JP2008189513A - Die for molding optical element - Google Patents

Die for molding optical element Download PDF

Info

Publication number
JP2008189513A
JP2008189513A JP2007025058A JP2007025058A JP2008189513A JP 2008189513 A JP2008189513 A JP 2008189513A JP 2007025058 A JP2007025058 A JP 2007025058A JP 2007025058 A JP2007025058 A JP 2007025058A JP 2008189513 A JP2008189513 A JP 2008189513A
Authority
JP
Japan
Prior art keywords
film
optical element
molding
base material
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025058A
Other languages
Japanese (ja)
Other versions
JP4830882B2 (en
Inventor
Mamoru Kobata
護 木幡
Takeshi Fujihira
剛 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2007025058A priority Critical patent/JP4830882B2/en
Publication of JP2008189513A publication Critical patent/JP2008189513A/en
Application granted granted Critical
Publication of JP4830882B2 publication Critical patent/JP4830882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die for molding an optical element having excellent heat resistance, oxidation resistance and wear resistance in the production process of an optical element. <P>SOLUTION: In the die for molding an optical element composed of a base material and a film at least applied to the molding face in the base material, the film is composed of an internal film and an external film, and the internal film is composed of at least one kind selected from the group 4a, 5a and 6a elements in the periodic table, Al and at least one kind selected from C, N and O. Further, the external film is composed of at least one kind selected from the group 4a, 5a and 6a elements in the periodic table, Si, B and at least one kind selected from C, N and O. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光学機器等に使用される光学素子を成形するための光学素子成形用金型に関する。   The present invention relates to an optical element molding die for molding an optical element used in an optical instrument or the like.

光学素子のプレス成形は、所望の精度に仕上げた光学素子成形用金型に被成形ガラスまたは被成形プラスチックを入れ、所定の雰囲気、温度、圧力で加圧して行われる。光学素子は非常に高い面精度が要求される。成形された光学素子には金型表面の形状が転写されるため、光学素子成形用金型は、プレス時の雰囲気、温度、圧力において耐熱性および耐摩耗性に優れていることが要求される。   The press molding of the optical element is performed by putting glass to be molded or plastic to be molded into an optical element molding die finished to a desired accuracy and pressurizing it with a predetermined atmosphere, temperature and pressure. Optical elements are required to have very high surface accuracy. Since the shape of the mold surface is transferred to the molded optical element, the optical element molding mold is required to have excellent heat resistance and wear resistance in the atmosphere, temperature, and pressure during pressing. .

このような要求に対し、ガラス成形用金型を保護する金型保護膜が提案されている(例えば、特許文献1参照。)。また、光学素子のプレス成形用金型にTiAlN膜を形成する離型膜形成方法が提案されている(例えば、特許文献2参照。)。これらは、光学素子成形用金型の表面に、TiN、TiAlNなどの被膜を被覆して、離型性、耐久性を向上させたものであるが、TiN、TiAlNの耐熱性、耐酸化性、耐摩耗性が十分ではなく、大幅な寿命向上には至らなかった。   In response to such a demand, a mold protective film for protecting a glass mold is proposed (for example, see Patent Document 1). In addition, a release film forming method for forming a TiAlN film on a press mold for an optical element has been proposed (see, for example, Patent Document 2). These are coated with a coating such as TiN or TiAlN on the surface of the optical element molding die to improve the releasability and durability, but the heat resistance and oxidation resistance of TiN and TiAlN, The wear resistance was not sufficient, and the service life was not significantly improved.

特開平11−43333号公報JP 11-43333 A 特開平9−301722号公報JP-A-9-301722

光学素子の製造工程において、品質の向上とコスト低減のため、精度の高い光学素子の製造と金型の交換回数の低減が要求されている。そのため、従来よりも耐熱性、耐酸化性および耐摩耗性に優れた光学素子成形用金型が求められている。そこで、本発明は耐熱性、耐酸化性および耐摩耗性に優れた光学素子成形用金型の提供を目的とする。   In the manufacturing process of an optical element, in order to improve quality and reduce cost, it is required to manufacture an optical element with high accuracy and reduce the number of times of die replacement. Therefore, there is a demand for a mold for molding an optical element that is superior in heat resistance, oxidation resistance, and wear resistance than conventional ones. Accordingly, an object of the present invention is to provide an optical element molding die excellent in heat resistance, oxidation resistance, and wear resistance.

本発明者らは、光学素子成形用金型に関する研究開発を行った結果、基材の少なくとも成形面に硬質で耐熱性に優れるセラミックス被膜を被覆することにより、耐熱性、耐酸化性および耐摩耗性が優れるとともに、被成形ガラスおよび被成形プラスチックとの親和性が低い光学素子成形用金型を得ることができた。   As a result of the research and development of the optical element molding die, the present inventors have coated at least the molding surface of the base material with a hard ceramic film having excellent heat resistance, thereby providing heat resistance, oxidation resistance and wear resistance. As a result, it was possible to obtain a mold for molding an optical element having excellent properties and low affinity with glass to be molded and plastic to be molded.

すなわち、本発明は、基材と基材の少なくとも成形面に被覆された被膜とからなる光学素子成形用金型において、被膜は内膜と外膜とからなり、内膜は周期律表4a、5a、6a族元素の中の少なくとも1種と、Alと、C、N、Oの中の少なくとも1種とからなり、外膜は、周期律表4a、5a、6a族元素の中の少なくとも1種と、Siと、Bと、C、N、Oの中の少なくとも1種とからなる光学素子成形用金型である。   That is, the present invention is an optical element molding die comprising a base material and a coating film coated on at least the molding surface of the base material, wherein the coating film comprises an inner film and an outer film, and the inner film comprises a periodic table 4a, It consists of at least one of group 5a and 6a elements and at least one of Al and C, N and O, and the outer film is at least one of group 4a, 5a and 6a elements in the periodic table. An optical element molding die comprising a seed, Si, B, and at least one of C, N, and O.

本発明の光学素子成形用金型は、基材と基材の成形面に被覆された被膜とからなる。本発明の基材は高硬度材料からなり、具体的には、WC基超硬合金、TiCN基サーメット、ジルコニア、炭化珪素、窒化珪素などのセラミックス、Fe基ステンレス系耐熱鋼、Ni基超耐熱合金などの耐熱性合金などを挙げることができる。その中でも圧縮強度に優れるWC基超硬合金がさらに好ましい。   The optical element molding die of the present invention comprises a base material and a coating film coated on the molding surface of the base material. The base material of the present invention is made of a high-hardness material, specifically, WC-based cemented carbide, TiCN-based cermet, zirconia, silicon carbide, silicon nitride, and other ceramics, Fe-based stainless steel, Ni-based superalloy. And heat-resistant alloys. Among them, a WC-based cemented carbide having excellent compressive strength is more preferable.

本発明の被膜は、内膜と外膜とからなる。本発明の内膜は、周期律表4a、5a、6a族元素の中の少なくとも1種と、Alと、C、N、Oの中の少なくとも1種とからなる。外膜を基材に直接被覆すると外膜の密着性が低いため、基材の表面に内膜を被覆し、内膜の表面に外膜を被覆することで外膜の密着性を高めている。内膜として具体的には、TiAlN,CrAlNなどを挙げることができる。その中でも、TiAlNは耐酸化性に優れるため、さらに好ましい。内膜は単層構造でも、それぞれ組成が異なる薄い膜からなる多層構造でもよい。内膜の平均膜厚は0.1μm未満になると耐摩耗性と耐酸化性が低下し、5.0μmを超えて厚くなると被膜の密着性が低下することから、0.1〜5.0μmが好ましい。   The coating of the present invention comprises an inner membrane and an outer membrane. The inner film of the present invention is composed of at least one of periodic group elements 4a, 5a, and 6a, Al, and at least one of C, N, and O. Since the adhesion of the outer membrane is low when the outer membrane is directly coated on the substrate, the inner membrane is coated on the surface of the substrate, and the outer membrane is coated on the surface of the inner membrane to enhance the adhesion of the outer membrane. . Specific examples of the inner film include TiAlN and CrAlN. Among these, TiAlN is more preferable because it is excellent in oxidation resistance. The inner film may be a single layer structure or a multilayer structure composed of thin films having different compositions. When the average thickness of the inner film is less than 0.1 μm, the wear resistance and oxidation resistance are reduced, and when it exceeds 5.0 μm, the adhesion of the coating is reduced. preferable.

本発明の外膜は、周期律表4a、5a、6a族元素の中の少なくとも1種と、Siと、Bと、C、N、Oの中の少なくとも1種とからなる。Siは耐酸化性を向上させる作用があり、Bは外膜の結晶を微粒化させて外膜の表面を平滑にする作用がある。本発明の外膜として具体的には、CrSiBN、TiSiBNなどを挙げることができる。その中でもCrSiBNは耐酸化性と平滑性に優れるため、さらに好ましい。外膜は単層構造でも、それぞれ組成が異なる薄い膜からなる多層構造でもよい。外膜の平均膜厚は0.5μm未満になると耐摩耗性と耐酸化性が低下し、10.0μmを超えて厚くなると被膜の密着性が低下することから、0.5〜10.0μmが好ましい。   The outer membrane of the present invention comprises at least one of the elements in the periodic table 4a, 5a, 6a, Si, B, and at least one of C, N, and O. Si has an action of improving oxidation resistance, and B has an action of atomizing the crystals of the outer film to smooth the surface of the outer film. Specific examples of the outer film of the present invention include CrSiBN and TiSiBN. Among these, CrSiBN is more preferable because it is excellent in oxidation resistance and smoothness. The outer film may be a single layer structure or a multilayer structure composed of thin films having different compositions. When the average film thickness of the outer film is less than 0.5 μm, the wear resistance and oxidation resistance decrease, and when it exceeds 10.0 μm, the adhesion of the film decreases. preferable.

基材の少なくとも成形面に被膜を被覆する方法としては、真空蒸着法、スパッタ法、イオンプレーティング法などの物理蒸着法を挙げることができる。その中でも、スパッタ法とイオンプレーティング法は密着性の優れた被膜を被覆することができるため、さらに好ましい。   Examples of the method for coating the coating on at least the molding surface of the substrate include physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating. Among these, the sputtering method and the ion plating method are more preferable because they can coat a film having excellent adhesion.

スパッタ法に用いる装置としては、高周波スパッタ装置、マグネトロンスパッタ装置、イオンビームスパッタ装置、アンバランスドマグネトロンスパッタ装置などを挙げることができる。イオンプレーティング法としては、ドロップレットの発生がないホロカソード型イオンプレーティング法、または、ドロップレットの発生を抑えた真空アーク型イオンプレーティング法が好ましい。   Examples of the apparatus used for the sputtering method include a high frequency sputtering apparatus, a magnetron sputtering apparatus, an ion beam sputtering apparatus, and an unbalanced magnetron sputtering apparatus. As the ion plating method, a holocathode type ion plating method in which no droplets are generated or a vacuum arc type ion plating method in which the generation of droplets is suppressed is preferable.

次に、ホロカソード型イオンプレーティング装置を用いる場合と、真空アーク型イオンプレーティング装置を用いる場合の、本発明の光学素子成形用金型の具体的な製造方法を示す。まず光学素子成形用金型の基材を用意する。ホロカソード型イオンプレーティング装置(以降、HCD装置という。)を使用する場合は、真空チャンバ内に用意した基材を設置した後、真空チャンバ内の圧力を真空ポンプにより1×10-4Torr以下にした後、真空チャンバ内の加熱ヒーターもしくは電子衝撃型加熱法により、基材を200〜500℃になるまで1時間加熱する。次にHCD装置の電子銃よりArプラズマを発生させ、基材の表面をArプラズマにて30分間イオン洗浄する。このとき、真空チャンバ内の圧力は5×10-4〜2×10-3Torrに調整し、基材にバイアス電圧として−100〜−300Vの直流電圧を印加する。 Next, a specific manufacturing method of the optical element molding die of the present invention when using a holocathode type ion plating apparatus and when using a vacuum arc type ion plating apparatus will be described. First, a base material for an optical element molding die is prepared. When using a holocathode ion plating apparatus (hereinafter referred to as an HCD apparatus), after the prepared base material is installed in the vacuum chamber, the pressure in the vacuum chamber is reduced to 1 × 10 −4 Torr or less by a vacuum pump. After that, the substrate is heated for 1 hour until it reaches 200 to 500 ° C. by a heater in a vacuum chamber or an electron impact heating method. Next, Ar plasma is generated from the electron gun of the HCD apparatus, and the surface of the substrate is ion-cleaned with Ar plasma for 30 minutes. At this time, the pressure in the vacuum chamber is adjusted to 5 × 10 −4 to 2 × 10 −3 Torr, and a DC voltage of −100 to −300 V is applied as a bias voltage to the substrate.

次に、HCD装置の真空チャンバ内に設置してある内膜用の蒸発源に電子銃から電子を照射して蒸発源の金属を蒸発させ、同時に真空チャンバ内に窒素などの反応ガスを導入して基材の成形面に内膜を被覆する。そして、外膜用の蒸発源に電子銃から電子を照射して蒸発源の金属を蒸発させ、窒素などの反応ガスを導入して外膜を被覆する。なお、内膜および外膜の成膜条件としては、いずれも、圧力を1×10-3〜3×10-3Torr、基材に印加するバイアス電圧を−50〜−200Vの範囲で制御した。なお、外膜のSi、Bの添加方法は、蒸発源の金属に含有させるだけではなく、Si源のTMS(テトラメチルシラン)、B源のテトラアミンボロンを真空チャンバ内に反応ガスとして供給しても好ましい。HCD装置を用いて、以上のような方法で本発明の光学素子成形用金型を得ることができる。 Next, the inner film evaporation source installed in the vacuum chamber of the HCD apparatus is irradiated with electrons from an electron gun to evaporate the metal of the evaporation source, and at the same time, a reactive gas such as nitrogen is introduced into the vacuum chamber. Then, the inner film is coated on the molding surface of the substrate. The outer film evaporation source is irradiated with electrons from an electron gun to evaporate the metal of the evaporation source, and a reactive gas such as nitrogen is introduced to cover the outer film. As the film formation conditions for the inner film and the outer film, the pressure was controlled in the range of 1 × 10 −3 to 3 × 10 −3 Torr and the bias voltage applied to the base material in the range of −50 to −200 V. . In addition, the addition method of Si and B of the outer film is not only to include in the metal of the evaporation source, but also to supply TMS (tetramethylsilane) of the Si source and tetraamine boron of the B source as reaction gases into the vacuum chamber. Even preferable. Using the HCD apparatus, the optical element molding die of the present invention can be obtained by the method as described above.

また、真空アーク型イオンプレーティング装置(以降、AIP装置という。)を用いる場合は、HCD装置と同様に真空チャンバ内に基材を設置して、所定の圧力まで真空排気した後、真空チャンバ内に設置した加熱ヒーターにて基材を200〜500℃まで1時間加熱する。次にArプラズマを発生させ、基材の表面をArプラズマにて30分間イオン洗浄し基材の表面を清浄化する。このときの圧力は1×10-4〜2×10-3Torr、基材にバイアス電圧として−100〜−300Vの直流電圧を印加する。 When a vacuum arc ion plating apparatus (hereinafter referred to as AIP apparatus) is used, a substrate is placed in the vacuum chamber in the same manner as the HCD apparatus, and after evacuating to a predetermined pressure, The base material is heated to 200 to 500 ° C. for 1 hour with a heater installed in 1. Next, Ar plasma is generated, and the surface of the substrate is ion-cleaned with Ar plasma for 30 minutes to clean the surface of the substrate. The pressure at this time is 1 × 10 −4 to 2 × 10 −3 Torr, and a DC voltage of −100 to −300 V is applied as a bias voltage to the substrate.

AIP装置に設置してあるカソード蒸発源の内膜用金属ターゲットを蒸発させ、窒素などの反応ガスを真空チャンバ内に導入し、基材の表面に内膜を被覆する。そして、外膜用金属ターゲットを蒸発させて、窒素などの反応ガスを導入し内膜の表面に外膜を被覆する。内膜および外膜の成膜条件としては、いずれも、圧力を20×10-3〜50×10-3Torr、基材に印加するバイアス電圧を−20〜−200Vの範囲で制御した。AIP装置を用いて、以上のような方法で本発明の光学素子成形用金型を得ることができる。 The inner film metal target of the cathode evaporation source installed in the AIP apparatus is evaporated, a reaction gas such as nitrogen is introduced into the vacuum chamber, and the inner film is coated on the surface of the substrate. Then, the outer film metal target is evaporated, and a reactive gas such as nitrogen is introduced to coat the outer film on the surface of the inner film. As film formation conditions for the inner film and the outer film, the pressure was controlled in the range of 20 × 10 −3 to 50 × 10 −3 Torr and the bias voltage applied to the substrate in the range of −20 to −200V. Using the AIP apparatus, the optical element molding die of the present invention can be obtained by the method as described above.

本発明の被膜は、基材の少なくとも成形面に被覆されていると、耐熱性、耐酸化性および耐摩耗性を向上させる効果が得られる。なお、成形面に加えて成形面以外の基材の表面に本発明の被膜が被覆されていても同じ効果が得られる。   When the coating of the present invention is coated on at least the molding surface of the substrate, the effect of improving heat resistance, oxidation resistance and wear resistance can be obtained. The same effect can be obtained even if the coating of the present invention is coated on the surface of the substrate other than the molding surface in addition to the molding surface.

本発明の光学素子成形用金型は、被成形ガラスおよび被成形プラスチックとの親和性が低く、耐熱性、耐酸化性および耐摩耗性に優れる。そのため、本発明の光学素子成形用金型を使用すると、精度の高い光学素子を多く成形することができるため、従来よりも金型の交換回数を減らすことができる。   The mold for molding an optical element of the present invention has low affinity with glass to be molded and plastic to be molded, and is excellent in heat resistance, oxidation resistance, and wear resistance. Therefore, when the optical element molding die of the present invention is used, a large number of highly accurate optical elements can be molded, so that the number of times of replacement of the mold can be reduced as compared with the conventional art.

90wt%WC−10wt%Co超硬合金からなる基材の成形面を、所定の非球面形状に研削加工し、次いでダイヤモンド研磨材を用い、最大表面粗さRmaxが0.02μm以下になるように研磨した。   The molding surface of a base material made of 90 wt% WC-10 wt% Co cemented carbide is ground into a predetermined aspherical shape, and then a diamond abrasive is used so that the maximum surface roughness Rmax is 0.02 μm or less. Polished.

本発明品1は、HCD装置の真空チャンバ内に、用意した基材を設置した後、真空チャンバ内を真空ポンプにより、圧力を1×10-4Torr以下まで排気した後、真空チャンバ内の加熱ヒーターにより、基材を200〜500℃になるまで1時間加熱した。次に、HCD装置の電子銃よりArプラズマを発生させ、基材の表面をArプラズマにて30分間イオン洗浄した。この時の真空チャンバ内圧力を5×10-4〜2×10-3Torr、基材に印加するバイアス電圧を−100〜−300Vの範囲に制御した。次に、TiAlの金属ペレットを電子銃から電子を照射して蒸発させ、反応ガスとして導入した窒素と反応させ、基材の成形面に平均膜厚2.5μmのTiAlN膜を被覆した。さらに、CrSiBの金属ペレットを同様に電子銃を使って蒸発させて、反応ガスとして導入した窒素と反応させて、TiAlN膜の表面に平均膜厚1.0μmのCrSiBN膜を被覆した。TiAlN膜、CrSiBN膜のいずれの成膜においても、圧力を1×10-3〜3×10-3Torr、基材に印加するバイアス電圧を−50〜−200Vの範囲に制御した。 In the product 1 of the present invention, after the prepared base material is placed in the vacuum chamber of the HCD apparatus, the vacuum chamber is evacuated to a pressure of 1 × 10 −4 Torr or less by a vacuum pump, and the vacuum chamber is then heated. The substrate was heated with a heater for 1 hour until it reached 200-500 ° C. Next, Ar plasma was generated from the electron gun of the HCD apparatus, and the surface of the substrate was ion-cleaned with Ar plasma for 30 minutes. At this time, the pressure in the vacuum chamber was controlled in the range of 5 × 10 −4 to 2 × 10 −3 Torr, and the bias voltage applied to the substrate was controlled in the range of −100 to −300V. Next, TiAl metal pellets were evaporated by irradiating with electrons from an electron gun and reacted with nitrogen introduced as a reaction gas to coat a TiAlN film having an average film thickness of 2.5 μm on the molding surface of the substrate. Further, CrSiB metal pellets were similarly evaporated using an electron gun and reacted with nitrogen introduced as a reaction gas to coat the surface of the TiAlN film with a CrSiBN film having an average thickness of 1.0 μm. In any of the TiAlN film and the CrSiBN film, the pressure was controlled in the range of 1 × 10 −3 to 3 × 10 −3 Torr, and the bias voltage applied to the substrate was in the range of −50 to −200V.

比較品1、2は、HCD装置の真空チャンバ内に、用意した基材を設置し、本発明品1と同様にArプラズマにてイオン洗浄した後、比較品1は、Tiの金属ペレットを使用して基材の成形面に平均膜厚3.5μmのTiN膜を被覆し、比較品2はTiAlの金属ペレットを使用して基材の成形面に平均膜厚3.5μmのTiAlN膜を被覆した。比較品1,2のいずれの成膜においても、圧力を1×10-3〜3×10-3Torr、基材に印加するバイアス電圧を−50〜−200Vの範囲に制御した。 For comparison products 1 and 2, the prepared substrate is placed in the vacuum chamber of the HCD apparatus, and after ion cleaning with Ar plasma as in the present invention product 1, comparison product 1 uses Ti metal pellets. Then, a TiN film with an average film thickness of 3.5 μm is coated on the molding surface of the base material, and Comparative Product 2 uses a TiAl metal pellet to coat a TiAlN film with an average film thickness of 3.5 μm on the molding surface of the base material did. In any film formation of the comparative products 1 and 2, the pressure was controlled in the range of 1 × 10 −3 to 3 × 10 −3 Torr and the bias voltage applied to the base material was in the range of −50 to −200V.

本発明品1と比較品1,2の光学素子成型用金型を実際の成形雰囲気より、酸化しやすい条件で酸化試験を行った。酸化試験では、大気炉を用いて試料を大気中に700℃と800℃にそれぞれ2時間保持した後、取り出した。酸化試験後の試料について、被膜の破断面をSEMで観察して酸化層の厚さを測定し、その結果を表1に示した。また、被膜の表面を光学顕微鏡およびSEMで観察し、その結果を表2に示した。   The oxidation test was performed on the optical element molding molds of the product 1 of the present invention and the comparative products 1 and 2 under conditions that facilitate oxidation from the actual molding atmosphere. In the oxidation test, the sample was kept in the atmosphere at 700 ° C. and 800 ° C. for 2 hours using an atmospheric furnace, and then taken out. For the sample after the oxidation test, the fracture surface of the coating was observed with an SEM, and the thickness of the oxide layer was measured. The results are shown in Table 1. Further, the surface of the coating was observed with an optical microscope and SEM, and the results are shown in Table 2.

Figure 2008189513
Figure 2008189513

Figure 2008189513
Figure 2008189513

被膜の破断面観察と表面観察から、本発明品1は大気中で800℃に加熱しても酸化されなかった。比較品1は大気中で700℃、800℃に加熱すると酸化して表面が粗くなった。比較品2は大気中で800℃に加熱すると酸化して表面が粗くなった。以上のことから本発明品1は比較品1,2に比べて耐酸化性と耐熱性に優れることが分かる。   From observation of the fracture surface and surface of the coating, the product 1 of the present invention was not oxidized even when heated to 800 ° C. in the atmosphere. When the comparative product 1 was heated to 700 ° C. and 800 ° C. in the atmosphere, it oxidized and the surface became rough. When the comparative product 2 was heated to 800 ° C. in the atmosphere, it oxidized and became rough. From the above, it can be seen that the product 1 of the present invention is superior in oxidation resistance and heat resistance to the comparison products 1 and 2.

被膜を被覆していない光学素子成形用金型の基材を比較品3とした。本発明品1、比較品1〜3を用いて、ガラス成形する場合の寿命試験を行った。具体的には、市販の溶解ガラス材料を光学素子成形用金型に充填し、窒素雰囲気で加熱温度600〜700℃にてプレス成形し、200℃以下に冷却して光学素子成形用金型から成型品を取り外した。光学素子成形用金型の寿命は、成型品の表面粗さが規格を超えるまでのプレス回数で評価した。   The base material of the mold for molding an optical element that was not coated with a film was designated as Comparative product 3. Using the product 1 of the present invention and the comparative products 1 to 3, a life test in the case of glass forming was performed. Specifically, a commercially available molten glass material is filled in an optical element molding die, press-molded at a heating temperature of 600 to 700 ° C. in a nitrogen atmosphere, and cooled to 200 ° C. or lower, from the optical element molding die. The molded product was removed. The lifetime of the optical element molding die was evaluated by the number of presses until the surface roughness of the molded product exceeded the standard.

本発明品1を用いて10000個成形した後の成型品の表面粗さは、プレス初期とほとんど変化がなかった。一方、被膜を被覆していない比較品3は、1000個成形した後の成型品の表面粗さが規格外となり、それ以降、使用不可能であった。また、TiN膜を被覆した比較品1は2000個まで使用可能であり、TiAlN膜を被覆した比較品2は5000個まで使用可能であった。以上のように、本発明品1は、比較品1〜3の2倍以上の寿命を示すことが分かった。これは本発明品1の耐熱性、耐酸化性および耐摩耗性が比較品1〜3よりも優れているためと考えられる。   The surface roughness of the molded product after forming 10,000 pieces using the product 1 of the present invention was almost unchanged from the initial press. On the other hand, the comparative product 3 not coated with a film had a surface roughness of 1000 molded products after being molded, and was not usable thereafter. Further, up to 2000 comparative products 1 coated with a TiN film could be used, and up to 5000 comparative products 2 coated with a TiAlN film. As described above, it was found that the product 1 of the present invention has a lifetime that is at least twice that of the comparative products 1 to 3. This is presumably because the heat resistance, oxidation resistance and wear resistance of the product 1 of the present invention are superior to those of the comparative products 1 to 3.

Claims (4)

基材と基材の少なくとも成形面に被覆された被膜とからなる光学素子成形用金型において、被膜は内膜と外膜とからなり、内膜は、周期律表4a、5a、6a族元素の中の少なくとも1種と、Alと、C、N、Oの中の少なくとも1種とからなり、外膜は、周期律表4a、5a、6a族元素の中の少なくとも1種と、Siと、Bと、C、N、Oの中の少なくとも1種とからなる光学素子成形用金型。 In an optical element molding die comprising a base material and a coating film coated on at least the molding surface of the base material, the coating film comprises an inner film and an outer film, and the inner film is a periodic table 4a, 5a, 6a group element And at least one of Al, C, N, and O, and the outer film includes at least one of elements in Group 4a, 5a, and 6a of the periodic table, Si, and , B and at least one of C, N, and O, an optical element molding die. 被膜は、TiAlNの内膜と、CrSiBNの外膜とからなる請求項1に記載の光学素子成形用金型。 The optical element molding die according to claim 1, wherein the coating is composed of an inner film of TiAlN and an outer film of CrSiBN. 内膜の平均膜厚は0.1〜5.0μmである請求項1または2に記載の光学素子成形用金型。 The mold for molding an optical element according to claim 1 or 2, wherein the inner film has an average film thickness of 0.1 to 5.0 µm. 外膜の平均膜厚は0.5〜10.0μmである請求項1〜3のいずれか1項に記載の光学素子成形用金型。 The optical element molding die according to any one of claims 1 to 3, wherein the outer film has an average film thickness of 0.5 to 10.0 µm.
JP2007025058A 2007-02-05 2007-02-05 Mold for optical element molding Active JP4830882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025058A JP4830882B2 (en) 2007-02-05 2007-02-05 Mold for optical element molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025058A JP4830882B2 (en) 2007-02-05 2007-02-05 Mold for optical element molding

Publications (2)

Publication Number Publication Date
JP2008189513A true JP2008189513A (en) 2008-08-21
JP4830882B2 JP4830882B2 (en) 2011-12-07

Family

ID=39749984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025058A Active JP4830882B2 (en) 2007-02-05 2007-02-05 Mold for optical element molding

Country Status (1)

Country Link
JP (1) JP4830882B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132734A (en) * 1985-12-05 1987-06-16 Olympus Optical Co Ltd Mold for forming optical element
JPH05163027A (en) * 1991-12-18 1993-06-29 Kyocera Corp Mold for molding optical glass element and its production
JPH09110437A (en) * 1995-10-11 1997-04-28 Olympus Optical Co Ltd Member for forming optical element
JPH1036128A (en) * 1996-07-22 1998-02-10 Nikon Corp Mold for optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132734A (en) * 1985-12-05 1987-06-16 Olympus Optical Co Ltd Mold for forming optical element
JPH05163027A (en) * 1991-12-18 1993-06-29 Kyocera Corp Mold for molding optical glass element and its production
JPH09110437A (en) * 1995-10-11 1997-04-28 Olympus Optical Co Ltd Member for forming optical element
JPH1036128A (en) * 1996-07-22 1998-02-10 Nikon Corp Mold for optical element

Also Published As

Publication number Publication date
JP4830882B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
JP7440508B2 (en) Heat resistant carbon coating
JP5424103B2 (en) Covering mold for plastic working
WO2004076710A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
JP5435326B2 (en) Die-casting coating mold and manufacturing method thereof
JP7382124B2 (en) Improved coating process
JP2009035584A (en) Sliding member
JP5463216B2 (en) Chromium hard coating, mold having chromium hard coating formed on the surface, and method for producing chromium hard coating
US20070261444A1 (en) Method for making a mold used for press-molding glass optical articles
JP4830882B2 (en) Mold for optical element molding
JP4922662B2 (en) Machine parts and manufacturing method thereof
JP5031259B2 (en) Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
JP2006205558A (en) Alumina coating structure and its manufacturing method
US9102561B2 (en) Amorphous alloy, molding die, and method for producing optical element
JP2010229552A (en) Method for manufacturing amorphous carbon-coated member
JP2012136775A (en) Coated mold excellent in adhesion resistance and method for manufacturing the same
JP5238834B2 (en) Mold and its manufacturing method
TWI299325B (en) Mold and method for making the mold
JP2018031075A (en) Functional thin film, production method thereof, laminate structure and production method thereof
US8372523B2 (en) Coated article
JPH0429612B2 (en)
JP6406940B2 (en) Amorphous alloy, mold for molding, and method of manufacturing optical element
JP2007169098A (en) Mold for shaping optical glass element
JP6406939B2 (en) Amorphous alloy, mold for molding, and method of manufacturing optical element
JPH04338121A (en) Metallic mold for forming optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250