JPH0516082B2 - - Google Patents

Info

Publication number
JPH0516082B2
JPH0516082B2 JP8294687A JP8294687A JPH0516082B2 JP H0516082 B2 JPH0516082 B2 JP H0516082B2 JP 8294687 A JP8294687 A JP 8294687A JP 8294687 A JP8294687 A JP 8294687A JP H0516082 B2 JPH0516082 B2 JP H0516082B2
Authority
JP
Japan
Prior art keywords
thin film
sputtering
magnetic
substrate
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8294687A
Other languages
Japanese (ja)
Other versions
JPS63249918A (en
Inventor
Noboru Ueno
Toshio Mizoguchi
Tsutomu Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP8294687A priority Critical patent/JPS63249918A/en
Publication of JPS63249918A publication Critical patent/JPS63249918A/en
Publication of JPH0516082B2 publication Critical patent/JPH0516082B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ヘツドの製造方法に関する。更に
詳細に説明すると、本発明はセラミツク強磁性材
料あるいはセラミツク非磁性材料から成る基板・
コアと強磁性金属薄膜とを組合せた複合磁気ヘツ
ドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a magnetic head. More specifically, the present invention provides a substrate made of ceramic ferromagnetic material or ceramic nonmagnetic material.
This invention relates to a method for manufacturing a composite magnetic head that combines a core and a ferromagnetic metal thin film.

(従来の技術) 最近の磁気記録の高密度化に伴なつて、より高
い残留磁束密度Brを有する磁気テープが使用さ
れ、これに対応すべく高磁束密度でトラツク幅の
狭い磁気ヘツドが要望されている。
(Prior Art) With the recent increase in the density of magnetic recording, magnetic tapes with higher residual magnetic flux densities Br are being used, and in order to cope with this, magnetic heads with high magnetic flux densities and narrow track widths are required. ing.

このような磁気ヘツドとしては、従来、特開昭
60−223012号に明らかなように、強磁性酸化物よ
り成る磁気コアに強磁性金属の薄膜を真空薄膜形
成技術により形成し、非磁性材料に狭まれるよう
にしてギヤツプ対向面(本明細書では磁気ギヤツ
プに対して平行な突合せ接合面をいう)に露呈す
る強磁性金属の薄膜間で磁気ギヤツプを形成する
薄膜磁気ヘツドが知られている。
Conventionally, such magnetic heads were developed by
60-223012, a thin film of ferromagnetic metal is formed on a magnetic core made of ferromagnetic oxide by vacuum thin film forming technology, and the gap facing surface (hereinafter referred to as A thin film magnetic head is known in which a magnetic gap is formed between thin films of ferromagnetic metal exposed at a butt joint surface parallel to the magnetic gap.

この磁気ヘツドの製造において重要な強磁性金
属の薄膜の形成は、通常スパツタリング等の真空
薄膜形成技術によつて行なわれている。金属薄膜
はスパツタリングによつてあらかじめ基板に設け
られた溝の側壁面から基板表面にかけて形成さ
れ、その後基板表面のスパツタ膜を砥石研削等に
よつて取除くことにより、溝壁面に残されるスパ
ツタ膜の上端面部分でギヤツプを構成するように
形成される。
The formation of a thin film of ferromagnetic metal, which is important in the manufacture of this magnetic head, is usually performed by a vacuum thin film forming technique such as sputtering. The metal thin film is formed by sputtering from the side wall of a groove previously provided on the substrate to the substrate surface, and then the sputtered film left on the groove wall is removed by removing the spattered film on the substrate surface by grinding with a whetstone or the like. The upper end surface is formed to form a gap.

例えば、第7図に示すように、コアブロツク1
01に三角溝102を穿溝し、その溝102に高
融点ガラス103を溶融充填した後平面研磨加工
を行なう。そして再度V字状のトラツク溝104
を形成した後、コアブロツク101の上面に強磁
性金属の薄膜105をスパツタリング等にて形成
する。次にコアブロツク101の上面部を平面研
磨加工することによりコア半体ブロツク101B
を得、これと同じ過程で巻線溝を有する同様なコ
ア半体ブロツク101Aを得る。そしてこの両コ
ア半体ブロツク101A,101Bを突き合わせ
て磁気ギヤツプgを構成するようにしている(特
開昭60−205808号)。
For example, as shown in FIG.
A triangular groove 102 is bored in 01, and after filling the groove 102 with melting glass 103, a surface polishing process is performed. Then again, the V-shaped track groove 104
After forming the core block 101, a thin film 105 of ferromagnetic metal is formed on the upper surface of the core block 101 by sputtering or the like. Next, the upper surface of the core block 101 is polished to form a core half block 101B.
A similar core half block 101A having winding grooves is obtained in the same process. The two core half blocks 101A and 101B are butted against each other to form a magnetic gap g (Japanese Patent Laid-Open No. 60-205808).

(発明が解決しようとする問題点) しかしながら、スパツタリングによる膜形成
は、蒸着法等に比べてスパツタリング粒子が持つ
エネルギーが非常に大きいことから、基板との付
着力の増加や粒子打込み効果による内部応力の増
加といつた種々の現象を引き起し、基板強度に多
大な影響を与える。
(Problem to be solved by the invention) However, when forming a film by sputtering, the energy of the sputtering particles is much larger than that of vapor deposition, so the increase in adhesion to the substrate and the internal stress caused by the particle implantation effect. This causes various phenomena such as an increase in the strength of the substrate, and has a great effect on the strength of the substrate.

即ち、ターゲツトに対する向きが異なると、イ
オンの衝突確率の違いや若干の雰囲気の違いか
ら、薄膜の密度が異なり、その境界にクラツクが
発生する傾向がある。一般に、第6図に示すよう
に、ターゲツトに対するギヤツプ対向面201に
は密度の高い膜202が形成されて、膜内に圧縮
応力が作用する一方、傾斜した薄膜形成面203
には密度の低い膜204が形成されて、膜内に引
張応力が作用する。このため、ギヤツプ対向面2
01と薄膜形成面203との境界部分205にク
ラツク206が発生し、磁気特性及び機械的特性
に悪い影響を与える。そこで、薄膜形成面203
のスパツタリング膜204を好適な密度の柱状晶
にすると、ギヤツプ対向面201のスパツタ膜2
02の密度が高くなり過ぎ、ギヤツプ対向面20
1にクラツク206の生じる虞が高い。
That is, if the orientation with respect to the target differs, the density of the thin film will differ due to differences in the probability of ion collision and slight differences in the atmosphere, and cracks will tend to occur at the boundaries. Generally, as shown in FIG. 6, a dense film 202 is formed on the gap facing surface 201 with respect to the target, and compressive stress acts on the film, while the inclined thin film forming surface 203
A low-density film 204 is formed in the film, and tensile stress acts within the film. Therefore, the gap facing surface 2
Cracks 206 occur at the boundary portion 205 between 01 and the thin film forming surface 203, which adversely affects the magnetic properties and mechanical properties. Therefore, the thin film forming surface 203
When the sputtered film 204 is formed into columnar crystals with a suitable density, the sputtered film 204 on the gap facing surface 201 becomes
02 density becomes too high, the gap facing surface 20
1, there is a high possibility that a crack 206 will occur.

そこで、本発明はギヤツプ対向面にクラツクが
発生し難い磁気ヘツド製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method of manufacturing a magnetic head in which cracks are less likely to occur on the surface facing the gap.

(問題点を解決するための手段) かかる目的を達成するため、本発明の磁気ヘツ
ド製造方法は、薄膜形成面と近接又は隣接させて
スパツタリング方向と対向する基板面に薄膜形成
面とは逆方向の傾斜面を形成してスパツタリング
し、金属薄膜を形成するようにしている。
(Means for Solving the Problems) In order to achieve the above object, the magnetic head manufacturing method of the present invention provides a method for manufacturing a magnetic head in which a thin film is formed on a substrate surface that is close to or adjacent to a thin film forming surface and is opposite to the sputtering direction. A thin metal film is formed by forming an inclined surface and sputtering.

(作用) したがつて、薄膜形成面に近接又は隣接する傾
斜面にはターゲツトに対する向きの関係から最も
密度の粗な金属薄膜が形成され、スパツタリング
方向と対向する基板面に形成される密度の高い金
属薄膜に生ずる内部応力の薄膜形成面近傍の基板
への影響を断ち切る。
(Function) Therefore, the densest metal thin film is formed on the inclined surface near or adjacent to the thin film formation surface due to the orientation with respect to the target, and the densest metal thin film is formed on the substrate surface facing the sputtering direction. Eliminates the influence of internal stress generated in a metal thin film on the substrate near the thin film formation surface.

(実施例) 以下、本発明の磁気ヘツドの製造工程を図面に
基づいて詳細に説明する。
(Example) Hereinafter, the manufacturing process of the magnetic head of the present invention will be explained in detail based on the drawings.

まず、基板1のギヤツプ対向面3に、テープ摺
接面5と直交する方向(深直方向)に向かつて延
びる方形、V形ないし台形のトラツク溝13を研
削によつて所定ピツチで多数本形成する[第1図
a]。
First, a large number of rectangular, V-shaped, or trapezoidal track grooves 13 are formed at a predetermined pitch on the gap-facing surface 3 of the substrate 1 by grinding, and the track grooves 13 extend in a direction perpendicular to the tape sliding surface 5 (in the transverse direction). [Figure 1a].

次いで、前記トラツク溝13の側壁面・薄膜形
成面6に隣接させて、スパツタリング方向と対向
する基板面、本実施例の場合ギヤツプ対向面3上
に傾斜面2を形成する[第1図b]。この傾斜面
2は、第2図Aに示すように、三角形の溝14を
研削機などを使つて穿溝することによつてギヤツ
プ対向面3上に形成される。これにより、薄膜形
成面6と傾斜面2とにより、基板1は断面V字状
とされる。この場合、トラツク溝13と三角溝9
とは別個に形成しても良いが、総形砥石等を使つ
て、一度に研削しても良い。第2図Aに示す傾斜
面の場合、圧縮応力が蓄積し易いフラツトなギヤ
ツプ対向面3部分が残つているため、第2図Cに
示すようにクラツク15が発生する虞があるが、
完成品となつた場合に製品に残る必要部分16か
ら離れる逆の方向にクラツク15が伝搬されるこ
とから、実用上問題がない。また、第3図Aに示
すように、傾斜面2は隣同士のトラツク溝13を
連続させるような大きなものとしても良い。また
第4図のように曲線の傾斜面2と薄膜形成面6を
連続して交互に設けてもよい。更に第5図A,B
のように傾斜面2を薄膜形成面6から若干離して
設けてもよい。この場合の薄膜形成面6と傾斜面
2との間の間隔は膜の厚さlに対し10倍以下にし
ないと効果がなく、好ましくは3倍以下で、最も
好ましくは第2図のように0とするのがよい。
Next, an inclined surface 2 is formed adjacent to the side wall surface/thin film forming surface 6 of the track groove 13 on the substrate surface facing the sputtering direction, which in this embodiment is on the gap facing surface 3 [FIG. 1b] . As shown in FIG. 2A, this inclined surface 2 is formed on the gap facing surface 3 by drilling a triangular groove 14 using a grinder or the like. Thereby, the thin film forming surface 6 and the inclined surface 2 make the substrate 1 have a V-shaped cross section. In this case, the track groove 13 and the triangular groove 9
It may be formed separately, but it may also be ground at once using a general grindstone or the like. In the case of the inclined surface shown in FIG. 2A, there remains a flat portion of the gap facing surface 3 where compressive stress tends to accumulate, so there is a risk that cracks 15 may occur as shown in FIG. 2C.
Since the crack 15 is propagated in the opposite direction away from the necessary portion 16 remaining in the finished product, there is no practical problem. Further, as shown in FIG. 3A, the inclined surface 2 may be large enough to connect adjacent track grooves 13. Further, as shown in FIG. 4, the curved inclined surface 2 and the thin film forming surface 6 may be provided continuously and alternately. Furthermore, Figure 5 A, B
The inclined surface 2 may be provided slightly apart from the thin film forming surface 6 as shown in FIG. In this case, the distance between the thin film forming surface 6 and the inclined surface 2 must be 10 times or less than the film thickness l to be effective, preferably 3 times or less, and most preferably as shown in FIG. It is better to set it to 0.

この傾斜面2のギヤツプ対向面3に対する傾き
θは、5〜85゜、好ましくは15〜70゜、最も好まし
くは30〜60゜の範囲にとることが望ましい。この
基板1は前述の深直方向と直交する面即ちテープ
摺接面5と平行な面に沿つて2分され、一対の基
板1A,1Bに分けられる。
It is desirable that the inclination θ of the inclined surface 2 with respect to the gap facing surface 3 is in the range of 5 to 85 degrees, preferably 15 to 70 degrees, and most preferably 30 to 60 degrees. This substrate 1 is divided into two along a plane perpendicular to the above-mentioned transverse direction, that is, a plane parallel to the tape sliding surface 5, and is divided into a pair of substrates 1A and 1B.

次いで、これらを洗浄し、真空薄膜形成技術を
用いて強磁性金属の磁性薄膜4を稜線7に沿つて
均一な厚さとなるように形成する[第1図c]。
通常、磁性膜4はセンダスト合金等から成る強磁
性金属をスパツタリングによつて膜付けする。ス
パツタリングは、例えば標準センダスト合金をタ
ーゲツトとする場合、アルゴンガス雰囲気中、、
基板温度200℃で約400Å/minのレートで行なわ
れる。スパツタリングによつて、金属薄膜4は、
例えば第2図Bあるいは第3図Bに示すように形
成される。尚、金属薄膜は、通常、一層当たり5
〜6μmの膜厚となるように実質的な多層膜とする
ことが好ましく、通常強磁性金属を断続的にスパ
ツタリングすることによつて、あるいは強磁性金
属と非磁性体を交互にスパツタリングすることに
よつて結晶粒径520〜570Åの複数層の磁性薄膜に
形成される。
Next, these are cleaned and a magnetic thin film 4 of ferromagnetic metal is formed to have a uniform thickness along the ridge line 7 using a vacuum thin film forming technique [FIG. 1c].
Usually, the magnetic film 4 is formed by sputtering a ferromagnetic metal such as Sendust alloy. For example, when targeting standard Sendust alloy, sputtering is performed in an argon gas atmosphere.
It is performed at a rate of about 400 Å/min at a substrate temperature of 200°C. By sputtering, the metal thin film 4 is
For example, it is formed as shown in FIG. 2B or FIG. 3B. Incidentally, the metal thin film usually has a thickness of 5% per layer.
It is preferable to form a substantial multilayer film with a thickness of ~6 μm, and it is usually formed by sputtering a ferromagnetic metal intermittently, or by sputtering a ferromagnetic metal and a nonmagnetic material alternately. Therefore, a multilayer magnetic thin film with a crystal grain size of 520 to 570 Å is formed.

ついで、トラツク溝13に高融点ガラス10を
充填して薄膜4を保護する[ガラスボンデイング
第1図d]。
Next, the track grooves 13 are filled with high melting point glass 10 to protect the thin film 4 [Glass Bonding Figure 1d].

その後、ギヤツプ対向面3及びテープ摺接面5
を研削して所定の面荒さの平坦な面とする。研削
は通常ラツプによつて行なわれ鏡面仕上げとされ
る。これによつて薄膜形成面6に形成された金属
薄膜4の端面でトラツクが構成される。
After that, the gap facing surface 3 and the tape sliding contact surface 5 are
is ground to a flat surface with a specified surface roughness. Grinding is usually done with a lap to give a mirror finish. As a result, a track is formed by the end face of the metal thin film 4 formed on the thin film forming surface 6.

その後、前述のトラツク溝13の隣に該溝13
に沿つて疑似ギヤツプを無くすためのトラツク規
制用凹部8が研削される[第1図e]。この凹部
8の研削の際に傾斜面2に形成されている金属薄
膜4が取除かれ、薄膜形成面6の金属薄膜4によ
つてのみ所定幅のトラツクが構成される。
After that, the groove 13 is placed next to the track groove 13 described above.
A track regulating recess 8 is ground along the groove to eliminate false gaps [Fig. 1e]. When the recess 8 is ground, the metal thin film 4 formed on the inclined surface 2 is removed, and a track of a predetermined width is formed only by the metal thin film 4 on the thin film forming surface 6.

その後、一方の基板1Aのギヤツプ対向面3に
巻線溝12を形成する[第1図f]。この巻線溝
12はデイツプス寸法を規制する。尚、他方の基
板1Bには巻線用溝12は形成されない。つい
で、両基板1A,1Bのギヤツプ対向面にSiO2
等の非磁性材から成るスペーサ(図示省略)をス
パツタリングによつて形成する。次いで、一対の
基板1A,1Bを向い合せて金属薄膜4同士を突
合せるようにして、トラツク規制用凹部8に低融
点ガラス11を充填し接合する[ギヤツプボンデ
イング第1図g]。
Thereafter, a winding groove 12 is formed on the gap facing surface 3 of one of the substrates 1A [FIG. 1f]. This winding groove 12 regulates the depth dimension. Note that the winding groove 12 is not formed on the other substrate 1B. Next, SiO 2 is applied to the gap facing surfaces of both substrates 1A and 1B.
A spacer (not shown) made of a non-magnetic material such as is formed by sputtering. Next, the pair of substrates 1A and 1B are faced and the metal thin films 4 are butted against each other, and the track regulating recess 8 is filled with low melting point glass 11 and bonded (gap bonding, FIG. 1g).

上述のギヤツプボンデイングの後、テープ摺接
面5を円筒研摩し、テープ摺接面5を曲面に仕上
げる[第1図h]。
After the gap bonding described above, the tape sliding surface 5 is cylindrically polished to finish the tape sliding surface 5 into a curved surface (FIG. 1h).

次に磁気ギヤツプgがテープ摺動方向に対して
所定のアジマス角度を取るように斜めにスライス
し、多数のチツプ状の磁気コアを切り出す[第1
図i]。このとき、磁気ヘツドのチツプはギヤツ
プ部分を中心に所定幅だけ切出されるので、即ち
薄膜形成面6部分とその近傍の傾斜面2部分だけ
が完成品として製品に残り、それよりも外側は切
捨てられるので、フラツトなギヤツプ対向面3部
分にクラツクが生じても問題とならない。
Next, a large number of chip-shaped magnetic cores are cut out by diagonally slicing so that the magnetic gap g takes a predetermined azimuth angle with respect to the tape sliding direction.
Figure i]. At this time, the chip of the magnetic head is cut out by a predetermined width around the gap part, so only the 6 parts of the thin film forming surface and the 2 parts of the sloped surface in the vicinity remain as a finished product, and the outside part is cut off. Therefore, even if a crack occurs on the flat gap facing surface 3, it will not be a problem.

その後検査を経てサポート・ヘツドベースに取
付け、さらにトラツク方向に馴染みを良くする摺
動面仕上げ加工を施して巻線する[第1図j]。
After that, it is inspected and installed on the support head base, and the sliding surface is finished to improve its conformability in the track direction, and then the wire is wound [Fig. 1j].

尚、金属薄膜材料としては、Co−Zr−Nb非晶
質合金等の非晶質合金や他の飽和磁束密度が大な
る金属を用いることができる。
Note that as the metal thin film material, an amorphous alloy such as a Co-Zr-Nb amorphous alloy or another metal with a high saturation magnetic flux density can be used.

(発明の効果) 以上の説明より明らかなように、本発明は、薄
膜形成面と近接又は隣接させてスパツタリング方
向と対向する基板面例えばギヤツプ対向面に薄膜
形成面とは逆方向の傾斜面を形成してからスパツ
タリングし金属薄膜を形成するようにしているの
で、傾斜面にはターゲツトに対する向きの関係か
ら最も密度の粗な金属薄膜が形成され、ギヤツプ
対向面に形成される密度の高い金属薄膜に生ずる
内部応力の影響を断ち切る。したがつて、磁気ヘ
ツドとして最終的に残される薄膜形成面6部分及
びその近傍の基板1にはクラツクは発生しない
[第2図B]及び第3図B参照]。
(Effects of the Invention) As is clear from the above description, the present invention provides an inclined surface in the opposite direction to the thin film forming surface on the substrate surface facing the sputtering direction, for example, the gap facing surface, in close proximity to or adjacent to the thin film forming surface. Since the metal thin film is formed by sputtering after forming, the coarsest metal thin film is formed on the inclined surface due to the orientation with respect to the target, and the denser metal thin film is formed on the surface facing the gap. Cut off the influence of internal stress that occurs in Therefore, no cracks occur in the portion of the thin film forming surface 6 that will ultimately remain as a magnetic head and in the vicinity of the substrate 1 [see FIG. 2B] and FIG. 3B].

よつて、磁気ヘツドの磁気特性や機械的特性や
の劣化を防ぐと共に磁気ヘツド製造の歩留りを向
上させて製造コストを低くできる。
Therefore, deterioration of the magnetic properties and mechanical properties of the magnetic head can be prevented, and the yield of manufacturing the magnetic head can be improved and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁気ヘツド製造方法を説
明する加工フロー図、第2図A,B,Cは本発明
方法を実施するヘツド基板の一例を示すもので、
Aは薄膜形成面付近のスパツタリング前の基板形
状、Bはスパツタリング後の基板形状、Cはクラ
ツク発生時の基板形状を夫々示す拡大断面図、第
3図A,Bは他の実施例を示すものでAはスパツ
タリング前の基板形状、Bはスパツタリング後の
基板形状を夫々示す拡大断面図、第4図は本発明
の他の実施例を示すスパツタリング後の基板形状
を示す拡大断面図、第5図A,Bは更に他の実施
例に係るスパツタリング後の基板形状を示す拡大
断面図である。第6図は従来法によつて製造され
た磁気ヘツドの基板のクラツク発生状態を示す拡
大断面図、第7図は従来の磁気ヘツド製造方法を
示す説明図である。 1……基板、2……傾斜面、3……スパツタリ
ング方向と対向する基板面・ギヤツプ対向面、4
……金属薄膜、6……薄膜形成面。
FIG. 1 is a processing flow diagram explaining the magnetic head manufacturing method according to the present invention, and FIGS. 2A, B, and C show an example of a head substrate for implementing the method of the present invention.
A is an enlarged sectional view showing the substrate shape before sputtering near the thin film forming surface, B is the substrate shape after sputtering, C is an enlarged sectional view showing the substrate shape when cracks occur, and FIGS. 3A and 3B show other examples. A is an enlarged sectional view showing the substrate shape before sputtering, B is an enlarged sectional view showing the substrate shape after sputtering, FIG. 4 is an enlarged sectional view showing the substrate shape after sputtering, showing another embodiment of the present invention, and FIG. 5 is an enlarged sectional view showing the substrate shape after sputtering. A and B are enlarged sectional views showing the shape of a substrate after sputtering according to still another example. FIG. 6 is an enlarged sectional view showing a state in which cracks occur in the substrate of a magnetic head manufactured by a conventional method, and FIG. 7 is an explanatory view showing a conventional method of manufacturing a magnetic head. 1... Substrate, 2... Inclined surface, 3... Substrate surface facing the sputtering direction/gap opposing surface, 4
...metal thin film, 6...thin film formation surface.

Claims (1)

【特許請求の範囲】 1 薄膜形成面を設け、該薄膜形成面にスパツタ
リングにて金属薄膜を形成して成る一対の基板を
突き合わせ上記金属薄膜間を利用して磁気ギヤツ
プを構成する磁気ヘツドの製造方法において、前
記薄膜形成面と近接又は隣接させてスパツタリン
グ方向と対向する基板面に薄膜形成面とは逆方向
の傾斜面を形成してからスパツタリングし、金属
薄膜を形成することを特徴とする磁気ヘツドの製
造方法。 2 前記傾斜面は三角溝であることを特徴とする
特許請求の範囲第1項に記載の磁気ヘツド製造方
法。 3 前記傾斜面は隣なるトラツク溝と連続してい
ることを特徴とする特許請求の範囲第1項に記載
の磁気ヘツド製造方法。
[Scope of Claims] 1. Manufacture of a magnetic head in which a pair of substrates each having a thin film formation surface and a metal thin film formed by sputtering on the thin film formation surface are butted together to form a magnetic gap using the space between the metal thin films. In the magnetic method, an inclined surface in a direction opposite to the thin film forming surface is formed on a substrate surface that is close to or adjacent to the thin film forming surface and facing the sputtering direction, and then sputtering is performed to form a metal thin film. Head manufacturing method. 2. The magnetic head manufacturing method according to claim 1, wherein the inclined surface is a triangular groove. 3. The magnetic head manufacturing method according to claim 1, wherein the inclined surface is continuous with an adjacent track groove.
JP8294687A 1987-04-06 1987-04-06 Manufacture of magnetic head Granted JPS63249918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8294687A JPS63249918A (en) 1987-04-06 1987-04-06 Manufacture of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8294687A JPS63249918A (en) 1987-04-06 1987-04-06 Manufacture of magnetic head

Publications (2)

Publication Number Publication Date
JPS63249918A JPS63249918A (en) 1988-10-17
JPH0516082B2 true JPH0516082B2 (en) 1993-03-03

Family

ID=13788384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8294687A Granted JPS63249918A (en) 1987-04-06 1987-04-06 Manufacture of magnetic head

Country Status (1)

Country Link
JP (1) JPS63249918A (en)

Also Published As

Publication number Publication date
JPS63249918A (en) 1988-10-17

Similar Documents

Publication Publication Date Title
JPH0542726B2 (en)
KR930002481B1 (en) Magnetic tranducer heads
JPS61129716A (en) Magnetic head
KR930002394B1 (en) Magnetic head
KR930002393B1 (en) Magnetic transducer head
JPH0475563B2 (en)
JPH0516082B2 (en)
JP2575097B2 (en) Manufacturing method of magnetic head
JPH0475564B2 (en)
JPS6214313A (en) Magnetic head
JP2537262B2 (en) Magnetic head
JPH0585964B2 (en)
KR920000214B1 (en) Magnetic head
JP2977112B2 (en) Manufacturing method of magnetic head
JPH0546011B2 (en)
JP2508522B2 (en) Manufacturing method of composite magnetic head
JP2954784B2 (en) Magnetic head and method of manufacturing the same
JP2810820B2 (en) Magnetic head and method of manufacturing magnetic head
JPH0516083B2 (en)
JPH0744816A (en) Magnetic head
JPS59203210A (en) Magnetic core and its production
JPS61280009A (en) Magnetic head
JPH05282619A (en) Magnetic head
JPH0648527B2 (en) Magnetic head manufacturing method
JPH011108A (en) magnetic head