at low cost. Objective.
  • the present inventors have made it possible to manufacture a rolling roll having extremely high wear resistance similar to that of cemented carbide by a centrifugal casting method that is excellent in productivity and economy.
  • the hard carbides can be concentrated and concentrated on the outer surface side of the roll by utilizing the centrifugal force acting on the molten metal and the crystallization phase during centrifugal casting, the wear resistance of the centrifugal casting roll is reduced. I came to think that the sex could be remarkably improved.
  • the alloy used is an Fe-based alloy
  • the formation of W-type eutectic carbide is promoted, and the appearance of M 6 C type carbide as the primary crystal is inhibited.
  • a W—Co-based alloy that increases the carbon activity as the alloy used the formation of W-type eutectic carbide is suppressed, and M 6 C-type carbide enriched with W in the molten metal is the first.
  • the C content is less than 0.6% by mass, the primary crystal M 6 C type carbide does not appear.
  • the C content exceeds 3% by mass, the liquidus temperature increases. It has been found that, since it becomes too high, melting and casting become difficult, and MC-type carbides and M 2 C-type carbides that are very fragile grow and become coarse, which easily causes roll breakage.
  • the gist of the present invention is as follows.
  • W-Co based alloy roll outer layer material for rolling which has a gradient composition in which the W content decreases in the radial direction from the outer peripheral side of the roll toward the inner peripheral side, and corresponds to the maximum diameter during rolling use.
  • the outer layer material surface at the position is mass%, W: 25 to 70%, Co: 5 to 45%, C: 0.6 to 3.5%, Si: 0.05 to 3%, Mn: 0.05 to 3%, Mo: 1 to
  • a roll outer layer material for rolling having a composition containing 15% and the balance of inevitable impurities.
  • a rolling composite roll comprising an outer layer, an intermediate layer welded and integrated with the outer layer, and an inner layer welded and integrated with the intermediate layer, wherein the outer layer is any one of (1) to (3)
  • a composite roll for rolling which is an outer layer material for a roll for rolling described in 1.
  • a roll for rolling excellent in wear resistance particularly suitable for a hot rolling or cold rolling roll, particularly a roll for centrifugal casting, can be manufactured at low cost and easily. There are remarkable effects in the industry.
  • tissue photograph which shows the scanning electron microscope structure
  • (A) is sleeve No. 13 (test material No. 13), and
  • (b) is sleeve No. 5 (test material No. 5). It is explanatory drawing which shows typically the outline
  • the roll outer layer material for rolling of the present invention is made by centrifugal casting.
  • centrifugal rolling roll outer layer material means a rolling roll outer layer material that has been manufactured using a centrifugal casting method that has been conventionally used as a rolling roll manufacturing method. To do.
  • Roll outer layer material for rolling manufactured using the centrifugal casting method (“centrifugal casting” outer layer material for rolling roll) is conventionally referred to as "things" with rolling rolls manufactured by other manufacturing methods. It can be clearly distinguished, and specifying the outer layer material of the roll made of “centrifugal casting” by structure and characteristics is laborious and impractical.
  • the roll outer layer material for rolling according to the present invention is made of a W—Co base alloy, and has a gradient composition in which the W content decreases in the radial direction from the outer peripheral side of the roll toward the inner peripheral side.
  • the surface of the outer layer material at the corresponding position is in mass%, W: 25-70%, Co: 5-45%, C: 0.6-3.5%, Si: 0.05-3%, Mn: 0.05-3% , Mo: 1 to 15%, with the balance being inevitable impurities.
  • the above-described composition has a radial position corresponding to at least 20% of the volume on the outer surface side with respect to the total volume of the outer layer material. It is preferable to satisfy even a position of at least 9 mm in the radial direction from the position corresponding to
  • the surface of the outer layer material at the position corresponding to the maximum diameter during rolling use is a layer formed on the outer surface of the outer layer material as cast (the molten metal is rapidly cooled by contact with the mold and solidified.
  • the surface of the outer layer material at the position corresponding to the maximum diameter of the product roll diameter that is used for rolling for the first time that is, the position corresponding to the maximum diameter that can be used as a product (roll outer layer material).
  • the “outer layer surface at the position corresponding to the maximum diameter during rolling use” means that the layer formed on the outer surface of the outer layer material as cast is ground and removed, and the maximum product roll diameter that is used for rolling for the first time is used.
  • composition analysis of the outer layer material surface can be performed by instrumental analysis such as fluorescent X-ray analysis or emission spectroscopic analysis. Either a block sample having a diameter of less than 10 mm may be collected and subjected to chemical analysis.
  • C 0.6-3.5%
  • C is an element having an action of combining with W and a carbide-forming element such as Mo, Cr, V, and Nb to form a hard carbide and improve wear resistance.
  • a carbide-forming element such as Mo, Cr, V, and Nb
  • the form of carbide, the amount of crystallization, and the crystallization temperature change.
  • M 6 C type carbides are crystallized as primary crystals, and a structure form segregating to the outer surface side during centrifugal casting is obtained, and wear resistance is improved. If the C content is less than 0.6%, the amount of M 6 C-type carbides crystallized as primary crystals is insufficient and wear resistance is reduced.
  • C is limited to the range of 0.6 to 3.5%.
  • C is 1.0 to 3.0%. More preferably, C is 1.2 to 2.8%.
  • Si 0.05-3% Si is an element that acts as a deoxidizer and also has a matrix strengthening action. In order to obtain such an effect, it is necessary to contain 0.05% or more of Si. On the other hand, even if Si is contained over 3%, the effect is saturated and flake graphite appears and the toughness is lowered. For this reason, Si was limited to the range of 0.05 to 3%. Preferably, Si is 0.1 to 2%. More preferably, Si is 0.2 to 1.8%.
  • Mn 0.05-3% Mn is an element having an action of fixing S as MnS and detoxifying S that adversely affects the material. Further, Mn contributes to improving hardenability by dissolving in the base. In order to obtain such an effect, it is necessary to contain 0.05% or more of Mn. On the other hand, even if Mn is contained in an amount exceeding 3%, the above effect is saturated and the material is deteriorated. Therefore, Mn is limited to the range of 0.05 to 3%. Preferably, Mn is 0.1 to 1%. More preferably, Mn is 0.2 to 0.8%.
  • Mo 1-15%
  • Mo is a carbide-forming element that forms a carbide by combining with C.
  • solid carbide dissolves in a hard M 6 C-type carbide that is a primary crystal carbide enriched in W to strengthen the carbide.
  • Mo has the effect of increasing the fracture resistance of the roll outer layer material.
  • Mo also improves the hardenability during heat treatment and contributes to the increase in hardness of the outer layer material of the roll.
  • Mo is an element heavier than Co and has an effect of not inhibiting or promoting the centrifugation of primary carbides to the outer surface side. In order to obtain these effects, it is necessary to contain 1% or more of Mo.
  • Mo is contained in a large amount exceeding 15%, hard and brittle carbides mainly composed of Mo appear and wear resistance decreases. For this reason, Mo is limited to a range of 1 to 15%. Preferably, Mo is 2 to 10%. More preferably, Mo is 4 to 10%.
  • W 25-70% W is the most important element in the present invention, and has an alloy composition of 25% or more. As a result, a large amount of hard M 6 C-type carbide enriched with W can appear as a primary crystal, and a roll outer layer material for rolling with significantly improved wear resistance can be obtained. When the W content is less than 25%, it is difficult to obtain a rolling roll outer layer material excellent in wear resistance, which is an object of the present invention. On the other hand, if the W content exceeds 70%, the M 6 C type carbide becomes coarse and brittle, and the melting point of the molten metal rises, so that melting, casting, etc. become difficult. For this reason, W is limited to a range of 25 to 70%. Preferably, W is 30 to 65%. More preferably, W is 35 to 55%.
  • Co 5-45% Co, together with W, is an important element in the present invention.
  • the activity of C increases, and a large amount of hard carbides (M 6 C type, M 2 C type, MC type, etc.) enriched with W are used as primary crystals. Appearance is promoted and contributes to the improvement of the wear resistance of the outer layer material of the roll for rolling. In order to obtain such an effect, it is necessary to contain 5% or more of Co.
  • Co is limited to a range of 5 to 45%.
  • Co is 10 to 40%. More preferably, Co is 15 to 35%.
  • the above components are basic components, but in addition to the basic composition, Fe: 5 to 40%, Cr: 0.1 to 10%, V: 0.1 to 6%, Nb: 0.1 to 3% were selected. One or more kinds and / or Ni: 0.05 to 3% may be selected and contained as necessary.
  • Fe 5 to 40%, Cr: 0.1 to 10%, V: 0.1 to 6%, Nb: One or more selected from 0.1 to 3% Fe, Cr, V, and Nb are all It is a carbide forming element, is an element having an action of strengthening the carbide by solid solution in the carbide, and can be selected as necessary to contain one or more kinds.
  • Fe dissolves in the carbide and also in the base, contributes to strengthening of the base, and has an effect of preventing formation of dents (recesses) when used as a rolling roll. In order to obtain such an effect, it is preferable to contain 5% or more of Fe.
  • Fe when Fe is contained in excess of 40%, the amount of hard M 6 C type carbides appearing as primary crystals decreases, fragile M 3 C type carbides increase, and wear resistance decreases.
  • Fe is preferably limited to a range of 5 to 40%. More preferably, Fe is 10 to 35%. More preferably, Fe is 12 to 30%.
  • Cr is a strong carbide-forming element and has the effect of mainly forming eutectic carbides and improving the strength of the formed carbides.
  • the eutectic carbides crystallize in the gaps between the primary crystals of the M 6 C type carbide, and as a result, act to strengthen the gaps of the M 6 C type carbides.
  • Cr also has an action of suppressing the appearance of graphite.
  • W-Co based alloys have a high activity coefficient of C, so that graphite is likely to appear, and when graphite appears, toughness decreases. In order to suppress the appearance of graphite and use it stably as a roll for rolling, in the present invention, it is preferable to contain Cr as necessary.
  • Cr is preferably limited to a range of 0.1 to 10%. More preferably, Cr is 1 to 8%. More preferably, Cr is 1.5 to 7%.
  • V is an element that combines with C to form hard VC (MC-type carbide containing Mo, Nb, Cr, W, etc.).
  • the formed MC-type carbide crystallizes as the primary crystal and W is concentrated. It becomes a crystallization nucleus of the converted M 6 C type carbide, promotes the appearance of M 6 C type carbide, and further has a function of dispersing fine M 6 C type carbide at high density. In order to acquire such an effect, it is preferable to contain V 0.1% or more.
  • V is preferably limited to a range of 0.1 to 6%. More preferably, V is 1 to 5%. More preferably, V is 1.5 to 4%.
  • Nb has a very high bonding strength with C and is a strong carbide forming element, and easily forms a composite carbide with V and W.
  • Such a composite carbide of Nb and V or W becomes a crystallization nucleus of M 6 C type carbide enriched with W, which is crystallized as a primary crystal, promotes the appearance of M 6 C type carbide, and further refines. It has the effect of dispersing high density M 6 C type carbide. In order to acquire such an effect, Nb needs to contain 0.1% or more.
  • Nb is preferably limited to a range of 0.1 to 3%. More preferably, Nb is 0.5 to 2%. More preferably, Nb is 0.6 to 1.8%.
  • Ni 0.05-3%
  • Ni is an element that has the effect of improving hardenability, and can be contained as necessary, for example, to solve the shortage of hardenability in large rolls. In order to obtain such an effect, it is preferable to contain 0.05% or more of Ni. In addition, the effect is not recognized if it is less than 0.05% which is an impurity level. On the other hand, when Ni exceeds 3%, the ⁇ phase is stabilized and the desired hardenability cannot be ensured. Therefore, when Ni is contained, Ni is preferably limited to a range of 0.05 to 3%. Preferably, Ni is 0.1 to 2.5%.
  • the remainder other than the above-mentioned components consists of inevitable impurities.
  • inevitable impurities are P, S, N, and B.
  • P is segregated at the grain boundary and has an adverse effect such as embrittlement of the material. Therefore, it is desirable to reduce P as much as possible, but 0.05% or less is acceptable.
  • S is segregated at the grain boundaries and has the effect of embrittlement of the material, so it is desirable to reduce it as an impurity.
  • part of it is Mn. Since they combine to exist as sulfide inclusions and are rendered harmless, they are acceptable.
  • N is mixed in an amount of about 0.01 to 0.1% as an impurity if it is normally dissolved.
  • N is preferably limited to less than 0.07% because gas defects may be generated at the boundary between the outer layer and the intermediate layer or the inner layer of the composite roll.
  • B is mixed from scrap of melting raw material or casting flux and contained as an unavoidable impurity element.
  • B may be dissolved in carbides or bases to change the properties of the carbides, or may be dissolved in bases to affect the hardenability of the bases, thereby fostering quality variations. For this reason, it is preferable to reduce B as much as possible, but if it is 0.1% or less, the effect of the present invention will not be adversely affected.
  • the roll outer layer material for rolling is manufactured using a centrifugal casting method in which a casting mold is rotated. Thereby, the roll outer layer material for rolling excellent in abrasion resistance can be manufactured at low cost.
  • molten metal having the above-mentioned roll outer layer material composition is poured into a rotating mold so as to have a predetermined thickness, and centrifugally cast to obtain a roll outer layer material for rolling.
  • the inner surface is generally covered with a refractory material mainly composed of zircon or the like.
  • the obtained roll outer layer material for rolling may be a single sleeve, and a shaft material may be fitted therein to form a rolling roll.
  • the obtained roll outer layer material for rolling may be formed as a roll for rolling by providing an intermediate layer welded and integrated on the inner side thereof, fitting a shaft member therein as a sleeve having the intermediate layer.
  • the intermediate layer is preferably formed by pouring molten metal having an intermediate layer composition and centrifugal casting while rotating the mold after the outer layer material of the roll is solidified or completely solidified.
  • the intermediate layer material include graphite steel, 1-2% by mass C high carbon steel, hypoeutectic cast iron, and the like.
  • the shaft material of these rolls for rolling is not specifically limited, It is preferable to set it as the forged steel product (shaft) manufactured separately, a cast steel product (shaft), and a cast iron product (shaft).
  • the above-described rolling roll outer layer material is an outer layer
  • a composite roll comprising an inner layer fused and integrated with the outer layer, or the above-described rolling roll outer layer material is an outer layer, and the outer layer is welded integrally. It is good also as a composite roll which consists of the intermediate
  • the outer layer layer material is solidified in the middle or completely, and then the molten metal having the intermediate layer composition is poured and centrifugally cast while rotating the mold.
  • the intermediate layer material it is preferable to use graphite steel, 1-2% by mass C high carbon steel, hypoeutectic cast iron or the like.
  • the intermediate layer and the outer layer are integrally welded, and the outer layer component is mixed in the intermediate layer in a range of about 10 to 90%. From the viewpoint of suppressing the amount of the outer layer component mixed into the inner layer, it is desirable to reduce the amount of the outer layer component mixed into the intermediate layer as much as possible.
  • the inner layer is formed by static casting of the inner layer material after the outer layer or the intermediate layer is completely solidified, and then the rotation of the mold is stopped and the mold is set up.
  • the component of the outer layer material is often mixed into the inner layer by about 1 to 10%.
  • W, Cr, V, and the like contained in the outer layer material are strong carbide forming elements, and when these elements are mixed into the inner layer, the inner layer is weakened. For this reason, in the present invention, the mixing rate of the outer layer component into the inner layer is preferably suppressed to less than 5%.
  • the above-described outer roll material for rolling and the composite roll for rolling are preferably subjected to heat treatment after casting.
  • Heat treatment is performed at 1000 to 1200 ° C and held for 5 to 40 hours, then cooled in the furnace, air cooled or blast air cooled, and further heated and held at 400 to 600 ° C and then cooled once or more It is preferable to perform the treatment.
  • the hardness of the outer roll material for rolling and the composite roll for rolling of the present invention is preferably adjusted within the range of 79 to 100 HS depending on the application. It is recommended to adjust the heat treatment after casting so that such hardness can be secured stably.
  • the molten metal having the composition shown in Table 1 was melted in a high frequency induction furnace, and a sleeve-shaped roll outer layer material (outer diameter: 250 mm ⁇ , radial thickness: 55 mm) was cast as a test material by a centrifugal casting method.
  • the casting temperature was 1450 to 1550 ° C., and the centrifugal force was 140 to 220 G in multiples of gravity.
  • some test materials (melt No. S)
  • significant carbide segregation occurred on the inner surface so 60 G was used for the purpose of reducing this segregation.
  • the hardness at a position of 5 mm in the thickness direction from the outer surface of the test material was adjusted to approximately 85 to 100 HS.
  • composition of a commercially available outer layer made of centrifugal cast used as a roll for hot finish rolling of steel (high-roll composition: 2.2% C-0.4% Si-0.4% Mn-5.3% Cr-5.2% Mo-5.6 % V-1.1% Nb) melted (molten No.V), and a sleeve-shaped roll outer layer material was cast in the same manner and heat-treated after casting to obtain a test material (hardness 85HS). Test material No. 22).
  • Test piece for composition analysis and the test piece for wear test were collected from the test material subjected to the heat treatment.
  • Test material No. 19 was very fragile and it was very difficult to collect the test material.
  • the specimen for composition analysis was ground 5 mm in the radial direction from the outer surface of the test material after the heat treatment described above, 5 mm in the radial direction from the outer surface after the grinding, and 10 mm ⁇ 10 mm in a plane parallel to the outer surface.
  • a specimen of a size was collected.
  • Each component element was analyzed using the obtained test piece.
  • the analysis method was chemical analysis, C was a combustion method, Si and W were gravimetric methods, Mn, Cr and Mo were atomic absorption methods, Co was a volumetric method, Fe was a volumetric method or atomic absorption method.
  • the obtained results are shown in Table 2.
  • the wear test piece (outer diameter 60 mm ⁇ ⁇ width 10 mm) is arranged so that the center position of the wear test piece is 10 mm in the radial direction from the outer surface of the test material after the heat treatment test piece described above. Collected. As shown in FIG. 2, the wear test was performed by a two-disk sliding rolling method of a test piece (wear test piece) and a mating material (material: S45C, outer diameter 190 mm ⁇ ⁇ width 15 mm).
  • the sliding rate is 14.2 while the test piece rotating at 700 rpm (peripheral speed: 2.1 m / s) is pressed against the test piece rotating at 850 ° C with a load of 980 N while the sample is cooled with water. %.
  • the mating material was updated every 21000 times of rolling of the test piece and rolled until the cumulative number of rotations reached 168000.
  • the wear loss of the wear test piece was investigated. With respect to the obtained wear loss, the wear loss of the conventional example (test material No.
  • the wear resistance ratio (wear loss of the conventional example) / (Abrasion loss of the test material)
  • the wear resistance ratio is 2.1 or more, and the wear resistance is remarkably improved as compared with the conventional example (high-speed roll).
  • the comparative example that is out of the scope of the present invention cracking occurs during the test, and the wear resistance ratio is less than 2, so that the wear resistance is less improved than the conventional example.
  • tissue is observed about this invention example (No.13, No.5), and it shows in FIG.
  • a specimen for tissue observation was collected so that the position 5 mm in the radial direction from the outer surface of the test material after heat treatment was the observation surface, and observed with a scanning electron microscope (magnification: 250 times) to obtain a reflected electron image .
  • the white region is primary crystal carbide (M 6 C type carbide in which W is concentrated).
  • primary crystal carbides are dispersed at high density on the outer surface side of the test material (sleeve-shaped roll outer layer material).
  • test material No. 11 (example of the present invention)
  • a specimen for composition analysis having a size of 5 mm in the radial direction from the position and 10 mm ⁇ 10 mm in a plane parallel to the outer surface was collected.
  • the composition in each position was analyzed by chemical analysis. The obtained results are also shown in Table 2.
  • test surface of the wear test piece was 18 mm in the radial direction from the outer surface of the test material after heat treatment (18 mm position) and 38 to 48 mm in the position (38 mm). Wear test specimens were collected so that A wear test was carried out in the same manner as described above to measure wear loss. The obtained results are also shown in Table 3.
  • W is concentrated mainly on the outer surface of the test material (sleeve-shaped roll outer layer material), a position 18 mm away from the outer surface in the radial direction (18 mm position), and 38 mm away from the outer surface in the radial direction.
  • the ratio of W decreases, the ratio of Co, Fe, etc. increases, and it can be seen that the composition is clearly gradient. Therefore, as can be seen from Table 3, the wear resistance is 18 mm in the radial direction from the outer surface (18 mm position) and 38 mm away (38 mm position) compared to the area from the outer surface to 10 mm in the radial direction. It is falling.

Abstract

Provided are a roll outer layer material and a composite roll for rolling that have remarkably improved abrasion resistance. A roll outer layer material that has a W-Co-based alloy composition: that is a graded composition in which W content decreases in the radial direction from an outer circumferential side toward an inner circumferential side; and that, at an outer layer material surface that is located at a maximum diameter during rolling, contains, by mass%, 25%-70% of W, 5%-45% of Co, 0.6%-3.5% of C, 0.05%-3% of Si, 0.05%-3% of Mn, and 1%-15% of Mo, the remainder being unavoidable impurities.

Description

圧延用ロール外層材および圧延用複合ロールRoll outer layer material for rolling and composite roll for rolling
 本発明は、熱間圧延用あるいは冷間圧延用として好適な、圧延用ロール外層材およびそれを用いた圧延用複合ロールに係り、とくに耐摩耗性の向上に関する。 The present invention relates to a rolling roll outer layer material suitable for hot rolling or cold rolling and a composite roll for rolling using the same, and particularly relates to improvement of wear resistance.
 近年、鋼板の圧延技術の進歩は著しく、それに伴い、圧延用ロールの使用環境は一段と苛酷化している。とくに最近では、高強度鋼板や薄肉製品など、圧延負荷が大きく、かつ優れた表面品質が要求される鋼板の生産量が増大している。 In recent years, the progress of rolling technology for steel sheets has been remarkable, and accordingly, the usage environment of rolling rolls has become more severe. In particular, the production of steel sheets that require a large rolling load and require excellent surface quality, such as high-strength steel sheets and thin-walled products, has been increasing recently.
 そのため、冷間圧延用ワークロールにおいては、優れた耐摩耗性とそれを担う高い硬さが要求される。耐摩耗性の向上は、ロール材料の高合金化によって図られるのが一般的であるが、高合金化により研削性の悪化あるいはロール事故時の被害の増大(耐事故性の低下)を招く場合があり、研削性と耐事故性を兼備する材料とする必要がある。さらに、優れた表面品質の鋼板を製造するためには、鋼板と直接接触するロールの表面性状を均質・微細なものとしておく必要があり、具体的には、ロール材質として、清浄度が高く微細なミクロ組織を有する鋳鉄、鋳鋼とすることが求められる。 Therefore, a cold roll work roll is required to have excellent wear resistance and high hardness. In general, the wear resistance is improved by making the roll material highly alloyed. However, when the alloying is made high, the grindability is deteriorated or the damage caused by a roll accident is increased (decrease in accident resistance). Therefore, it is necessary to use a material that has both grindability and accident resistance. Furthermore, in order to produce a steel sheet with excellent surface quality, it is necessary to make the surface properties of the roll in direct contact with the steel sheet uniform and fine. Specifically, the roll material is highly clean and fine. It is required to make cast iron and cast steel having a fine microstructure.
 また、熱間圧延用ワークロールにおいては、ロールの摩耗や肌荒れの発生が、製品の材質や寸法上の圧延スケジュール制約を余儀なくするとともに、ロール交換頻度の低減も困難となり、このため、ロールの耐用度の低下が、生産性向上やコスト削減のネックのひとつになっている。このため、熱間圧延用ワークロールにおいては、摩耗や肌荒れの発生を抑制して、ロールの耐用度を向上させることが要求されている。 In addition, in the work roll for hot rolling, the occurrence of roll wear and rough surface makes it difficult to limit the rolling schedule due to the material and dimensions of the product, and it is difficult to reduce the frequency of roll replacement. Degradation is one of the bottlenecks in improving productivity and reducing costs. For this reason, in the work roll for hot rolling, it is requested | required that generation | occurrence | production of abrasion and rough skin should be suppressed and the durability of a roll should be improved.
 このようなことから、使用される圧延用ロールの特性向上、とくに耐摩耗性の向上が強く要望されてきた。圧延用ロールにおける耐摩耗性の向上は、鋼板の製造において、鋼板品質の向上および生産性向上に直結した重要な課題となっている。 For these reasons, there has been a strong demand for improving the properties of the rolling rolls used, particularly for improving the wear resistance. Improvement of wear resistance in a roll for rolling is an important issue directly related to improvement of steel plate quality and productivity in the production of steel plates.
 このような圧延用ロールの耐摩耗性向上の要求に対し、例えば、非特許文献1、非特許文献2に記載されるように、外層組成を高速度工具鋼組成に類似した組成とし、硬質炭化物を多量に分散させて耐摩耗性を格段に向上させたハイス系ロールが開発されている。また、例えば、特許文献1には、鋼製の芯材の周りに、連続肉盛法で外層を形成してなる熱間圧延用複合ロールが記載されている。特許文献1に記載された熱間圧延用複合ロールでは、外層材は、重量%で、C:1.0~4.0%、Si:3.0%以下、Mn:1.5%以下、Cr:2~10%、Mo:9%以下、W:20%以下、V:2~15%を含み、P:0.08%以下、S:0.06%以下、B:0.0500%以下とし、残部Fe及び不可避的不純物からなる組成を有し、面積比で粒状炭化物5~30%、非粒状炭化物6%以上を含有する組織からなり、基地の硬さがビッカース硬さ(Hv)550以上を有するとしている。なお、外層材には、さらに、Ni:5.0%以下、Co:5.0%以下、Nb:5.0%以下を含有してもよいとしている。これにより、所定量以上の非粒状炭化物の存在により、クラックが発生してもロール深部にまで進展するのが抑制され、耐ヒートクラック性が向上し、VC系の硬質炭化物が含まれていることから耐摩耗性も良好であるとしている。 In response to the demand for improving the wear resistance of such rolling rolls, for example, as described in Non-Patent Document 1 and Non-Patent Document 2, the outer layer composition is similar to the high-speed tool steel composition, and hard carbides are used. A high speed roll has been developed in which a large amount of is dispersed to significantly improve wear resistance. Further, for example, Patent Document 1 describes a hot roll composite roll in which an outer layer is formed around a steel core by a continuous overlaying method. In the composite roll for hot rolling described in Patent Document 1, the outer layer material is, by weight, C: 1.0 to 4.0%, Si: 3.0% or less, Mn: 1.5% or less, Cr: 2 to 10%, Mo : 9% or less, W: 20% or less, V: 2 to 15% included, P: 0.08% or less, S: 0.06% or less, B: 0.0500% or less, with the composition composed of the remaining Fe and inevitable impurities It is said that the hardness of the base has a Vickers hardness (Hv) of 550 or more, which is composed of a structure containing 5-30% granular carbide and 6% or more non-particulate carbide. The outer layer material may further contain Ni: 5.0% or less, Co: 5.0% or less, and Nb: 5.0% or less. Due to this, due to the presence of non-particulate carbides of a predetermined amount or more, even if cracks are generated, it is suppressed from progressing to the deep part of the roll, heat crack resistance is improved, and VC-based hard carbides are included. Therefore, the wear resistance is also good.
 このようなハイス系ロール外層材は、耐摩耗性を向上させるため多量の硬質炭化物を基地中に分散させることが必要になる。しかし、ハイス系組成で生成する硬質炭化物は、一般に基地より比重が軽く、鋳造中に偏析を生じやすい。特に、生産性、経済性に優れるため代表的なロール外層材の鋳造方法となっている遠心鋳造法では、比重の軽い相は遠心力で内側に集積・偏析しやすいため、ハイス系ロール外層材を遠心鋳造法で製造することは困難とされてきた。 Such a high-speed roll outer layer material needs to disperse a large amount of hard carbide throughout the base in order to improve wear resistance. However, hard carbides produced with a high-speed composition generally have a lighter specific gravity than the base, and are likely to cause segregation during casting. Especially in the centrifugal casting method, which is a typical casting method for roll outer layer material because of its excellent productivity and economy, the phase with light specific gravity tends to accumulate and segregate inside due to centrifugal force. It has been considered difficult to manufacture by a centrifugal casting method.
 しかしながら、遠心鋳造法を適用しても偏析等の生じない、耐摩耗性と耐クラック性に優れた圧延用ロール外層材を提供する技術として、特許文献2に、質量%で、C:1.5~3.5%、Si:1.5%以下、Mn:1.2%以下、Ni:5.5%以下、Cr:5.5~12.0%、Mo:2.0~8.0%、V:3.0~10.0%、Nb:0.5~7.0%を含み、かつ、NbおよびVを、Nb、VおよびCの含有量が特定の関係を満足し、さらにNbとVの比が特定の範囲内となるように含有するロール外層材が記載されている。 However, as a technique for providing a roll outer layer material for rolling with excellent wear resistance and crack resistance that does not cause segregation even when a centrifugal casting method is applied, Patent Document 2 discloses, in mass%, C: 1.5- Including 3.5%, Si: 1.5% or less, Mn: 1.2% or less, Ni: 5.5% or less, Cr: 5.5-12.0%, Mo: 2.0-8.0%, V: 3.0-10.0%, Nb: 0.5-7.0% In addition, a roll outer layer material containing Nb and V such that the contents of Nb, V, and C satisfy a specific relationship and the ratio of Nb and V is within a specific range is described.
 また、特許文献3には、質量%で、C:1.5~3.5%、Si:1.5%以下、Mn:1.2%以下、Cr:5.5~12.0%、Mo:2.0~8.0%、V:3.0~10.0%、Nb:0.5~7.0%を含み、かつ、NbおよびVを、Nb、VおよびCの含有量が特定の関係を満足し、さらにNbとVの比が特定の範囲内となるように含有するロール外層材が記載されている。このような組成とすることにより、遠心鋳造法を適用してもロール外層材における偏析が抑制され、耐摩耗性と耐クラック性が向上し、熱間圧延の生産性向上に大きく貢献するとしている。 Further, in Patent Document 3, by mass, C: 1.5 to 3.5%, Si: 1.5% or less, Mn: 1.2% or less, Cr: 5.5 to 12.0%, Mo: 2.0 to 8.0%, V: 3.0 to 10.0 %, Nb: 0.5 to 7.0%, and Nb and V are contained so that the contents of Nb, V, and C satisfy a specific relationship, and the ratio of Nb and V falls within a specific range. A roll outer layer material is described. By adopting such a composition, segregation in the roll outer layer material is suppressed even when the centrifugal casting method is applied, and wear resistance and crack resistance are improved, which greatly contributes to improvement in hot rolling productivity. .
 また、特許文献4には、遠心鋳造複合ロールが記載されている。特許文献4に記載された遠心鋳造複合ロールは、外層と鋳鉄または鋳鋼の内層からなり、外層が、重量%で、C:1.0~3.0%、Si:0.1~3.0%、Mn:0.1~2.0%、Cr:2.0~10.0%、Mo:0.1~10.0%、V:1.0~10.0%、W:0.1~10.0%を含み、かつMo+W:10.0%以下を満たす合金成分および残部がFeおよび不可避的不純物からなる組成を有するとしている。特許文献4に記載された技術では、凝集や偏析を起こしやすいMC型炭化物の晶出が抑制され、MC型+MC型炭化物のみが析出する外層とすることができ、遠心鋳造法で製造できるとしている。 Patent Document 4 describes a centrifugal cast composite roll. The centrifugally cast composite roll described in Patent Document 4 is composed of an outer layer and an inner layer of cast iron or cast steel, and the outer layer is, by weight, C: 1.0 to 3.0%, Si: 0.1 to 3.0%, Mn: 0.1 to 2.0% , Cr: 2.0-10.0%, Mo: 0.1-10.0%, V: 1.0-10.0%, W: 0.1-10.0%, and Mo + W: 10.0% or less of the alloy components and the balance are from Fe and inevitable impurities It has the composition which becomes. According to the technique described in Patent Document 4, crystallization of M 6 C type carbides that are likely to cause aggregation and segregation is suppressed, and an outer layer in which only MC type + M 7 C 3 type carbides precipitate can be formed. It can be manufactured with.
 また、例えば、特許文献5には、圧延ロール用遠心鋳造外層材が記載されている。特許文献5に記載された圧延ロール用遠心鋳造外層材は、質量%で、C:4.5~9%、Si:0.1~3.5%、Mn:0.1~3.5%、V:18~40%を含有する組成を有し、好ましくはビッカース硬さがHV550~900の基地に、面積率でMC炭化物が面積率で20~60%分散した組織を有するとしている。特許文献5に記載された技術では、比重の小さいMC炭化物が内面側に濃化する、遠心鋳造偏析を積極的に利用し、遠心鋳造後、MC炭化物が濃化した層だけ残すように切削すれば、MC炭化物が多いロール外層を低コストで確実に形成できるとしている。 For example, Patent Document 5 describes a centrifugal cast outer layer material for a roll. The centrifugal cast outer layer material for rolling rolls described in Patent Document 5 contains C: 4.5 to 9%, Si: 0.1 to 3.5%, Mn: 0.1 to 3.5%, and V: 18 to 40% by mass. It has a composition, and preferably has a structure in which MC carbides are dispersed in an area ratio of 20 to 60% in a base having a Vickers hardness of HV550 to 900. In the technique described in Patent Document 5, MC carbide with a small specific gravity is concentrated on the inner surface side, and positively utilizes centrifugal casting segregation. After centrifugal casting, cutting is performed so as to leave only a layer in which MC carbide is concentrated. For example, it is said that an outer layer of a roll containing many MC carbides can be reliably formed at low cost.
 極めて優れた耐摩耗性を有する材料としては、古くから超硬合金が知られている。超硬合金としては、例えば、非特許文献3に記載されているように、タングステンカーバイド(WC)を、バインダーとしてのCoとともに、成形、焼結したものが一般的である。 Cemented carbide has long been known as a material having extremely excellent wear resistance. As a cemented carbide, for example, as described in Non-Patent Document 3, tungsten carbide (WC) is generally molded and sintered together with Co as a binder.
 このような超硬合金を、圧延用ロールに適用した技術としては、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10などに記載がある。 As a technique in which such a cemented carbide is applied to a roll for rolling, Patent Document 6, Patent Document 7, Patent Document 8, Patent Document 9, Patent Document 10, and the like are described.
 特許文献6には、熱間圧延ロールおよび熱間圧延ガイドロール用タングステン炭化物基超硬合金が記載されている。特許文献6に記載された技術は、クロムのコバルトとニッケルとの和に対する重量比が1/1~1/99、コバルトのニッケルに対する重量比が9/1~1/9、かつタングステン炭化物88重量%以下、コバルトとニッケルとクロムとの総和が12~65重量%であるタングステン炭化物基合金である。特許文献6には、このような超硬合金を、普通鋼材(線材)の熱間圧延用ロールに適用した例が記載されている。 Patent Document 6 describes a tungsten carbide-based cemented carbide for hot rolling rolls and hot rolling guide rolls. In the technique described in Patent Document 6, the weight ratio of chromium to the sum of cobalt and nickel is 1/1 to 1/99, the weight ratio of cobalt to nickel is 9/1 to 1/9, and tungsten carbide is 88 weights. %, A tungsten carbide based alloy in which the total of cobalt, nickel and chromium is 12 to 65% by weight. Patent Document 6 describes an example in which such a cemented carbide is applied to a roll for hot rolling of a normal steel material (wire material).
 また、特許文献7には、超硬合金からなる熱間線材用ロールが記載されている。特許文献7に記載された技術では、使用する超硬合金を、1μmから5μmの平均粒径を持つWCまたは、WCの一部をTiC、TaC、NbCの1種以上で10重量%以下置換した硬質炭化物相と、三元合金結合相とからなり、該結合相中のCrがNiおよびCoの和に対して0.30以下であり、かつ、全結合相に対して0.05以上であり、さらにNiが、NiとCoとの和に対して0.33から0.90であり、分極電位が冷却一般工業用水に対して0.3V以上である超硬合金としている。このような超硬合金とすることにより、耐肌荒れ性の優れた熱間線材用ロールとなるとしている。 Also, Patent Document 7 describes a hot wire roll made of cemented carbide. In the technique described in Patent Document 7, the cemented carbide used is replaced with WC having an average particle diameter of 1 μm to 5 μm, or a part of WC is replaced by 10% by weight or less with one or more of TiC, TaC, and NbC. It consists of a hard carbide phase and a ternary alloy binder phase, and Cr in the binder phase is 0.30 or less with respect to the sum of Ni and Co, and 0.05 or more with respect to the total binder phase, and further Ni is The cemented carbide has a polarization potential of 0.33 to 0.90 with respect to the sum of Ni and Co, and a polarization potential of 0.3 V or more with respect to cooling general industrial water. By setting it as such a cemented carbide, it is supposed that it will become the roll for hot wire materials excellent in the skin-resistance roughness.
 また、特許文献8には、鋼系または鉄系材料からなる内層の外周に、超硬合金からなる外層が中間層を介して接合してなり、該中間層が平均粒径3μm以下のWC原料粉末を用いて形成した超硬合金からなる圧延用複合ロールが記載されている。そして、中間層のWC粒子の含有量を重量比率で70%以下とすることが好ましいとしている。これにより、耐摩耗性に優れ、かつ強度的に信頼性の高い超硬合金製圧延用ロールを得ることができるとしている。 Patent Document 8 discloses that an outer layer made of cemented carbide is joined to an outer periphery of an inner layer made of a steel or iron-based material via an intermediate layer, and the intermediate layer has a mean particle size of 3 μm or less. A rolling composite roll made of cemented carbide formed using powder is described. Further, the content of WC particles in the intermediate layer is preferably set to 70% or less by weight. Thereby, it is said that the roll for cemented carbide rolling excellent in abrasion resistance and highly reliable in strength can be obtained.
 また、特許文献9には、外層を耐摩耗性に優れた超硬合金で形成するとともに、WCとNiを含有する超硬合金からなる中間層を具備させ、強度的に信頼性の高い超硬合金製圧延用ロールが開示されている。 In Patent Document 9, an outer layer is formed of a cemented carbide having excellent wear resistance, and an intermediate layer made of a cemented carbide containing WC and Ni is provided to provide a highly reliable cemented carbide. An alloy rolling roll is disclosed.
 さらに、特許文献10には、鋼系材料または鉄系材料からなる内層の外周に、R=σc(1-ν)/Eα(但し、σc:抗折強度、ν:ポアソン比、E:ヤング率、α:熱膨張係数)で表される熱衝撃係数Rが400以上を満足する超硬合金からなる外層が接合してなる板圧延用超硬合金製複合ロールが記載されている。これにより、ロールの耐摩耗性、耐肌荒れ性が改善され、圧延事故時の熱亀裂の発生、進展が抑制されるとしている。 Further, Patent Document 10 discloses that R = σc (1-ν) / Eα (where σc: bending strength, ν: Poisson's ratio, E: Young's modulus on the outer periphery of the inner layer made of steel or iron-based material. , Α: thermal expansion coefficient), a composite roll made of cemented carbide for sheet rolling in which an outer layer made of a cemented carbide satisfying a thermal shock coefficient R of 400 or more is described. As a result, the wear resistance and roughness resistance of the roll are improved, and the occurrence and development of thermal cracks during rolling accidents are suppressed.
特開平04-141553号公報Japanese Patent Laid-Open No. 04-141553 特開平04-365836号公報Japanese Unexamined Patent Publication No. 04-365836 特開平05-1350号公報Japanese Patent Laid-Open No. 05-1350 特開平08-60289号公報Japanese Unexamined Patent Publication No. 08-60289 国際出願WO2006/030795号International application WO2006 / 030795 特公昭57-6502号公報Japanese Patent Publication No.57-6502 特公昭58-39906号公報Japanese Patent Publication No.58-39906 特開2004-243341号公報JP 2004-243341 A 特開2006-175456号公報JP 2006-175456 A 特開2004-268140号公報JP 2004-268140 A
 しかしながら、特許文献1に記載された技術では、鋼製の芯材の周りに、連続肉盛法で外層を形成するため、生産性が低く、コストも高いという問題があった。また、特許文献2、3に記載された技術では、主として、Nb、VおよびCの含有量を特定範囲に限定し、MC型炭化物を均一分散させて、耐摩耗性と耐クラック性を向上させるとしている。しかし、実際には、CrやMoを多く含むMC型炭化物やMC型炭化物も相当量存在するため、更なる特性の向上は、MC型炭化物を均一分散させるという観点のみからでは十分であるとはいえない。また、特許文献4に記載された技術では、凝集や偏析を起こしやすいMC型炭化物の晶出を抑制するため、Mo+W:10.0%以下に限定し、これにより、遠心鋳造法によるロール外層材の製造を可能にしている。しかし、Mo、W含有量を制限することは、最近の更なる耐摩耗性の向上という要望に対しては、問題を残していた。 However, the technique described in Patent Document 1 has a problem that productivity is low and cost is high because an outer layer is formed around a steel core by a continuous overlaying method. In the techniques described in Patent Documents 2 and 3, mainly, the contents of Nb, V and C are limited to a specific range, and MC type carbides are uniformly dispersed to improve wear resistance and crack resistance. It is said. In reality, however, there are considerable amounts of M 7 C 3 type carbides and M 6 C type carbides that contain a large amount of Cr and Mo, so that further improvement in properties can be achieved only from the viewpoint of uniformly dispersing MC type carbides. That's not enough. In the technique described in Patent Document 4, Mo + W is limited to 10.0% or less in order to suppress crystallization of M 6 C-type carbides that are likely to cause aggregation and segregation. Making it possible. However, limiting the contents of Mo and W has left a problem for the recent demand for further improvement in wear resistance.
 なお、遠心鋳造法を用いた圧延用ロールの製造にあたっては、Mo、V、W等の炭化物形成元素の増量は、形成される炭化物が軽いため、形成された炭化物は内面側に集積、内層との境界に凝集して、境界の接合強度の低下を招くという懸念があった。 In the production of rolling rolls using the centrifugal casting method, the amount of carbide forming elements such as Mo, V, and W is increased because the formed carbide is light, so that the formed carbide is accumulated on the inner surface side, There was a concern that it would agglomerate at the boundary of the film and cause a decrease in the bonding strength at the boundary.
 また、特許文献5に記載された技術では、ロールの耐摩耗性は向上するが、MC型炭化物が少なくなった外面側領域を除去する作業を必要とするうえ、歩留が非常に低く、高生産性と低コストという遠心鋳造法の優位性が失われるという問題があった。 Further, in the technique described in Patent Document 5, although the wear resistance of the roll is improved, it requires an operation of removing the outer surface region where the MC type carbide is reduced, and the yield is very low. There was a problem that the superiority of the centrifugal casting method of productivity and low cost was lost.
 また、超硬合金を使用する特許文献6や特許文献7に記載された技術は、線材圧延用の小型ロールを対象としており、この技術を、冷間圧延用ロールや熱間圧延用ロールのような大型ロールの製造にそのまま適用することは困難である。しかも、遠心鋳造製品に比べ高価なプロセスであるHIP処理を必要とするため、小型製品といえども製造コストが高いという問題があった。 The techniques described in Patent Document 6 and Patent Document 7 using cemented carbide are intended for small rolls for wire rod rolling, and this technique can be used as a cold rolling roll or a hot rolling roll. It is difficult to apply as it is to the manufacture of a large roll. In addition, since HIP processing, which is an expensive process compared with centrifugal casting products, is required, there is a problem that manufacturing costs are high even for small products.
 超硬合金を板圧延用ロールの外層材として使用する、特許文献8、特許文献9、および特許文献10に記載された技術は、いずれも外層材の成形は焼結-HIP法を想定しており、製造コストが極めて高いという問題が残されている。また、これらの技術は、結合剤として軟質なCoやNiを使用しており、圧延時にへこみ疵(凹部)が生成しやすいという問題もあり、実用化が進んでいない。 The techniques described in Patent Document 8, Patent Document 9, and Patent Document 10 that use cemented carbide as an outer layer material for a roll for sheet rolling assume that the outer layer material is formed by a sintered-HIP method. Therefore, the problem that the manufacturing cost is extremely high remains. In addition, these techniques use soft Co or Ni as a binder, and there is a problem that dents (recesses) are easily generated during rolling, and the practical application has not progressed.
 本発明は、かかる従来技術の問題を解決し、従来に比べ顕著に耐摩耗性が向上した、耐摩耗性に優れたロール外層材およびそれを利用した圧延用複合ロールを安価に提供することを目的とする。 The present invention solves such problems of the prior art, and provides a roll outer layer material excellent in wear resistance, which has significantly improved wear resistance compared to the prior art, and a composite roll for rolling using the roll at low cost. Objective.
 本発明者らは、上記した課題を達成するため、超硬合金並みの極めて高い耐摩耗性を有する圧延用ロールを、生産性・経済性に優れた遠心鋳造法によって製造可能にする条件について、鋭意検討した。その結果、遠心鋳造時に溶湯、および晶出相に作用する遠心力を利用して、硬質な炭化物をロールの外表面側に密集、濃化させることができれば、遠心鋳造製圧延用ロールの耐摩耗性を顕著に向上させることができることに思い至った。そして更なる検討により、遠心鋳造時に、硬質な炭化物をロールの外表面側に密集、濃化させるためには、遠心力が作用している液相中から、液相よりも比重の大きい炭化物が初晶として晶出し得る条件を見出せば良いことに思い至った。 In order to achieve the above-mentioned problems, the present inventors have made it possible to manufacture a rolling roll having extremely high wear resistance similar to that of cemented carbide by a centrifugal casting method that is excellent in productivity and economy. We studied diligently. As a result, if the hard carbides can be concentrated and concentrated on the outer surface side of the roll by utilizing the centrifugal force acting on the molten metal and the crystallization phase during centrifugal casting, the wear resistance of the centrifugal casting roll is reduced. I came to think that the sex could be remarkably improved. And by further study, in order to concentrate and concentrate hard carbide on the outer surface side of the roll during centrifugal casting, carbide having a specific gravity larger than that of the liquid phase is selected from the liquid phase in which centrifugal force is acting. I came up with the idea of finding the conditions that allow crystallization as primary crystals.
 すなわち、遠心力が作用している液相中に、液相よりも比重の大きい炭化物が晶出すると、炭化物には外周方向への遠心力が作用する。その際、炭化物とその周囲のγ相とが共晶凝固せず、炭化物が初晶として液相から直接晶出できれば、炭化物の周囲はまだ液相なため、炭化物は容易に外周側に移動、集積することができることになる。 That is, when a carbide having a specific gravity larger than that of the liquid phase crystallizes in the liquid phase in which the centrifugal force is acting, the centrifugal force acts on the carbide in the outer circumferential direction. At that time, if the carbide and the surrounding γ phase do not eutectic solidify and the carbide can be crystallized directly from the liquid phase as the primary crystal, the carbide is still in the liquid phase, so the carbide easily moves to the outer peripheral side, It can be accumulated.
 このような条件を満たす炭化物形成元素として、比重が大きいWに着目し、しかもそれを多量に含有させることに思い至り、各種鋳込み実験を繰り返すとともに、状態図計算等を活用して、
(1)比重が大きいWを多量に含有するW-Co基合金に、0.6質量%以上のCを含有させた溶湯とすると、Wが濃化したMC型炭化物が初晶として出現すること、
(2)このようなW-Co基合金溶湯を遠心鋳造すると、初晶として晶出するMC型炭化物が外層材の外表面側に高濃度に偏析する組織形態が得られること、
を見出した。
As a carbide forming element that satisfies such conditions, paying attention to W with a large specific gravity, and also thinking of containing a large amount of it, repeating various casting experiments, utilizing phase diagram calculation etc.,
(1) If a W-Co base alloy containing a large amount of W with a large specific gravity is made to contain 0.6 mass% or more of C, M 6 C type carbides enriched with W will appear as primary crystals. ,
(2) When such a W—Co-based alloy molten metal is centrifugally cast, an M 6 C type carbide crystallized as a primary crystal can be obtained in a microstructure that segregates at a high concentration on the outer surface side of the outer layer material.
I found.
 なお、使用する合金をFe基合金とすると、W系共晶炭化物の形成が促進され、初晶としてMC型炭化物の出現が阻害されることを知見している。また、使用する合金を、炭素の活量を高めるW-Co基合金とすることにより、W系共晶炭化物の形成が抑制され、溶湯中に、Wが濃化したMC型炭化物が初晶として多量に出現すること、また、C量が0.6質量%未満では、初晶MC型炭化物は出現せず、一方、C量が3質量%を超えて高くなると、液相線温度が高くなりすぎて、溶解、鋳造が困難となるうえ、非常に割れやすいMC型炭化物、MC型炭化物が成長し粗大化するため、容易にロール破断を招くこと、をそれぞれ知見している。 It has been found that if the alloy used is an Fe-based alloy, the formation of W-type eutectic carbide is promoted, and the appearance of M 6 C type carbide as the primary crystal is inhibited. In addition, by using a W—Co-based alloy that increases the carbon activity as the alloy used, the formation of W-type eutectic carbide is suppressed, and M 6 C-type carbide enriched with W in the molten metal is the first. When the C content is less than 0.6% by mass, the primary crystal M 6 C type carbide does not appear. On the other hand, when the C content exceeds 3% by mass, the liquidus temperature increases. It has been found that, since it becomes too high, melting and casting become difficult, and MC-type carbides and M 2 C-type carbides that are very fragile grow and become coarse, which easily causes roll breakage.
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)W-Co基合金製圧延用ロール外層材であって、W含有量がロール外周側から内周側に向けて径方向に低下する傾斜組成で、圧延使用時の最大径に相当する位置の外層材表面が、質量%で、W:25~70%、Co:5~45%、C:0.6~3.5%、Si:0.05~3%、Mn:0.05~3%、Mo:1~15%を含み、残部が不可避的不純物からなる組成を有する圧延用ロール外層材。
(2)前記組成に加えてさらに、質量%で、Fe:5~40%、Cr:0.1~10%、V:0.1~6%、Nb:0.1~3%のうちから選ばれた1種又は2種以上を含有する(1)に記載の圧延用ロール外層材。
(3)前記組成に加えてさらに、質量%で、Ni:0.05~3%を含有する(1)または(2)に記載の圧延用ロール外層材。
(4)前記圧延用ロール外層材が、遠心鋳造製である(1)ないし(3)のいずれかに記載の圧延用ロール外層材。
(5)外層と、該外層と溶着一体化した内層とからなる圧延用複合ロールであって、前記外層が、(1)ないし(3)のいずれかに記載の圧延用ロール外層材である圧延用複合ロール。
(6)外層と、該外層と溶着一体化した中間層、該中間層と溶着一体化した内層とからなる圧延用複合ロールであって、前記外層が、(1)ないし(3)のいずれかに記載の圧延用ロール外層材である圧延用複合ロール。
(7)前記外層が、遠心鋳造製である(5)または(6)に記載の圧延用複合ロール。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) W-Co based alloy roll outer layer material for rolling, which has a gradient composition in which the W content decreases in the radial direction from the outer peripheral side of the roll toward the inner peripheral side, and corresponds to the maximum diameter during rolling use. The outer layer material surface at the position is mass%, W: 25 to 70%, Co: 5 to 45%, C: 0.6 to 3.5%, Si: 0.05 to 3%, Mn: 0.05 to 3%, Mo: 1 to A roll outer layer material for rolling having a composition containing 15% and the balance of inevitable impurities.
(2) In addition to the above composition, in addition to mass, one selected from Fe: 5-40%, Cr: 0.1-10%, V: 0.1-6%, Nb: 0.1-3% or Roll outer layer material for rolling as described in (1) containing 2 or more types.
(3) The rolling roll outer layer material according to (1) or (2), further containing Ni: 0.05 to 3% by mass% in addition to the above composition.
(4) The rolling roll outer layer material according to any one of (1) to (3), wherein the rolling roll outer layer material is made by centrifugal casting.
(5) Rolling composite roll comprising an outer layer and an inner layer welded and integrated with the outer layer, wherein the outer layer is the rolling roll outer layer material according to any one of (1) to (3) Composite roll.
(6) A rolling composite roll comprising an outer layer, an intermediate layer welded and integrated with the outer layer, and an inner layer welded and integrated with the intermediate layer, wherein the outer layer is any one of (1) to (3) A composite roll for rolling, which is an outer layer material for a roll for rolling described in 1.
(7) The composite roll for rolling according to (5) or (6), wherein the outer layer is made by centrifugal casting.
 本発明によれば、熱間圧延用あるいは冷間圧延用ロールとして好適な、耐摩耗性に顕著に優れた圧延用ロール、とくに遠心鋳造製圧延用ロールを、安価にしかも、容易に製造でき、産業上格段の効果を奏する。 According to the present invention, a roll for rolling excellent in wear resistance, particularly suitable for a hot rolling or cold rolling roll, particularly a roll for centrifugal casting, can be manufactured at low cost and easily. There are remarkable effects in the industry.
実施例における走査型電子顕微鏡組織を示す組織写真である。(a)はスリーブNo.13(試験材No.13)、(b)はスリーブNo.5(試験材No.5)である。It is a structure | tissue photograph which shows the scanning electron microscope structure | tissue in an Example. (A) is sleeve No. 13 (test material No. 13), and (b) is sleeve No. 5 (test material No. 5). 実施例における摩耗試験の概要を模式的に示す説明図である。It is explanatory drawing which shows typically the outline | summary of the abrasion test in an Example.
 本発明の圧延用ロール外層材は、遠心鋳造製とする。ここでいう「遠心鋳造製圧延用ロール外層材」とは、従来から圧延用ロールの製造方法として用いられてきた遠心鋳造法を用いて製造された状態の圧延用ロール外層材であることを意味する。遠心鋳造法を用いて製造された圧延用ロール外層材(「遠心鋳造製」圧延用ロール外層材)は、従来から、それ以外の製造方法で製造された圧延用ロールとは、「物」として明瞭に区別でき、しかも、その「遠心鋳造製」圧延用ロール外層材を構造や特性で特定することは、多大の労力を必要とし、非実際的である。 The roll outer layer material for rolling of the present invention is made by centrifugal casting. As used herein, “centrifugal rolling roll outer layer material” means a rolling roll outer layer material that has been manufactured using a centrifugal casting method that has been conventionally used as a rolling roll manufacturing method. To do. Roll outer layer material for rolling manufactured using the centrifugal casting method ("centrifugal casting" outer layer material for rolling roll) is conventionally referred to as "things" with rolling rolls manufactured by other manufacturing methods. It can be clearly distinguished, and specifying the outer layer material of the roll made of “centrifugal casting” by structure and characteristics is laborious and impractical.
 本発明の圧延用ロール外層材は、W-Co基合金製で、W含有量がロール外周側から内周側に向けて径方向に低下する傾斜組成を有し、圧延使用時の最大径に相当する位置の外層材表面が、質量%で、W:25~70%、Co:5~45%を含み、さらにC:0.6~3.5%、Si:0.05~3%、Mn:0.05~3%、Mo:1~15%を含み、残部が不可避的不純物からなる組成を有する。なお、上記した組成は、外層材全体積に対し、少なくとも外表面側の20%の体積分に相当する径方向位置、例えば外径250mm、内径140mmのスリーブであれば、圧延使用時の最大径に相当する位置から内周側に向けて径方向に少なくとも9mmの位置、でも満足させることが好ましい。 The roll outer layer material for rolling according to the present invention is made of a W—Co base alloy, and has a gradient composition in which the W content decreases in the radial direction from the outer peripheral side of the roll toward the inner peripheral side. The surface of the outer layer material at the corresponding position is in mass%, W: 25-70%, Co: 5-45%, C: 0.6-3.5%, Si: 0.05-3%, Mn: 0.05-3% , Mo: 1 to 15%, with the balance being inevitable impurities. Note that the above-described composition has a radial position corresponding to at least 20% of the volume on the outer surface side with respect to the total volume of the outer layer material. It is preferable to satisfy even a position of at least 9 mm in the radial direction from the position corresponding to
 なお、ここでいう「圧延使用時の最大径に相当する位置の外層材表面」とは、鋳込みまま外層材の外表面に形成される層(溶湯が金型との接触により急冷されて凝固した部位等)を研削除去し、初めて圧延使用に供される製品ロール径の最大径に相当する位置の外層材表面をいい、すなわち、製品(ロール外層材)として使用できる最大径に相当する位置の外層材表面をいう。また、「圧延使用時の最大径に相当する位置の外層材表面」とは、鋳込みまま外層材の外表面に形成される層を研削除去し、初めて圧延使用に供される製品ロール径の最大径に相当する位置の外層材表面から内周側に向けて、外層材全体積に対し、少なくとも外表面側の20%の体積分を示す範囲のことをいう。 Here, “the surface of the outer layer material at the position corresponding to the maximum diameter during rolling use” is a layer formed on the outer surface of the outer layer material as cast (the molten metal is rapidly cooled by contact with the mold and solidified. The surface of the outer layer material at the position corresponding to the maximum diameter of the product roll diameter that is used for rolling for the first time, that is, the position corresponding to the maximum diameter that can be used as a product (roll outer layer material). The outer layer material surface. The “outer layer surface at the position corresponding to the maximum diameter during rolling use” means that the layer formed on the outer surface of the outer layer material as cast is ground and removed, and the maximum product roll diameter that is used for rolling for the first time is used. A range showing a volume fraction of at least 20% on the outer surface side with respect to the entire outer layer material volume from the outer layer material surface at the position corresponding to the diameter toward the inner peripheral side.
 また、外層材表面の組成分析は、蛍光X線分析や発光分光分析等の機器分析によって行なっても、また、破壊検査にはなるが、当該外層材表面を含む位置から、ロール径方向の厚みが10mm未満のブロック状試料を採取して、該試料を化学分析して行なっても、いずれでも良い。 Further, the composition analysis of the outer layer material surface can be performed by instrumental analysis such as fluorescent X-ray analysis or emission spectroscopic analysis. Either a block sample having a diameter of less than 10 mm may be collected and subjected to chemical analysis.
 まず、本発明圧延用ロール外層材の組成限定理由について説明する。以下、組成に関する質量%は、単に%で記す。 First, the reason for limiting the composition of the roll outer layer material for rolling of the present invention will be described. Hereinafter, the mass% related to the composition is simply expressed as%.
 C:0.6~3.5%
 Cは、W、およびMo、Cr、V、Nbなどの炭化物形成元素と結合し、硬質炭化物を形成し、耐摩耗性を向上させる作用を有する元素である。C量に応じて、炭化物の形態や晶出量および晶出温度が変化する。Cの含有が0.6%以上では、MC型炭化物が初晶として晶出し、遠心鋳造時に外表面側に偏析する組織形態が得られ、耐摩耗性が向上する。なお、Cの含有が0.6%未満では、初晶として晶出するMC型炭化物量が不足し耐摩耗性が低下する。一方、Cが3.5%を超えて多量に含有すると、外層材として製造が困難になるうえ、非常に割れ易いMC炭化物やMC炭化物が生成し、粗大化するため、圧延時にロール破壊を生じやすくなる。このようなことから、Cは0.6~3.5%の範囲に限定した。なお、好ましくはCは1.0~3.0%である。より好ましくはCは1.2~2.8%である。
C: 0.6-3.5%
C is an element having an action of combining with W and a carbide-forming element such as Mo, Cr, V, and Nb to form a hard carbide and improve wear resistance. Depending on the amount of C, the form of carbide, the amount of crystallization, and the crystallization temperature change. When the C content is 0.6% or more, M 6 C type carbides are crystallized as primary crystals, and a structure form segregating to the outer surface side during centrifugal casting is obtained, and wear resistance is improved. If the C content is less than 0.6%, the amount of M 6 C-type carbides crystallized as primary crystals is insufficient and wear resistance is reduced. On the other hand, if C exceeds 3.5%, it becomes difficult to manufacture as an outer layer material, and M 2 C carbide and MC carbide that are very fragile are formed and coarsened, resulting in roll breakage during rolling. It becomes easy. Therefore, C is limited to the range of 0.6 to 3.5%. Preferably, C is 1.0 to 3.0%. More preferably, C is 1.2 to 2.8%.
 Si:0.05~3%
 Siは、脱酸剤として作用するとともに、基地の強化作用をも有する元素である。そのような効果を得るためには、0.05%以上のSiの含有を必要とする。一方、Siは3%を超えて含有しても、効果が飽和するうえ、片状黒鉛が出現して靭性が低下する。このため、Siは0.05~3%の範囲に限定した。なお、好ましくはSiは0.1~2%である。より好ましくはSiは0.2~1.8%である。
Si: 0.05-3%
Si is an element that acts as a deoxidizer and also has a matrix strengthening action. In order to obtain such an effect, it is necessary to contain 0.05% or more of Si. On the other hand, even if Si is contained over 3%, the effect is saturated and flake graphite appears and the toughness is lowered. For this reason, Si was limited to the range of 0.05 to 3%. Preferably, Si is 0.1 to 2%. More preferably, Si is 0.2 to 1.8%.
 Mn:0.05~3%
 Mnは、MnSとしてSを固定し、材質に悪影響を及ぼすSを無害化する作用を有する元素である。また、Mnは、基地に固溶して焼入れ性向上に寄与する。このような効果を得るためには、0.05%以上のMnを含有させる必要がある。一方、Mnは3%を超えて含有しても上記した効果が飽和するうえ、材質低下を招く。このため、Mnは0.05~3%の範囲に限定した。なお、好ましくはMnは0.1~1%である。より好ましくはMnは0.2~0.8%である。
Mn: 0.05-3%
Mn is an element having an action of fixing S as MnS and detoxifying S that adversely affects the material. Further, Mn contributes to improving hardenability by dissolving in the base. In order to obtain such an effect, it is necessary to contain 0.05% or more of Mn. On the other hand, even if Mn is contained in an amount exceeding 3%, the above effect is saturated and the material is deteriorated. Therefore, Mn is limited to the range of 0.05 to 3%. Preferably, Mn is 0.1 to 1%. More preferably, Mn is 0.2 to 0.8%.
 Mo:1~15%
 Moは、Cと結合して炭化物を形成する炭化物形成元素であり、本発明ではとくに、Wが濃化した初晶炭化物である硬質なMC型炭化物中に固溶して炭化物を強化し、ロール外層材の破壊抵抗を増加する作用を有する。また、Moは熱処理時に焼入れ性を向上させ、ロール外層材の硬さ増加に寄与する。さらに、Moは、Coよりも重い元素であり、初晶炭化物の外表面側への遠心分離を阻害しないか、あるいは促進する効果をも有する。これらの効果を得るには、1%以上のMoの含有を必要とする。一方、Moは15%を超えて多量に含有すると、Mo主体の硬脆な炭化物が出現し、耐摩耗性が低下する。このため、Moは1~15%の範囲に限定した。なお、好ましくはMoは2~10%である。より好ましくはMoは4~10%である。
Mo: 1-15%
Mo is a carbide-forming element that forms a carbide by combining with C. In the present invention, in particular, in the present invention, solid carbide dissolves in a hard M 6 C-type carbide that is a primary crystal carbide enriched in W to strengthen the carbide. , Has the effect of increasing the fracture resistance of the roll outer layer material. Mo also improves the hardenability during heat treatment and contributes to the increase in hardness of the outer layer material of the roll. Furthermore, Mo is an element heavier than Co and has an effect of not inhibiting or promoting the centrifugation of primary carbides to the outer surface side. In order to obtain these effects, it is necessary to contain 1% or more of Mo. On the other hand, when Mo is contained in a large amount exceeding 15%, hard and brittle carbides mainly composed of Mo appear and wear resistance decreases. For this reason, Mo is limited to a range of 1 to 15%. Preferably, Mo is 2 to 10%. More preferably, Mo is 4 to 10%.
 W:25~70%
 Wは、本発明で最も重要な元素であり、25%以上と多量に含有させた合金組成とする。これにより、Wが濃化した硬質なMC型炭化物を初晶として多量に出現させることができ、耐摩耗性が著しく向上した圧延用ロール外層材とすることができる。なお、Wの含有量が25%未満の場合には、本発明の目的とする耐摩耗性に優れた圧延用ロール外層材を得ることが困難となる。一方、70%を超えるWの含有は、MC型炭化物が粗大化し脆くなるうえ、溶湯の融点が上昇して、溶解、鋳造等が困難となる。このため、Wは25~70%の範囲に限定した。なお、好ましくはWは30~65%である。より好ましくはWは35~55%である。
W: 25-70%
W is the most important element in the present invention, and has an alloy composition of 25% or more. As a result, a large amount of hard M 6 C-type carbide enriched with W can appear as a primary crystal, and a roll outer layer material for rolling with significantly improved wear resistance can be obtained. When the W content is less than 25%, it is difficult to obtain a rolling roll outer layer material excellent in wear resistance, which is an object of the present invention. On the other hand, if the W content exceeds 70%, the M 6 C type carbide becomes coarse and brittle, and the melting point of the molten metal rises, so that melting, casting, etc. become difficult. For this reason, W is limited to a range of 25 to 70%. Preferably, W is 30 to 65%. More preferably, W is 35 to 55%.
 Co:5~45%
 Coは、Wとともに、本発明で重要な元素である。CoをWと共に、多量に含有することにより、Cの活量が増加して、Wが濃化した硬質な炭化物(MC型あるいはMC型やMC型など)を初晶として多量に出現させることが促進され、圧延用ロール外層材の耐摩耗性の向上に寄与する。このような効果を得るためには、Coを5%以上含有させる必要がある。一方、Coは45%を超えて多量に含有すると、γ相が安定化し、基地が軟質となり、圧延用ロールとして使用した場合には、くぼみ疵(凹部)の多発を招き、耐摩耗性が著しく低下する。このため、Coは5~45%の範囲に限定した。なお、好ましくはCoは10~40%である。より好ましくはCoは15~35%である。
Co: 5-45%
Co, together with W, is an important element in the present invention. By containing a large amount of Co together with W, the activity of C increases, and a large amount of hard carbides (M 6 C type, M 2 C type, MC type, etc.) enriched with W are used as primary crystals. Appearance is promoted and contributes to the improvement of the wear resistance of the outer layer material of the roll for rolling. In order to obtain such an effect, it is necessary to contain 5% or more of Co. On the other hand, when Co is contained in a large amount exceeding 45%, the γ phase is stabilized, the base becomes soft, and when used as a roll for rolling, it causes frequent occurrence of indentations (recesses), and the wear resistance is remarkably increased. descend. For this reason, Co is limited to a range of 5 to 45%. Preferably, Co is 10 to 40%. More preferably, Co is 15 to 35%.
 上記した成分が基本の成分であるが、基本組成に加えて、Fe:5~40%、Cr:0.1~10%、V:0.1~6%、Nb:0.1~3%のうちから選ばれた1種又は2種以上、および/または、Ni:0.05~3%、を必要に応じ選択して含有してもよい。 The above components are basic components, but in addition to the basic composition, Fe: 5 to 40%, Cr: 0.1 to 10%, V: 0.1 to 6%, Nb: 0.1 to 3% were selected. One or more kinds and / or Ni: 0.05 to 3% may be selected and contained as necessary.
 Fe:5~40%、Cr:0.1~10%、V:0.1~6%、Nb:0.1~3%のうちから選ばれた1種又は2種以上
 Fe、Cr、V、Nbはいずれも、炭化物形成元素であり、炭化物に固溶して炭化物を強化する作用を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。
Fe: 5 to 40%, Cr: 0.1 to 10%, V: 0.1 to 6%, Nb: One or more selected from 0.1 to 3% Fe, Cr, V, and Nb are all It is a carbide forming element, is an element having an action of strengthening the carbide by solid solution in the carbide, and can be selected as necessary to contain one or more kinds.
 Feは、炭化物に固溶するとともに基地にも固溶して、基地の強化に寄与し、圧延用ロールとして使用した場合にくぼみ疵(凹部)の生成を防止する作用を有する。このような効果を得るためには、Feを5%以上含有することが好ましい。一方、Feは40%を超えて含有すると、初晶として出現する硬質なMC型炭化物量が減少し、脆弱なMC型炭化物が増加し、耐摩耗性が低下する。このため、含有する場合には、Feは5~40%の範囲に限定することが好ましい。なお、より好ましくはFeは10~35%である。より好ましくはFeは12~30%である。 Fe dissolves in the carbide and also in the base, contributes to strengthening of the base, and has an effect of preventing formation of dents (recesses) when used as a rolling roll. In order to obtain such an effect, it is preferable to contain 5% or more of Fe. On the other hand, when Fe is contained in excess of 40%, the amount of hard M 6 C type carbides appearing as primary crystals decreases, fragile M 3 C type carbides increase, and wear resistance decreases. For this reason, when contained, Fe is preferably limited to a range of 5 to 40%. More preferably, Fe is 10 to 35%. More preferably, Fe is 12 to 30%.
 基地中にFeを含有することによりW-Co基合金の基地が強化される機構については現時点では明確になっていないが、Coによるγ相安定化作用をFeによるα相安定化作用が相殺して、結果的に基地の強度が上昇したためか、あるいはFeのα相安定化作用が大きく、基地が硬質なマルテンサイトやベイナイト組織となり、あるいはさらにそのような基地中にさらに微細な炭化物が析出した組織が出現する、などの基地の強化現象が生じたと考えている。 The mechanism by which the base of the W—Co-based alloy is strengthened by including Fe in the base has not been clarified at this time, but the α-phase stabilization action by Fe offsets the γ-phase stabilization action by Co. As a result, the strength of the base has increased, or the α-phase stabilization effect of Fe is large, and the base has a hard martensite or bainite structure, or even finer carbides have precipitated in such a base. We believe that a base strengthening phenomenon has occurred, such as the appearance of an organization.
 Crは、強力な炭化物形成元素であり、主に共晶炭化物を形成するとともに、形成した炭化物の強度を向上させる効果を有する。共晶炭化物は、初晶であるMC型炭化物の間隙に晶出することになるため、結果的にMC型炭化物の間隙を強化するように作用する。また、Crは、黒鉛の出現を抑制する作用も有する。W-Co基合金は、Cの活量係数が高いため黒鉛が出現し易く、黒鉛が出現すると靭性が低下する。黒鉛の出現を抑制し圧延用ロールとして安定して使用するために、本発明では必要に応じてCrを含有することが好ましい。このような効果を得るためには、Crを0.1%以上含有することが好ましい。一方、Crは10%を超えて含有すると、Cr系共晶炭化物が多量に出現して靭性が低下する。このため、含有する場合には、Crは0.1~10%の範囲に限定することが好ましい。なお、より好ましくはCrは1~8%である。より好ましくはCrは1.5~7%である。 Cr is a strong carbide-forming element and has the effect of mainly forming eutectic carbides and improving the strength of the formed carbides. The eutectic carbides crystallize in the gaps between the primary crystals of the M 6 C type carbide, and as a result, act to strengthen the gaps of the M 6 C type carbides. Cr also has an action of suppressing the appearance of graphite. W-Co based alloys have a high activity coefficient of C, so that graphite is likely to appear, and when graphite appears, toughness decreases. In order to suppress the appearance of graphite and use it stably as a roll for rolling, in the present invention, it is preferable to contain Cr as necessary. In order to obtain such an effect, it is preferable to contain 0.1% or more of Cr. On the other hand, if the Cr content exceeds 10%, a large amount of Cr-based eutectic carbide appears and the toughness decreases. Therefore, when contained, Cr is preferably limited to a range of 0.1 to 10%. More preferably, Cr is 1 to 8%. More preferably, Cr is 1.5 to 7%.
 Vは、Cと結合して硬質なVC(Mo、Nb、Cr、W等を含んだMC型炭化物)を形成する元素であり、形成されたMC型炭化物が初晶として晶出し、Wが濃化したMC型炭化物の晶出核となり、MC型炭化物の出現を促進させ、さらに微細なMC型炭化物を高密度に分散させる作用を有する。このような効果を得るためには、Vを0.1%以上含有させることが好ましい。一方、Vは6%を超えて多量に含有すると、Wを多く含有していても、低比重のV系MC型炭化物が増加し、しかも粗大化して、遠心鋳造時にロール外層材の内面側に遠心分離される。そのため、外面側で硬質のMC型炭化物量が不足しロール外層材の使用時の耐摩耗性が低下する。また、内面側に遠心分離されたV系MC型炭化物が多量になるとロール内層や中間層との境界強度が低下する。このため、含有する場合には、Vは0.1~6%の範囲に限定することが好ましい。なお、より好ましくはVは1~5%である。より好ましくはVは1.5~4%である。 V is an element that combines with C to form hard VC (MC-type carbide containing Mo, Nb, Cr, W, etc.). The formed MC-type carbide crystallizes as the primary crystal and W is concentrated. It becomes a crystallization nucleus of the converted M 6 C type carbide, promotes the appearance of M 6 C type carbide, and further has a function of dispersing fine M 6 C type carbide at high density. In order to acquire such an effect, it is preferable to contain V 0.1% or more. On the other hand, if V is contained in a large amount exceeding 6%, even if it contains a large amount of W, the low specific gravity V-based MC type carbide increases and becomes coarse, and on the inner surface side of the roll outer layer material during centrifugal casting. Centrifuge. Therefore, the amount of hard M 6 C type carbide on the outer surface side is insufficient, and the wear resistance when using the roll outer layer material is lowered. Further, when the amount of V-based MC type carbide centrifuged at the inner surface side becomes large, the boundary strength with the inner layer of the roll or the intermediate layer is lowered. Therefore, when contained, V is preferably limited to a range of 0.1 to 6%. More preferably, V is 1 to 5%. More preferably, V is 1.5 to 4%.
 Nbは、Cとの結合力が極めて高く、強力な炭化物形成元素であり、VやWとの複合炭化物を形成しやすい。このようなNbとVやWとの複合炭化物は、初晶として晶出する、Wが濃化したMC型炭化物の晶出核となり、MC型炭化物の出現を促進させ、さらに微細なMC型炭化物を高密度に分散させる作用を有する。このような効果を得るためには、Nbは0.1%以上の含有を必要とする。一方、Nbが3%を超える多量の含有は、低密度のNb系MC型炭化物を形成し粗大化して、遠心鋳造時に炭化物がロール外層材の内面側に遠心分離されやすくなるとともに、外層材内面側のMC型炭化物の量が増加する。しかも外層材内面側に遠心分離されるMC型炭化物は、その量が多くなると、ロール内層や中間層との境界強度が低下するなど、内面側の品質が低下する。このため、含有する場合には、Nbは0.1~3%の範囲に限定することが好ましい。なお、より好ましくはNbは0.5~2%である。より好ましくはNbは0.6~1.8%である。 Nb has a very high bonding strength with C and is a strong carbide forming element, and easily forms a composite carbide with V and W. Such a composite carbide of Nb and V or W becomes a crystallization nucleus of M 6 C type carbide enriched with W, which is crystallized as a primary crystal, promotes the appearance of M 6 C type carbide, and further refines. It has the effect of dispersing high density M 6 C type carbide. In order to acquire such an effect, Nb needs to contain 0.1% or more. On the other hand, if the Nb content exceeds 3%, a low-density Nb-based MC type carbide is formed and coarsened, and during centrifugal casting, the carbide tends to be centrifuged on the inner surface side of the roll outer layer material, and the inner surface of the outer layer material The amount of MC carbide on the side increases. Moreover, the MC type carbide that is centrifuged to the inner surface side of the outer layer material, when the amount increases, the quality of the inner surface side decreases, for example, the boundary strength between the inner layer of the roll and the intermediate layer decreases. For this reason, when Nb is contained, Nb is preferably limited to a range of 0.1 to 3%. More preferably, Nb is 0.5 to 2%. More preferably, Nb is 0.6 to 1.8%.
 Ni:0.05~3%
 Niは、焼入れ性を向上させる作用がある元素であり、例えば、大型ロールにおける焼入れ性不足を解消するためなど、必要に応じて含有できる。このような効果を得るためには、Niを0.05%以上含有することが好ましい。なお、不純物レベルである0.05%未満ではその効果が認められない。一方、Niが3%を超える含有は、γ相が安定化し、所望の焼入れ性を確保できなくなる。このため、含有する場合には、Niは0.05~3%の範囲に限定することが好ましい。好ましくはNiは0.1~2.5%である。
Ni: 0.05-3%
Ni is an element that has the effect of improving hardenability, and can be contained as necessary, for example, to solve the shortage of hardenability in large rolls. In order to obtain such an effect, it is preferable to contain 0.05% or more of Ni. In addition, the effect is not recognized if it is less than 0.05% which is an impurity level. On the other hand, when Ni exceeds 3%, the γ phase is stabilized and the desired hardenability cannot be ensured. Therefore, when Ni is contained, Ni is preferably limited to a range of 0.05 to 3%. Preferably, Ni is 0.1 to 2.5%.
 上記した成分以外の残部は、不可避的不純物からなる。不可避的不純物としては、P、S、N、Bが例示できる。なお、Pは、粒界に偏析し、材料を脆化させる等の悪影響を及ぼすため、不純物としてできるだけ低減することが望ましいが、0.05%以下であれば許容できる。また、Sも、Pと同様に、粒界に偏析し、材料を脆化させる等の影響を及ぼすため、不純物としてできるだけ低減することが望ましいが、0.05%以下であれば、一部はMnと化合して硫化物系介在物として存在し無害化されるため、許容できる。また、Nは、通常の溶解であれば、不純物として0.01~0.1%程度混入する。しかし、この程度の含有であれば本発明の効果に影響することはない。但し、Nは、複合ロールの外層と中間層あるいは内層との境界にガス欠陥を生成することがあるので0.07%未満に限定することが好ましい。なお、Bは、溶解原料のスクラップや鋳造用フラックスから混入して不可避的不純物元素として含有される場合がある。Bは、炭化物や基地に固溶して炭化物の性質を変化させたり、基地に固溶して基地の焼入れ性に影響を及ぼし、品質バラツキを醸成することがある。このため、Bは極力低減した方が好ましいが、0.1%以下であれば、本発明の効果に悪影響を及ぼすことはない。ここで、上記した不可避的不純物元素は、合計で1%未満に調整することが好ましい。 The remainder other than the above-mentioned components consists of inevitable impurities. Examples of inevitable impurities are P, S, N, and B. Note that P is segregated at the grain boundary and has an adverse effect such as embrittlement of the material. Therefore, it is desirable to reduce P as much as possible, but 0.05% or less is acceptable. S, like P, is segregated at the grain boundaries and has the effect of embrittlement of the material, so it is desirable to reduce it as an impurity. However, if it is 0.05% or less, part of it is Mn. Since they combine to exist as sulfide inclusions and are rendered harmless, they are acceptable. Further, N is mixed in an amount of about 0.01 to 0.1% as an impurity if it is normally dissolved. However, this content does not affect the effects of the present invention. However, N is preferably limited to less than 0.07% because gas defects may be generated at the boundary between the outer layer and the intermediate layer or the inner layer of the composite roll. In some cases, B is mixed from scrap of melting raw material or casting flux and contained as an unavoidable impurity element. B may be dissolved in carbides or bases to change the properties of the carbides, or may be dissolved in bases to affect the hardenability of the bases, thereby fostering quality variations. For this reason, it is preferable to reduce B as much as possible, but if it is 0.1% or less, the effect of the present invention will not be adversely affected. Here, it is preferable to adjust the above inevitable impurity elements to less than 1% in total.
 次に、本発明圧延用ロール外層材の好ましい製造方法について説明する。 Next, a preferred method for producing the roll outer layer material for rolling of the present invention will be described.
 本発明では、生産性、ならびに製造コストの観点から、圧延用ロール外層材は、鋳造鋳型を回転させる形式の遠心鋳造法を用いて製造する。これにより、安価に、耐摩耗性に優れた圧延用ロール外層材を製造することができる。 In the present invention, from the viewpoint of productivity and manufacturing cost, the roll outer layer material for rolling is manufactured using a centrifugal casting method in which a casting mold is rotated. Thereby, the roll outer layer material for rolling excellent in abrasion resistance can be manufactured at low cost.
 まず、回転する鋳型に、上記したロール外層材組成の溶湯を、所定の肉厚となるように注湯し、遠心鋳造して、圧延用ロール外層材とする。なお、通常は、鋳型の保護のため、その内面には、ジルコン等を主材とした耐火物が被覆されることが一般的である。なお、本発明では、遠心力が120~250Gとなるように回転数を調整して遠心鋳造することが好ましい。高い遠心力を付与することにより、外表面側で密度の大きい硬質炭化物の分散密度を高くできる。 First, molten metal having the above-mentioned roll outer layer material composition is poured into a rotating mold so as to have a predetermined thickness, and centrifugally cast to obtain a roll outer layer material for rolling. In general, in order to protect the mold, the inner surface is generally covered with a refractory material mainly composed of zircon or the like. In the present invention, it is preferable to perform centrifugal casting by adjusting the rotational speed so that the centrifugal force is 120 to 250 G. By applying a high centrifugal force, the dispersion density of the hard carbide having a high density on the outer surface side can be increased.
 本発明では、得られた圧延用ロール外層材は、単体のスリーブとして、そこに軸材を嵌合して、圧延用ロールとしてもよい。また、得られた圧延用ロール外層材は、その内側に溶着一体化した中間層を設け、中間層を有するスリーブとして、そこに軸材を嵌合して、圧延用ロールとしてもよい。なお、中間層は、ロール外層材の凝固途中あるいは完全に凝固したのち、鋳型を回転させながら、中間層組成の溶湯を注湯し、遠心鋳造することにより形成することが好ましい。中間層材として、黒鉛鋼、1~2質量%Cの高炭素鋼、亜共晶鋳鉄等が例示できる。なお、これら圧延用ロールの軸材はとくに限定されないが、別途製造された鍛鋼品(軸)、鋳鋼品(軸)、鋳鉄品(軸)とすることが好ましい。 In the present invention, the obtained roll outer layer material for rolling may be a single sleeve, and a shaft material may be fitted therein to form a rolling roll. Moreover, the obtained roll outer layer material for rolling may be formed as a roll for rolling by providing an intermediate layer welded and integrated on the inner side thereof, fitting a shaft member therein as a sleeve having the intermediate layer. The intermediate layer is preferably formed by pouring molten metal having an intermediate layer composition and centrifugal casting while rotating the mold after the outer layer material of the roll is solidified or completely solidified. Examples of the intermediate layer material include graphite steel, 1-2% by mass C high carbon steel, hypoeutectic cast iron, and the like. In addition, although the shaft material of these rolls for rolling is not specifically limited, It is preferable to set it as the forged steel product (shaft) manufactured separately, a cast steel product (shaft), and a cast iron product (shaft).
 さらに本発明では、上記した圧延用ロール外層材を外層とし、該外層と溶着一体化した内層とからなる複合ロールとするか、あるいは上記した圧延用ロール外層材を外層とし、該外層と溶着一体化した中間層、該中間層と溶着一体化した内層とからなる複合ロールとしてもよい。 Further, in the present invention, the above-described rolling roll outer layer material is an outer layer, and a composite roll comprising an inner layer fused and integrated with the outer layer, or the above-described rolling roll outer layer material is an outer layer, and the outer layer is welded integrally. It is good also as a composite roll which consists of the intermediate | middle layer which changed to the inside layer which welded and integrated with this intermediate | middle layer.
 中間層を形成する場合には、ロール外層材の凝固途中あるいは完全に凝固したのち、鋳型を回転させながら、中間層組成の溶湯を注湯し、遠心鋳造することが好ましい。なお、中間層材としては、黒鉛鋼、1~2質量%Cの高炭素鋼、亜共晶鋳鉄等を用いることが好ましい。中間層と外層とは一体溶着されており、外層成分が中間層へ10~90%程度の範囲で混入する。内層への外層成分の混入量を抑える観点から、外層成分の中間層への混入量はできるだけ低減しておくことが望ましい。 In the case of forming the intermediate layer, it is preferable that the outer layer layer material is solidified in the middle or completely, and then the molten metal having the intermediate layer composition is poured and centrifugally cast while rotating the mold. As the intermediate layer material, it is preferable to use graphite steel, 1-2% by mass C high carbon steel, hypoeutectic cast iron or the like. The intermediate layer and the outer layer are integrally welded, and the outer layer component is mixed in the intermediate layer in a range of about 10 to 90%. From the viewpoint of suppressing the amount of the outer layer component mixed into the inner layer, it is desirable to reduce the amount of the outer layer component mixed into the intermediate layer as much as possible.
 また、一般的に、内層は、外層あるいは中間層が完全に凝固したのち、鋳型の回転を停止し鋳型を立ててから、内層材を静置鋳造して形成される。ここで、静置鋳造される内層材としては、鋳造性と機械的性質に優れた球状黒鉛鋳鉄、いも虫状黒鉛鋳鉄(CV鋳鉄)などを用いることが好ましい。なお、中間層がなく、外層と内層が一体溶着されている複合ロールでは、外層材の成分が1~10%程度、内層に混入することが多い。外層材に含まれるW、Cr、V等は強力な炭化物形成元素であり、これら元素が内層へ混入すると、内層を脆弱化する。このため、本発明では、外層成分の内層への混入率は5%未満に抑えることが好ましい。 In general, the inner layer is formed by static casting of the inner layer material after the outer layer or the intermediate layer is completely solidified, and then the rotation of the mold is stopped and the mold is set up. Here, it is preferable to use spheroidal graphite cast iron, worm-like graphite cast iron (CV cast iron), etc. excellent in castability and mechanical properties as the inner layer material to be statically cast. In the case of a composite roll having no intermediate layer and the outer layer and the inner layer are integrally welded, the component of the outer layer material is often mixed into the inner layer by about 1 to 10%. W, Cr, V, and the like contained in the outer layer material are strong carbide forming elements, and when these elements are mixed into the inner layer, the inner layer is weakened. For this reason, in the present invention, the mixing rate of the outer layer component into the inner layer is preferably suppressed to less than 5%.
 上記した圧延用ロール外層材、圧延用複合ロールは、鋳造後、熱処理を施されることが好ましい。熱処理は、1000~1200℃に加熱し5~40h保持したのち、炉内で冷却したり、空冷あるいは衝風空冷する工程と、さらに400~600℃に加熱保持したのち冷却する工程を1回以上施す処理とすることが好ましい。なお、本発明圧延用ロール外層材、圧延用複合ロールの硬さは、用途に応じて、79~100HSの範囲内で調整することが好ましい。このような硬さを安定して確保できるように、鋳造後の熱処理を調整することが推奨される。 The above-described outer roll material for rolling and the composite roll for rolling are preferably subjected to heat treatment after casting. Heat treatment is performed at 1000 to 1200 ° C and held for 5 to 40 hours, then cooled in the furnace, air cooled or blast air cooled, and further heated and held at 400 to 600 ° C and then cooled once or more It is preferable to perform the treatment. The hardness of the outer roll material for rolling and the composite roll for rolling of the present invention is preferably adjusted within the range of 79 to 100 HS depending on the application. It is recommended to adjust the heat treatment after casting so that such hardness can be secured stably.
 表1に示す組成の溶湯を、高周波誘導炉で溶解し、遠心鋳造法により、試験材としてスリーブ状のロール外層材(外径:250mmφ、径方向肉厚:55mm)を鋳造した。なお、鋳込み温度は1450~1550℃、遠心力は重力倍数で140~220Gとした。一部試験材(溶湯No.S)では内面への著しい炭化物偏析が生じたため、この偏析を減少させる目的で60Gとした。鋳造後、1050~1200℃に再加熱し10h保持した後、100℃以下まで冷却する焼入れ処理、および400~560℃に加熱・保持し冷却する焼戻処理を、1回あるいは2回繰返して施した。これにより、試験材の外表面から肉厚方向に5mmの位置における硬さをおおよそ85~100HSに調整した。なお、鉄鋼の熱間仕上圧延用ロールとして使用されている市販の遠心鋳造製外層材組成(ハイスロール系組成:2.2%C-0.4%Si-0.4%Mn-5.3%Cr-5.2%Mo-5.6%V-1.1%Nb)の溶湯(溶湯No.V)を溶解し、同様にスリーブ状のロール外層材を鋳造し、鋳造後熱処理を施して、試験材(硬さ85HS)とし、従来例(試験材No.22)とした。 The molten metal having the composition shown in Table 1 was melted in a high frequency induction furnace, and a sleeve-shaped roll outer layer material (outer diameter: 250 mmφ, radial thickness: 55 mm) was cast as a test material by a centrifugal casting method. The casting temperature was 1450 to 1550 ° C., and the centrifugal force was 140 to 220 G in multiples of gravity. In some test materials (melt No. S), significant carbide segregation occurred on the inner surface, so 60 G was used for the purpose of reducing this segregation. After casting, reheat to 1050 to 1200 ° C and hold for 10 hours, then quenching to cool to below 100 ° C and tempering to heat, hold and cool to 400 to 560 ° C, once or twice did. As a result, the hardness at a position of 5 mm in the thickness direction from the outer surface of the test material was adjusted to approximately 85 to 100 HS. It should be noted that the composition of a commercially available outer layer made of centrifugal cast used as a roll for hot finish rolling of steel (high-roll composition: 2.2% C-0.4% Si-0.4% Mn-5.3% Cr-5.2% Mo-5.6 % V-1.1% Nb) melted (molten No.V), and a sleeve-shaped roll outer layer material was cast in the same manner and heat-treated after casting to obtain a test material (hardness 85HS). Test material No. 22).
 上記熱処理を施した試験材から、組成分析用試験片、摩耗試験用試験片を採取した。なお、試験材No.19は、非常に割れやすく試験材の採取が極めて困難であった。 The test piece for composition analysis and the test piece for wear test were collected from the test material subjected to the heat treatment. Test material No. 19 was very fragile and it was very difficult to collect the test material.
 なお、組成分析用試験片は、上記した熱処理後の試験材の外表面から径方向に5mm研削し、その研削後の外表面から径方向に5mm、外表面に平行な面で10mm×10mmの大きさの試験片を採取した。得られた試験片を用いて、各成分元素の分析を行った。分析方法は、化学分析とし、Cは燃焼法、Si、Wは重量法、Mn、Cr、Moは原子吸光法、Coは容量法、Feは容量法または原子吸光法とした。
 得られた結果を表2に示す。
 また、摩耗試験片(外径60mmφ×幅10mm)は、上記した熱処理後の試験片から、摩耗試験片の幅中央位置が、該試験材の外表面から径方向に10mmの位置となるように採取した。なお、摩耗試験は、図2に示すように、試験片(摩耗試験片)と相手材(材質:S45C、外径190mmφ×幅15mm)との2円盤すべり転動方式で行った。
The specimen for composition analysis was ground 5 mm in the radial direction from the outer surface of the test material after the heat treatment described above, 5 mm in the radial direction from the outer surface after the grinding, and 10 mm × 10 mm in a plane parallel to the outer surface. A specimen of a size was collected. Each component element was analyzed using the obtained test piece. The analysis method was chemical analysis, C was a combustion method, Si and W were gravimetric methods, Mn, Cr and Mo were atomic absorption methods, Co was a volumetric method, Fe was a volumetric method or atomic absorption method.
The obtained results are shown in Table 2.
In addition, the wear test piece (outer diameter 60 mmφ × width 10 mm) is arranged so that the center position of the wear test piece is 10 mm in the radial direction from the outer surface of the test material after the heat treatment test piece described above. Collected. As shown in FIG. 2, the wear test was performed by a two-disk sliding rolling method of a test piece (wear test piece) and a mating material (material: S45C, outer diameter 190 mmφ × width 15 mm).
 摩耗試験は、試験片を水冷しながら、回転数:700rpm(周速:2.1m/s)で回転する試験片に、850℃に加熱した相手片を荷重980Nで圧接しながら、すべり率:14.2%で転動させた。試験片の転動回数が21000回ごとに相手材を更新し、累積回転数が168000回になるまで転動させた。試験終了後に、摩耗試験片の摩耗減量を調査した。得られた摩耗減量について、従来例(試験材No.22)の摩耗減量を基準(1.0)とし、基準に対する各試験材の摩耗減量の比(:耐摩耗比=(従来例の摩耗減量)/(当該試験材の摩耗減量))を算出し、耐摩耗性を評価した。耐摩耗比が3以上である場合を記号「◎」、耐摩耗比が2以上3未満である場合を記号「○」、耐摩耗比が2未満である場合を記号「×」とそれぞれ示し、記号◎は大変よい、記号○は良い、記号×は悪いとそれぞれ評価した。
 得られた結果を表3に示す。
In the wear test, the sliding rate is 14.2 while the test piece rotating at 700 rpm (peripheral speed: 2.1 m / s) is pressed against the test piece rotating at 850 ° C with a load of 980 N while the sample is cooled with water. %. The mating material was updated every 21000 times of rolling of the test piece and rolled until the cumulative number of rotations reached 168000. After the test, the wear loss of the wear test piece was investigated. With respect to the obtained wear loss, the wear loss of the conventional example (test material No. 22) is taken as the standard (1.0), and the ratio of the wear loss of each test material to the standard (the wear resistance ratio = (wear loss of the conventional example) / (Abrasion loss of the test material)) was calculated and the wear resistance was evaluated. When the wear resistance ratio is 3 or more, the symbol `` ◎ '', when the wear resistance ratio is 2 or more and less than 3, the symbol `` ○ '', when the wear resistance ratio is less than 2, the symbol `` × '' The symbol ◎ was evaluated as very good, the symbol ○ was good, and the symbol X was bad.
The obtained results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、耐摩耗比が2.1以上と従来例(ハイスロール)に比べ格段に耐摩耗性が向上している。一方、本発明の範囲を外れる比較例は、試験途中で割れが発生したり、耐摩耗比が2未満と従来例に比べて耐摩耗性の改善が少ない。 In all of the examples of the present invention, the wear resistance ratio is 2.1 or more, and the wear resistance is remarkably improved as compared with the conventional example (high-speed roll). On the other hand, in the comparative example that is out of the scope of the present invention, cracking occurs during the test, and the wear resistance ratio is less than 2, so that the wear resistance is less improved than the conventional example.
 なお、本発明例(No.13、No.5)について組織を観察し図1に示す。熱処理後の試験材外表面から径方向に5mmの位置が観察面となるように組織観察用試験片を採取し、走査型電子顕微鏡(倍率:250倍)で観察し、反射電子像を得た。白色領域が初晶炭化物(Wが濃化したMC型炭化物)であることを確認している。本発明例では、試験材(スリーブ状ロール外層材)外表面側に初晶炭化物が高密度に分散していることがわかる。 In addition, a structure | tissue is observed about this invention example (No.13, No.5), and it shows in FIG. A specimen for tissue observation was collected so that the position 5 mm in the radial direction from the outer surface of the test material after heat treatment was the observation surface, and observed with a scanning electron microscope (magnification: 250 times) to obtain a reflected electron image . It is confirmed that the white region is primary crystal carbide (M 6 C type carbide in which W is concentrated). In the example of the present invention, it can be seen that primary crystal carbides are dispersed at high density on the outer surface side of the test material (sleeve-shaped roll outer layer material).
 なお、参考として、試験材No.11(本発明例)について、熱処理後の試験材(スリーブ状ロール外層材)外表面から径方向に18mmの位置(18mm位置)および38mmの位置(38mm位置)で、該位置から径方向に5mm、外表面に平行な面で10mm×10mmの大きさの組成分析用試験片を採取した。そして、化学分析により各位置での組成を分析した。得られた結果を表2に併記した。 For reference, for test material No. 11 (example of the present invention), 18 mm position (18 mm position) and 38 mm position (38 mm position) in the radial direction from the outer surface of the heat-treated test material (sleeve roll outer layer material) Then, a specimen for composition analysis having a size of 5 mm in the radial direction from the position and 10 mm × 10 mm in a plane parallel to the outer surface was collected. And the composition in each position was analyzed by chemical analysis. The obtained results are also shown in Table 2.
 また、試験材No.11(本発明例)について、摩耗試験片の試験面が、熱処理後の試験材外表面から径方向に18mmの位置(18mm位置)および38~48mmの範囲の位置(38mm位置)となるように、摩耗試験片を採取した。上記した条件と同様に、摩耗試験を実施し、摩耗減量を測定した。得られた結果を表3に併記した。 In addition, for test material No. 11 (example of the present invention), the test surface of the wear test piece was 18 mm in the radial direction from the outer surface of the test material after heat treatment (18 mm position) and 38 to 48 mm in the position (38 mm). Wear test specimens were collected so that A wear test was carried out in the same manner as described above to measure wear loss. The obtained results are also shown in Table 3.
 表2から、試験材(スリーブ状ロール外層材)外表面には、主にWが濃化しており、外表面から径方向に18mm離れた位置(18mm位置)、外表面から径方向に38mm離れた位置(38mm位置)では、Wの比率が減少し、Co、Fe等の比率が増加し、明らかに傾斜組成となっていることがわかる。そのため、表3からわかるように、外表面から径方向に18mmの位置(18mm位置)および38mm離れた位置(38mm位置)では、外表面から径方向に10mmまでの領域に比べて耐摩耗性が低下している。 From Table 2, W is concentrated mainly on the outer surface of the test material (sleeve-shaped roll outer layer material), a position 18 mm away from the outer surface in the radial direction (18 mm position), and 38 mm away from the outer surface in the radial direction. At the same position (38 mm position), the ratio of W decreases, the ratio of Co, Fe, etc. increases, and it can be seen that the composition is clearly gradient. Therefore, as can be seen from Table 3, the wear resistance is 18 mm in the radial direction from the outer surface (18 mm position) and 38 mm away (38 mm position) compared to the area from the outer surface to 10 mm in the radial direction. It is falling.

Claims (7)

  1.  W-Co基合金製圧延用ロール外層材であって、
    W含有量がロール外周側から内周側に向けて径方向に低下する傾斜組成で、圧延使用時の最大径に相当する位置の外層材表面が、質量%で、
    W:25~70%、
    Co:5~45%、
    C:0.6~3.5%、
    Si:0.05~3%、
    Mn:0.05~3%、
    Mo:1~15%
    を含み、残部が不可避的不純物からなる組成を有する圧延用ロール外層材。
    A roll outer layer material for rolling made of a W-Co based alloy,
    In the gradient composition in which the W content decreases in the radial direction from the outer peripheral side of the roll toward the inner peripheral side, the surface of the outer layer material at the position corresponding to the maximum diameter at the time of rolling use is,
    W: 25-70%
    Co: 5-45%
    C: 0.6 to 3.5%
    Si: 0.05-3%,
    Mn: 0.05-3%,
    Mo: 1-15%
    A roll outer layer material for rolling having a composition in which the balance is made of inevitable impurities.
  2.  前記組成に加えてさらに、質量%で、
    Fe:5~40%、
    Cr:0.1~10%、
    V:0.1~6%、
    Nb:0.1~3%
    のうちから選ばれた1種又は2種以上を含有する請求項1に記載の圧延用ロール外層材。
    In addition to the above composition,
    Fe: 5-40%,
    Cr: 0.1-10%
    V: 0.1-6%
    Nb: 0.1-3%
    The roll outer layer material for rolling according to claim 1, comprising one or more selected from among the above.
  3.  前記組成に加えてさらに、質量%で、
    Ni:0.05~3%
    を含有する請求項1または2に記載の圧延用ロール外層材。
    In addition to the above composition,
    Ni: 0.05-3%
    The roll outer layer material for rolling according to claim 1 or 2, comprising:
  4.  前記圧延用ロール外層材が、遠心鋳造製である請求項1ないし3のいずれかに記載の圧延用ロール外層材。 The rolling roll outer layer material according to any one of claims 1 to 3, wherein the rolling roll outer layer material is made by centrifugal casting.
  5.  外層と、該外層と溶着一体化した内層とからなる圧延用複合ロールであって、
    前記外層が、請求項1ないし3のいずれかに記載の圧延用ロール外層材である圧延用複合ロール。
    A composite roll for rolling comprising an outer layer and an inner layer welded and integrated with the outer layer,
    A composite roll for rolling, wherein the outer layer is a roll outer layer material for rolling according to any one of claims 1 to 3.
  6.  外層と、該外層と溶着一体化した中間層、該中間層と溶着一体化した内層とからなる圧延用複合ロールであって、
    前記外層が、請求項1ないし3のいずれかに記載の圧延用ロール外層材である圧延用複合ロール。
    A composite roll for rolling comprising an outer layer, an intermediate layer welded and integrated with the outer layer, and an inner layer welded and integrated with the intermediate layer,
    A composite roll for rolling, wherein the outer layer is a roll outer layer material for rolling according to any one of claims 1 to 3.
  7.  前記外層が、遠心鋳造製である請求項5または6に記載の圧延用複合ロール。 The composite roll for rolling according to claim 5 or 6, wherein the outer layer is made of centrifugal casting.
PCT/JP2017/026246 2016-09-02 2017-07-20 Roll outer layer material for rolling, and composite roll for rolling WO2018042929A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780053764.9A CN109641251B (en) 2016-09-02 2017-08-30 Outer layer material for rolling roller and composite roller for rolling
EP17846538.1A EP3488942A4 (en) 2016-09-02 2017-08-30 Roll outer layer material for rolling, and composite roll for rolling
KR1020197006147A KR102228851B1 (en) 2016-09-02 2017-08-30 Roll outer layer material for rolling and composite roll for rolling
BR112019004312-8A BR112019004312B1 (en) 2016-09-02 2017-08-30 OUTER LAYER MATERIAL FOR LAMINATION CYLINDERS AND COMPOSITE CYLINDERS FOR LAMINATION
JP2017558592A JP6304466B1 (en) 2016-09-02 2017-08-30 Roll outer layer material for rolling and composite roll for rolling
PCT/JP2017/031081 WO2018043534A1 (en) 2016-09-02 2017-08-30 Roll outer layer material for rolling, and composite roll for rolling
TW106129885A TWI650430B (en) 2016-09-02 2017-09-01 Roller outer layer for rolling and composite roll for rolling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016171382 2016-09-02
JP2016-171382 2016-09-02

Publications (1)

Publication Number Publication Date
WO2018042929A1 true WO2018042929A1 (en) 2018-03-08

Family

ID=61300947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026246 WO2018042929A1 (en) 2016-09-02 2017-07-20 Roll outer layer material for rolling, and composite roll for rolling

Country Status (3)

Country Link
JP (1) JP6515957B2 (en)
TW (1) TWI642793B (en)
WO (1) WO2018042929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085966A (en) * 2020-11-30 2022-06-09 Jfeスチール株式会社 Roll outer layer material for rolling and composite roll for rolling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113756118B (en) * 2020-06-04 2023-09-15 南通华严磨片有限公司 Tough high-chromium cast iron abrasive disc added with semi-metal
CN112846126B (en) * 2020-12-31 2022-05-17 北京科技大学 Melt flow rate adjusting system and method of multi-component radial functional gradient material equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869719A (en) * 1971-12-23 1973-09-21
JPS60177945A (en) * 1984-02-24 1985-09-11 Kubota Ltd Centrifugal casting method of wear resistance casting
JPS6160857A (en) * 1984-08-29 1986-03-28 Kubota Ltd Wear resistant casting

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246320A (en) * 1975-10-11 1977-04-13 Hitachi Metals Ltd Material for metallic mold used for die casting of high melting metal and jig
JPS6160858A (en) * 1984-08-29 1986-03-28 Kubota Ltd Wear resistant casting
JPH0688116B2 (en) * 1985-02-09 1994-11-09 株式会社クボタ Method for manufacturing wear resistant composite casting
US8156651B2 (en) * 2004-09-13 2012-04-17 Hitachi Metals, Ltd. Centrifugally cast external layer for rolling roll and method for manufacture thereof
JP5024051B2 (en) * 2005-12-28 2012-09-12 日立金属株式会社 Centrifugal cast composite roll
JP2007185681A (en) * 2006-01-12 2007-07-26 Hitachi Metals Ltd Rolling roll
CN101469392A (en) * 2007-12-29 2009-07-01 张朝龙 High wear resistance alloy for slitting roller and manufacturing method thereof
JP6606977B2 (en) * 2014-10-31 2019-11-20 日立金属株式会社 Method for producing composite roll for hot rolling
KR102228851B1 (en) * 2016-09-02 2021-03-16 제이에프이 스틸 가부시키가이샤 Roll outer layer material for rolling and composite roll for rolling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869719A (en) * 1971-12-23 1973-09-21
JPS60177945A (en) * 1984-02-24 1985-09-11 Kubota Ltd Centrifugal casting method of wear resistance casting
JPS6160857A (en) * 1984-08-29 1986-03-28 Kubota Ltd Wear resistant casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085966A (en) * 2020-11-30 2022-06-09 Jfeスチール株式会社 Roll outer layer material for rolling and composite roll for rolling
JP7396256B2 (en) 2020-11-30 2023-12-12 Jfeスチール株式会社 Roll outer layer material and composite roll for rolling

Also Published As

Publication number Publication date
TW201812043A (en) 2018-04-01
TWI642793B (en) 2018-12-01
JP2018039047A (en) 2018-03-15
JP6515957B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6304466B1 (en) Roll outer layer material for rolling and composite roll for rolling
EP3050636B1 (en) Centrifugally cast, hot-rolling composite roll
EP3050637B1 (en) Centrifugally cast, hot-rolling composite roll
WO2013077377A1 (en) Centrifugally cast composite rolling mill roll and manufacturing method therefor
WO2018042929A1 (en) Roll outer layer material for rolling, and composite roll for rolling
CN110114155B (en) Composite roller for rolling
JP5703718B2 (en) Outer layer material and composite roll made of centrifugal cast for hot rolling
KR102647292B1 (en) Composite roll for centrifugal casting and manufacturing method thereof
JP4354718B2 (en) Composite roll for hot rolling made by centrifugal casting
JP7396256B2 (en) Roll outer layer material and composite roll for rolling
WO2018047444A1 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP6518314B2 (en) Composite roll for rolling
JP2507765B2 (en) High speed tool steel
JP5867143B2 (en) Centrifugal cast roll outer layer material for hot rolling excellent in fatigue resistance, centrifugal cast composite roll for hot rolling, and production method thereof
JP6277040B2 (en) Composite roll for rolling
WO2021075561A1 (en) Centrifugally cast composite roll for hot rolling use
JPH108212A (en) Roll for hot rolling
JP4596312B2 (en) Outer layer material for rolling roll excellent in wear resistance and heat crack resistance and rolling roll using the same
JP4650729B2 (en) Composite roll for rolling
JP2716441B2 (en) High speed tool steel
JP4650730B2 (en) Composite roll for rolling
JP5867144B2 (en) Centrifugal cast roll outer layer material for hot rolling excellent in fatigue resistance, centrifugal cast composite roll for hot rolling, and production method thereof
JP2018118319A (en) Compound roll for rolling
JP2014176880A (en) External layer for mill roll, and mill roll
JP2007144442A (en) Composite roll for rolling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP