JPH05163027A - Mold for molding optical glass element and its production - Google Patents

Mold for molding optical glass element and its production

Info

Publication number
JPH05163027A
JPH05163027A JP3334948A JP33494891A JPH05163027A JP H05163027 A JPH05163027 A JP H05163027A JP 3334948 A JP3334948 A JP 3334948A JP 33494891 A JP33494891 A JP 33494891A JP H05163027 A JPH05163027 A JP H05163027A
Authority
JP
Japan
Prior art keywords
film
substrate
glass
ion
release film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3334948A
Other languages
Japanese (ja)
Other versions
JP2997357B2 (en
Inventor
Takahiro Okura
貴博 大蔵
Koichi Yamaguchi
浩一 山口
Kazunori Koga
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3334948A priority Critical patent/JP2997357B2/en
Publication of JPH05163027A publication Critical patent/JPH05163027A/en
Application granted granted Critical
Publication of JP2997357B2 publication Critical patent/JP2997357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/26Mixtures of materials covered by more than one of the groups C03B2215/16 - C03B2215/24, e.g. C-SiC, Cr-Cr2O3, SIALON
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To form a glass-releasing film having excellent adhesivity to a mold for forming an optical glass element, releasability from glass and oxidation resistance. CONSTITUTION:A glass-releasing film is formed by evaporating B and one or more materials selected from the nitride, carbide or oxide of Al, Si, C and the transition metal of group 4a, 5a or 6a of the periodic table and elemental Ni, Fe, Co and C by ion sputtering simultaneously with ion bombardment with one or more kinds of ions selected from nitrogen ion, nitrogen-containing ion and inert gas ion. The adhesiveness of the releasing layer to the mold is improved by forming a mixing layer between the releasing film and a base layer of the substrate mirror-polished to a surface roughness Ra of <=100nm. The crystal structure of boron nitride constituting the main component of the thin film can be made to be 'zincblende structure' or 'wurtzite structure' by selecting the film-forming condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス光学素子をプレ
ス成形により製造するための成形金型とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding die for manufacturing a glass optical element by press molding and a manufacturing method thereof.

【0002】[0002]

【従来の技術】レンズやプリズム等のガラス光学素子を
製造するのに、加熱軟化したガラス素材をプレス成形す
ることにより製造する方法が近年急速に発展している。
このプレス成形で用いられる成形型の成形面表面に形成
されたガラスとの離型膜は高温で軟化したガラスの成形
型への融着を防ぎ、高精度に加工された成形型を保護す
る目的を持っている。そのため、この離型膜には成形型
との密着性、ガラスとの離型性、耐酸化性、平滑性、高
硬度等の膜特性が要求される。
2. Description of the Related Art Recently, a method of manufacturing a glass optical element such as a lens or a prism by press-molding a glass material which has been softened by heating has been rapidly developed.
The release film with the glass formed on the molding surface of the molding die used in this press molding prevents fusion of the glass softened at high temperature to the molding die and protects the molding die processed with high precision. have. Therefore, the release film is required to have film properties such as adhesiveness with a molding die, releasability from glass, oxidation resistance, smoothness, and high hardness.

【0003】従来、これらの要求に対して金属、セラミ
ックス等の成形型に種々のコーティングをする多くの提
案がされている。例えば、本願出願人による特公平2−
59863号公報には真空反応室内に設置した基体表面
にホウ素蒸発源からホウ素(B)を蒸着させると共に、
加連したN2 イオンを照射することにより、基体表面に
cBNやhBNの膜を形成することが開示されている。
また、特公平3−61617号公報にはセラミックより
なる基体の表面に炭化ケイ素(SiC )を被覆し、その上
に窒化ホウ素等の窒化物を被覆してなる光学素子成形金
型が提案されている。そして、特公平3−61615号
公報にはcBN及びaBNの混在した薄膜を光学素子成
形金型へ適応する事が提案されている。また、別な例と
して、特開平2−243523号公報には基体の表面に
炭化物、窒化物から成る中間層を形成し、その上にダイ
ヤモンド膜が被覆された光学素子成形金型が提案されて
いる。
In response to these requirements, many proposals have been made so far to apply various coatings to a molding die made of metal, ceramics or the like. For example, Japanese Patent Publication No.
No. 59863 discloses that boron (B) is vapor-deposited from a boron evaporation source on the surface of a substrate placed in a vacuum reaction chamber.
It is disclosed that a film of cBN or hBN is formed on the surface of the substrate by irradiating with continuous N 2 ions.
Further, Japanese Patent Publication No. 3-61617 proposes an optical element molding die in which a surface of a ceramic substrate is coated with silicon carbide (SiC) and a nitride such as boron nitride is coated thereon. There is. Japanese Patent Publication No. 3-61615 proposes to apply a thin film in which cBN and aBN are mixed to an optical element molding die. As another example, JP-A-2-243523 proposes an optical element molding die in which an intermediate layer made of carbide or nitride is formed on the surface of a substrate, and a diamond film is coated on the intermediate layer. There is.

【0004】[0004]

【従来技術の課題】これらの離型膜は、BK7等の鉛を
含有しないガラス材料のプレス成形には適しており、1
000回以上の成形耐久性を得ている。ところが、SF
6等のように鉛を含有したガラス材料のプレス成形で
は、ガラス成分中の鉛がダイヤモンド膜の炭素により還
元され、成形したガラス光学素子の表面に微少量析出
し、表面を白濁させ、表面粗さを低下させてしまう。更
に、この析出鉛により離型膜の表面には引っかき傷が無
数に発生し、離型膜の耐久性を著しく劣化させていた。
These releasing films are suitable for press molding of lead-free glass materials such as BK7.
Has obtained molding durability of 000 times or more. However, SF
In press molding of a glass material containing lead such as No. 6, lead in the glass component is reduced by the carbon of the diamond film, a minute amount is deposited on the surface of the molded glass optical element, and the surface becomes clouded, resulting in surface roughness. Will be reduced. Further, the deposited lead causes countless scratches on the surface of the release film, which significantly deteriorates the durability of the release film.

【0005】また、離型膜として要求される成形型との
密着性、ガラスとの離型性、耐酸化性、平滑性、高硬度
等の膜特性の中で、従来の離型膜では密着性の問題が未
解決であり、ヒートサイクルを繰り返すと熱膨張差によ
る応力により膜が剥離してしまい、成形金型の離型膜と
しては耐久性が低下していた。
Further, among the film characteristics required as a mold release film, such as adhesion to a mold, mold release property to glass, oxidation resistance, smoothness, high hardness, etc., a conventional mold release film has good adhesion. The problem of the property has not been solved, and when the heat cycle is repeated, the film peels off due to the stress due to the difference in thermal expansion, and the durability as a release film of the molding die is deteriorated.

【0006】離型膜として、cBN及びaBNの混在し
た薄膜を被覆した場合、薄膜内部の残留歪の除去と熱膨
張係数の差を緩和することが可能になり、膜の密着性、
ヒートショック性の改善が期待できる。しかし、aBN
ではB/N=1となりにくく、金属ホウ素がリッチな組
成になり易いため耐酸化性が劣る。従って、ガラス成形
時にaBNの部分が酸化し、成形面の表面粗さが低下し
てしまう。
When a thin film in which cBN and aBN are mixed is coated as the release film, it becomes possible to remove the residual strain inside the thin film and alleviate the difference in the coefficient of thermal expansion.
Improvement of heat shock property can be expected. However, aBN
In the case of B / N = 1, it is difficult to obtain B / N = 1 and the composition is likely to be rich in metallic boron, so that the oxidation resistance is poor. Therefore, the aBN portion is oxidized during glass forming, and the surface roughness of the forming surface is reduced.

【0007】[0007]

【課題を解決するための手段】基体と、該基体の成形面
表面に形成した該基体と同一材質の下地層と、この上に
形成した混合層と、最表面に離型膜として、窒化ホウ素
が少なくとも30体積%以上含まれて、残部にAl,S
i,元素周期律表の4a,5a,6a族遷移金属の窒化
物,炭化物,酸化物およびNi,Fe,Coの中から少
なくとも1種類が選択され70体積%以下で構成されて
いる薄膜を形成した。この離型膜の形成方法は、基体の
成形面表面に該基体と同一材質の材料を蒸着し、蒸着面
表面を鏡面仕上げして、B及びAl,Si,C,元素周
期律表の4a,5a,6a族遷移金属の窒化物,炭化
物,酸化物およびNi,Fe,Co,Cの中から少なく
とも1種類の蒸着を行いながら、これと同時に窒素イオ
ン,窒素含有物イオン,及び不活性ガスイオンの中から
少なくとも1種類のイオン照射をすることにより、該鏡
面仕上げ面との界面に混合層を形成し、これを介して前
記離型膜を形成することにより得られた。
[Means for Solving the Problems] A substrate, an underlayer formed on the surface of a molding surface of the substrate and made of the same material as the substrate, a mixed layer formed on the substrate, and a boron nitride as a release film on the outermost surface. Is contained in at least 30% by volume and the balance is Al, S
i, at least one selected from nitrides, carbides and oxides of transition metals of groups 4a, 5a and 6a of the Periodic Table of Elements and Ni, Fe, Co and a thin film composed of 70% by volume or less did. This release film is formed by depositing a material of the same material as that of the substrate on the surface of the substrate to be formed, vapor-depositing the surface of the substrate to a mirror finish, and then B, Al, Si, C, 4a of the periodic table of elements, While depositing at least one kind of nitrides, carbides and oxides of group 5a and 6a transition metals and Ni, Fe, Co and C, at the same time, nitrogen ions, nitrogen-containing substance ions, and inert gas ions are formed. It was obtained by irradiating at least one kind of ions from among the above to form a mixed layer at the interface with the mirror-finished surface, and forming the release film via the mixed layer.

【0008】この成膜方法は、照射するイオンガスの混
合比と加速電圧を制御することにより、成形面表面と離
型膜の界面にダイナミックイオンミキシングによる混合
層を形成させ、離型膜の付着強度を向上させた。
In this film forming method, a mixing layer by dynamic ion mixing is formed on the interface between the molding surface and the release film by controlling the mixing ratio of the ion gas to be irradiated and the acceleration voltage, and the release film is attached. Improved strength.

【0009】また、照射するイオンの混合比と加速電圧
を制御することにより、窒化ホウ素の結晶構造を「せん
亜鉛鉱」または「ウルツ鉱型」にすることができる。
Further, the crystal structure of boron nitride can be made into a "sphalerite" or "wurtzite type" by controlling the mixing ratio of the irradiation ions and the acceleration voltage.

【0010】[0010]

【作用】この離型膜は、ヌープ硬度3000から500
0kg/mm2 の高硬度な窒化ホウ素膜であり、成形耐
久回数は3000回以上である。窒化ホウ素の分解温度
は2300℃で、酸化雰囲気中でも1200℃で使用で
きる耐熱性を有している。更に、SF6等のように鉛を
含有したガラス材料と反応を起こさない特徴を有してい
る。また、AlN,Al2 3 ,Si3 4 ,SiC,
TiC,TiN,ZrC,ZrN,Cr2 C,Cr2
3 ,WC等は硬質化合物であるので、膜中に含有される
ことにより高硬度な膜となり、プレス成形時に傷が入り
難くなり耐久性を改善することができる。
This release film has a Knoop hardness of 3000 to 500.
The boron nitride film has a high hardness of 0 kg / mm 2 , and has a molding durability of 3000 times or more. The decomposition temperature of boron nitride is 2300 ° C, and it has heat resistance such that it can be used at 1200 ° C even in an oxidizing atmosphere. Further, it has a feature that it does not react with a glass material containing lead such as SF6. In addition, AlN, Al 2 O 3 , Si 3 N 4 , SiC,
TiC, TiN, ZrC, ZrN, Cr 2 C, Cr 2 O
Since 3 , WC and the like are hard compounds, when they are contained in the film, they become a high hardness film, which makes it difficult for scratches to be formed during press molding and improves durability.

【0011】この離型膜は、SF6等の鉛を含有した光
学材料のプレス成形において、鉛と化学的に反応しない
ので、析出鉛は発生せず、従来成形できなかった鉛を含
有した光学ガラスのプレス成形を可能にする。
This release film does not chemically react with lead in press molding of an optical material containing lead such as SF6, so that precipitated lead is not generated and an optical glass containing lead which could not be conventionally formed. Enables press molding.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。実験例1 図1に示すように、ガラス光学素子成形金型の基体1を
反応室2にセットし、真空ポンプ7にて真空引きした
後、ヒーター3により400℃〜800℃に加熱する。
Al,Si,元素周期律表の4a,5a,6a族遷移金
属の有機化合物ガス4を反応室2に導入する。そして炉
外より紫外線レーザー6をミラー9、レーザー導入窓1
0を介して基体1の表面に照射する。レーザー導入窓1
0にはレーザー導入窓保護ガス5を流しており、また真
空引きの際の排気ガスは排ガス処理設備8で処理する。
以上の光MOCVD反応によって、緻密で且つ平坦な成
膜をすることができる。
EXAMPLES Examples of the present invention will be described below. Experimental Example 1 As shown in FIG. 1, a substrate 1 of a glass optical element molding die is set in a reaction chamber 2 and evacuated by a vacuum pump 7, and then heated by a heater 3 to 400 ° C. to 800 ° C.
An organic compound gas 4 of Al, Si, and 4a, 5a, 6a transition metals of the periodic table of elements is introduced into the reaction chamber 2. Then, the ultraviolet laser 6 is mirrored from outside the furnace, and the laser introduction window 1
The surface of the substrate 1 is irradiated via 0. Laser introduction window 1
A laser introduction window protective gas 5 is flown in 0, and the exhaust gas at the time of evacuation is processed by the exhaust gas processing equipment 8.
By the above photo MOCVD reaction, a dense and flat film can be formed.

【0013】ガラス光学素子成形金型の基体1としてS
iC(炭化ケイ素)を用い、その成形面にCVD法によ
り下地層としてSiC膜を厚さ数100μm蒸着した。
次にSiC膜の表面をRa=1nm以下になるように鏡
面仕上げした。この基体1を図1の光MOCVD装置の
中にいれ、550℃に加熱し、原料ガスを表1の条件に
従い反応室2に導入して成膜を行った。
As the substrate 1 of the glass optical element molding die, S is used.
Using iC (silicon carbide), a SiC film having a thickness of several 100 μm was vapor-deposited as an underlayer on the molding surface by the CVD method.
Next, the surface of the SiC film was mirror-finished so that Ra = 1 nm or less. This substrate 1 was placed in the optical MOCVD apparatus of FIG. 1 and heated to 550 ° C., and the raw material gas was introduced into the reaction chamber 2 according to the conditions of Table 1 to form a film.

【0014】また、同時に基体表面に紫外線レーザー6
を照射することによってCVD反応を効率よく起こさ
せ、平滑で緻密な成膜を行った。表1に示すように、原
料ガスの輸送条件を変えて成膜した。結晶構造、組成、
ヌープ硬度、耐久回数(SF6等の鉛を含有した光学材
料のプレス成形回数)を測定した結果を表1に示す。B
Nの含有が30体積%以上に於いて、3000回以上の
成形耐久性能が得られた。
At the same time, an ultraviolet laser 6 is applied to the surface of the substrate.
By irradiating with, the CVD reaction was caused efficiently to form a smooth and dense film. As shown in Table 1, the film formation was performed by changing the transportation conditions of the source gas. Crystal structure, composition,
Table 1 shows the results of measuring the Knoop hardness and the number of times of durability (the number of times of press molding of an optical material containing lead such as SF6). B
When the content of N was 30% by volume or more, molding durability performance of 3000 times or more was obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】実験例2 図2に示すように、基体11を図2の反応室の中に入れ
た。ターゲット(1)12に金属ホウ素をセットし反応
室を10-6Torr以下に真空引きした。Arイオンビーム
スパッタにより金属ホウ素を約1nm/minの蒸着速
度で蒸着しながら、同時にイオン照射用イオン源20か
らAr/N2 =0.3の混合ガスのイオンを40keV
の加速電圧で照射し、ミキシング時間を表2の様に変え
て処理することにより、成形型表面と離型膜との間の混
合層の厚さを変化させた。引き続き、Ar/N2 =0.
3の混合ガスのイオンを10keVの加速電圧で照射し
ながら、B/N組成比が約1になるように蒸着速度を制
御して、窒化ホウ素膜を約300nmの厚さに成膜し
た。
Experimental Example 2 As shown in FIG. 2, the substrate 11 was placed in the reaction chamber shown in FIG. Metallic boron was set on the target (1) 12 and the reaction chamber was evacuated to 10 -6 Torr or less. While depositing metallic boron at a deposition rate of about 1 nm / min by Ar ion beam sputtering, at the same time, 40 keV of mixed gas ions of Ar / N 2 = 0.3 from the ion source 20 for ion irradiation.
The mixed layer between the surface of the mold and the release film was changed in thickness by irradiating with an accelerating voltage of 2 and changing the mixing time as shown in Table 2. Subsequently, Ar / N 2 = 0.
While irradiating the ions of the mixed gas of 3 at an acceleration voltage of 10 keV, the deposition rate was controlled so that the B / N composition ratio was about 1, and a boron nitride film was formed to a thickness of about 300 nm.

【0017】以上のイオンビームスパッタ蒸着装置によ
って基体表面と強固に密着した離型膜を得ることができ
る。この蒸着方法は、蒸着速度とイオン照射の加速電圧
を制御することによって、成形面と離型膜の界面に混合
層を形成させることができ、離型膜の付着強度を向上さ
せることができる。また照射するイオンガスの混合比と
加速電圧を制御することによって、超高圧相であって超
硬質物質である「せん亜鉛鉱型窒化ホウ素」または「ウ
ルツ鉱型窒化ホウ素」を生成させることができる。
With the above ion beam sputtering deposition apparatus, it is possible to obtain a release film firmly adhered to the surface of the substrate. In this vapor deposition method, a mixed layer can be formed at the interface between the molding surface and the release film by controlling the vapor deposition rate and the acceleration voltage of the ion irradiation, and the adhesion strength of the release film can be improved. In addition, by controlling the mixing ratio and the accelerating voltage of the ion gas to be irradiated, it is possible to generate the "sphalerite-type boron nitride" or "wurtzite-type boron nitride" that is an ultra-high pressure phase and an ultra-hard material. ..

【0018】このときミキシング処理時間とヌープ硬度
との関係を調べた結果を表2に示した。ミキシング処理
をすることにより硬度が上昇したのは、離型膜の密着性
が上昇したためと考えられる。
Table 2 shows the results of examining the relationship between the mixing treatment time and the Knoop hardness at this time. The increase in hardness due to the mixing treatment is considered to be due to the increase in the adhesiveness of the release film.

【0019】更に、基体の種類とその表面の表面粗さの
影響を調べた。窒化ホウ素の成膜条件は表2の実験番号
4と同じで行った。このとき、表面粗さとヌープ硬度、
耐久回数(SF6等の鉛を含有した光学材料のプレス成
形回数)との関係を調べた結果を表3に示した。Raが
約100nm以下であるとミキシング効果がよく得ら
れ、離型性の良い膜が得られる。
Further, the influence of the type of substrate and the surface roughness of its surface was investigated. The film forming conditions of boron nitride were the same as those of Experiment No. 4 in Table 2. At this time, the surface roughness and Knoop hardness,
Table 3 shows the results of examining the relationship with the durability count (the number of press moldings of the optical material containing lead such as SF6). When Ra is about 100 nm or less, a good mixing effect can be obtained, and a film having good releasability can be obtained.

【0020】この離型膜は、ヌープ硬度3000〜50
00kg/mm2 の高硬度な窒化ホウ素膜であり、成形
耐久回数は3000回以上である。
This release film has a Knoop hardness of 3000 to 50.
It is a high-hardness boron nitride film of 00 kg / mm 2 , and has a molding durability of 3000 times or more.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】実験例3 実験例2と同じ装置を用いて、表4に示した10種類の
イオンビームスパッタ用ターゲットの中から、表5の様
に2種類のターゲットを選択し、イオン照射条件を変化
させて、窒化ホウ素と金属酸化物または金属窒化物また
は金属炭化物との複合体膜を成膜した。膜中の結晶相、
BNの含有率、ヌープ硬度、耐久回数を評価した結果を
表5に示した。
Experimental Example 3 Using the same apparatus as in Experimental Example 2, two kinds of targets as shown in Table 5 were selected from the 10 kinds of targets for ion beam sputtering shown in Table 4, and the ion irradiation conditions were changed. By changing it, a composite film of boron nitride and a metal oxide, a metal nitride, or a metal carbide was formed. Crystalline phase in the film,
Table 5 shows the results of evaluation of the BN content, the Knoop hardness, and the number of times of durability.

【0024】この離型膜は、ヌープ硬度4000〜50
00kg/mm2の高硬度な窒化ホウ素膜であり、成形
耐久回数は4000回以上である。
This release film has a Knoop hardness of 4000 to 50.
It is a high-hardness boron nitride film of 00 kg / mm 2 , and has a molding durability of 4000 times or more.

【0025】実験例1と比べ硬度及び耐久性が向上した
のは、窒化ホウ素膜に混合されたAlN,Al2 3
Si3 4,SiC,TiC,TiN,ZrC,Zr
N,Cr2 C,Cr2 3 ,WC等は硬質化合物である
ので、膜中に含有されることにより高硬度な膜となりプ
レス成形時に傷が入り難くなり、耐久性が改善された為
である。
The hardness and durability were improved as compared with Experimental Example 1, because AlN, Al 2 O 3 mixed in the boron nitride film,
Si 3 N 4 , SiC, TiC, TiN, ZrC, Zr
N, Cr 2 C, Cr 2 O 3 , WC, etc. are hard compounds, so when they are contained in the film, they become a high hardness film, which makes it difficult for scratches to be formed during press molding and improves durability. is there.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】実験例4 実験例2と同じ装置を用いて、図2のターゲット(1)
12に金属ホウ素をセットし、表6の様にイオン照射す
る混合ガスイオンの条件を変えて、膜中に生成した結晶
相をX線回折とラマン分光により評価した。
Experimental Example 4 Using the same apparatus as in Experimental Example 2, the target (1) shown in FIG.
Metallic boron was set in No. 12, the conditions of mixed gas ions for ion irradiation were changed as shown in Table 6, and the crystal phase generated in the film was evaluated by X-ray diffraction and Raman spectroscopy.

【0029】Ar/N2 =30%、He/Ne=30%
のとき加速電圧が2および20KeVでcBNとwBN
とウルツ鉱型BNとの結晶相が確認された。このことか
ら、実験例2、3で得られたBN膜はcBNとwBNと
の混合結晶相であることが分かった。
Ar / N 2 = 30%, He / Ne = 30%
When the acceleration voltage is 2 and 20 KeV, cBN and wBN
A crystalline phase of wurtzite BN was confirmed. From this, it was found that the BN films obtained in Experimental Examples 2 and 3 had a mixed crystal phase of cBN and wBN.

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【発明の効果】このように本発明によれば、実施例で示
した成膜条件でガスの混合比率とイオン加速電圧および
ミキシング時間の最適化により、密着性を向上させる働
きをする混合層を最適な条件で生成させ、成形型基体と
密着性に優れた窒化ホウ素を主成分としたガラス光学素
子成形金型のガラス離型膜を得ることができる。
As described above, according to the present invention, it is possible to form a mixed layer having a function of improving the adhesion by optimizing the gas mixing ratio, the ion acceleration voltage and the mixing time under the film forming conditions shown in the examples. It is possible to obtain a glass release film of a glass optical element molding die containing boron nitride as a main component, which is produced under optimum conditions and has excellent adhesion to the molding die substrate.

【0032】この離型膜は、窒化ホウ素と金属酸化物ま
たは金属窒化物または金属炭化物の複合体薄膜で、実施
例に示した通りプレス耐久性に優れていることがわか
る。更に、この金属を含有した窒化ホウ素によるガラス
光学素子成形金型の離型膜は、SF6等の鉛を含有した
光学材料のプレス成形において、鉛と化学的に反応しな
いので、析出鉛は発生せず、従来成形できなかった鉛を
含有した光学ガラスのプレスの成形を可能にした。
This release film is a composite thin film of boron nitride and a metal oxide, a metal nitride, or a metal carbide, and it can be seen that it has excellent press durability as shown in the examples. Further, the release film of the glass optical element molding die made of boron nitride containing this metal does not chemically react with lead in press molding of an optical material containing lead such as SF6, so that precipitated lead is not generated. In addition, it enables the press molding of optical glass containing lead, which could not be molded conventionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における、光MOCVD法によ
る成膜装置の概略図である。
FIG. 1 is a schematic view of a film forming apparatus by an optical MOCVD method in an example of the present invention.

【図2】本発明の実施例における、イオンビームスパッ
タ法による成膜装置の概略図である。
FIG. 2 is a schematic diagram of a film forming apparatus by an ion beam sputtering method in an example of the present invention.

【符号の説明】[Explanation of symbols]

1、11 基体 2 反応室 3 加熱ヒーター 4 原料ガス 5 レーザー導入窓保護ガス 6 紫外線レーザー 7 真空ポンプ 8 排ガス処理設備 9 ミラー 10 レーザー導入窓 12 ターゲット(1) 13 ターゲット(2) 14 ターゲット(3) 15 ターゲット(4) 16 イオンビームスパッタ用イオン源1 17 イオンビームスパッタ用イオン源2 18 イオンビームスパッタ用イオン源3 19 イオンビームスパッタ用イオン源4 20 イオン照射用イオン源 1, 11 Substrate 2 Reaction chamber 3 Heating heater 4 Raw material gas 5 Laser introduction window protection gas 6 Ultraviolet laser 7 Vacuum pump 8 Exhaust gas treatment facility 9 Mirror 10 Laser introduction window 12 Target (1) 13 Target (2) 14 Target (3) 15 target (4) 16 ion source for ion beam sputtering 1 17 ion source for ion beam sputtering 2 18 ion source for ion beam sputtering 3 19 ion source for ion beam sputtering 4 20 ion source for ion irradiation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体と、該基体の成形面表面に形成した該
基体と同一材質の下地層と、この上に形成した混合層
と、最表面に離型膜として窒化ホウ素が少なくとも30
体積%以上含まれて、残部にAl,Si,元素周期律表
の4a,5a,6a族遷移金属の窒化物,炭化物,酸化
物およびNi,Fe,Coの中から少なくとも1種類が
選択され70体積%以下で構成されている薄膜を備えた
ことを特徴とするガラス光学素子成形金型。
1. A substrate, an underlayer formed on the surface of the molding surface of the substrate and made of the same material as the substrate, a mixed layer formed on the substrate, and at least 30 boron nitride as a release film on the outermost surface.
At least one selected from the group consisting of Al, Si, nitrides, carbides and oxides of transition metals of groups 4a, 5a and 6a of the periodic table of the elements and Ni, Fe and Co in the balance 70% by volume or more A glass optical element molding die, comprising a thin film composed of less than or equal to volume%.
【請求項2】B及びAl,Si,C,元素周期律表の4
a,5a,6a族遷移金属の窒化物,炭化物,酸化物お
よびNi,Fe,Co,Cの中から少なくとも1種類の
蒸着と同時に窒素イオン,窒素含有物イオン,及び不活
性ガスイオンの中の少なくとも1種類のイオン照射を
し、鏡面仕上げされた該下地層表面との界面に混合層を
生成し、これを介して再表面に請求項1記載の該離型膜
を形成することを特徴とするガラス光学素子成形金型の
製造方法。
2. B and Al, Si, C, 4 of the Periodic Table of the Elements
a, 5a, and 6a transition metal nitrides, carbides, oxides, and at least one of Ni, Fe, Co, and C are vapor-deposited, and at the same time, nitrogen ions, nitrogen-containing ions, and inert gas ions At least one kind of ion irradiation is performed to form a mixed layer at an interface with the surface of the underlayer that is mirror-finished, and the release film according to claim 1 is formed on the re-surface through the mixed layer. A method for manufacturing a glass optical element molding die.
【請求項3】前記窒化ホウ素が「せん亜鉛鉱型」または
「ウルツ鉱型」の結晶構造であることを特徴とする請求
項1記載のガラス光学素子成形金型。
3. The glass optical element molding die according to claim 1, wherein the boron nitride has a “zincblende type” or “wurtzite type” crystal structure.
JP3334948A 1991-12-18 1991-12-18 Glass optical element molding die and manufacturing method thereof Expired - Fee Related JP2997357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334948A JP2997357B2 (en) 1991-12-18 1991-12-18 Glass optical element molding die and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3334948A JP2997357B2 (en) 1991-12-18 1991-12-18 Glass optical element molding die and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05163027A true JPH05163027A (en) 1993-06-29
JP2997357B2 JP2997357B2 (en) 2000-01-11

Family

ID=18283028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334948A Expired - Fee Related JP2997357B2 (en) 1991-12-18 1991-12-18 Glass optical element molding die and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2997357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720791A (en) * 1994-08-03 1998-02-24 Minolta Co., Ltd. Method of producing an optical lens element
JP2008189513A (en) * 2007-02-05 2008-08-21 Tungaloy Corp Die for molding optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720791A (en) * 1994-08-03 1998-02-24 Minolta Co., Ltd. Method of producing an optical lens element
JP2008189513A (en) * 2007-02-05 2008-08-21 Tungaloy Corp Die for molding optical element

Also Published As

Publication number Publication date
JP2997357B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP7440508B2 (en) Heat resistant carbon coating
JP2997357B2 (en) Glass optical element molding die and manufacturing method thereof
US20070261444A1 (en) Method for making a mold used for press-molding glass optical articles
JP2820728B2 (en) Composite mold for optical parts molding
JP2740607B2 (en) Glass forming mold and manufacturing method thereof
JP2971226B2 (en) Method for manufacturing glass optical element molding die
JP2962905B2 (en) Method for manufacturing glass optical element molding die
JPH05105523A (en) Production of pyrolytic boron nitride compact
JP2555810B2 (en) Mold for press-molding optical glass element and method for manufacturing the same
JP2892240B2 (en) Glass forming mold and method for producing the same
JP2662285B2 (en) Mold for optical element molding
US20060026995A1 (en) Molding core and method for making the same
US20060010919A1 (en) Molding core
JPH06248420A (en) Hard film coated member
JPH09184060A (en) Die having nitrided layer excellent in resistance to heat and oxidation, and its production
JPH10324530A (en) Die for forming glass
JPS6172634A (en) Mold for molding glass article
JP3046184B2 (en) Method for manufacturing glass optical element
JPH07258822A (en) Boron nitride containing film and its production
US20060048544A1 (en) Molding core
US20040206118A1 (en) Mold for press-molding glass optical articles and method for making the mold
JPH09110437A (en) Member for forming optical element
JP2746440B2 (en) Mold for optical element molding
JPH07330351A (en) Mold for producing optical element
JPH0725559B2 (en) Mold for optical element molding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees