JPH05157536A - Plate-shape measuring apparatus - Google Patents

Plate-shape measuring apparatus

Info

Publication number
JPH05157536A
JPH05157536A JP32333591A JP32333591A JPH05157536A JP H05157536 A JPH05157536 A JP H05157536A JP 32333591 A JP32333591 A JP 32333591A JP 32333591 A JP32333591 A JP 32333591A JP H05157536 A JPH05157536 A JP H05157536A
Authority
JP
Japan
Prior art keywords
plate material
plate
image
light source
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32333591A
Other languages
Japanese (ja)
Other versions
JPH0778417B2 (en
Inventor
Nobuyuki Takahashi
伸幸 高橋
Atsushi Otake
篤 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP3323335A priority Critical patent/JPH0778417B2/en
Publication of JPH05157536A publication Critical patent/JPH05157536A/en
Publication of JPH0778417B2 publication Critical patent/JPH0778417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a plate-shape measuring apparatus, which can measure the strain of a plate material highly accurately, with the simple constitution of the apparatus. CONSTITUTION:The elongations of a plate at a plurality of predetermined measuring points in the direction of the width of a plate material under movement are compared. Thus, the strain of the plate material is measured. In this plate-shape measuring apparatus, a fluorescent lamp 1, which is arranged in the direction of the width of the plate material, is used as a light source. The image of the fluorescent lamp 1, which is reflected on the surface of the plate material, is photographed with a CCD camera 3. In this measuring apparatus, the slant angle of the plate material is obtained out of a table, wherein the relationship between the image position and the slant angle is stored beforehand, based on the position of the image of the fluorescent lamp obtained at every specified sampling period. The length of the slant side is obtained based on the slant angle. The profile length of the plate material is obtained by the integration of the lengths of the slant sides. The profile lengths are measured for, e.g. five points in the width direction of the plate material. The strain of the plate is operated based on the measured result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移送される板材の幅方
向の予め定める複数の計測点の板伸びを比較することに
よって板材の歪を計測する板形状計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate shape measuring device for measuring the strain of a plate material by comparing the plate elongations of a plurality of predetermined measurement points in the width direction of the transferred plate material.

【0002】[0002]

【従来の技術】従来より、板材の歪を計測する装置とし
て、光切断法を適用した計測装置が知られている。この
計測装置は、レーザ光束を照射する光源と、該光源から
のレーザ光束が板表面に当たってできたスポットを撮像
する2次元カメラとを備える。そして、この計測装置で
は、板の表面形状に歪みがない場合に得られるスポット
像と実際に得たスポット像との位置ずれ量と、照射され
るレーザ光束の角度とに基づいて板幅方向の各位置での
板面の高さを測定する。こうして測定した高さを板の移
送にともない多数求めていくことで、板の表面形状を測
定する。レーザ光束の入射角を小さくするほど測定精度
があがるため、レーザ光源は2次元カメラから離れた遠
方(例えば2メートル)に設置される。
2. Description of the Related Art Conventionally, as a device for measuring the strain of a plate material, a measuring device to which a light cutting method is applied has been known. This measuring device includes a light source that emits a laser beam, and a two-dimensional camera that captures an image of a spot formed by the laser beam from the light source striking the plate surface. Then, in this measuring device, the amount of positional deviation between the spot image obtained when there is no distortion in the surface shape of the plate and the spot image actually obtained, and the angle of the laser light flux to be applied, in the plate width direction Measure the height of the board surface at each position. The surface shape of the plate is measured by obtaining a large number of heights thus measured as the plate is transported. Since the measurement accuracy increases as the incident angle of the laser light flux decreases, the laser light source is installed far away from the two-dimensional camera (for example, 2 meters).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来装置は、2次元カメラとレーザ光源とを離して設置す
る必要から、大きなスペースが占有されるという問題が
あった。また、レーザ光源を使用するため、装置構成が
複雑になり、高価になるという問題や、測定環境中に浮
遊物等があるとレーザ光が散乱されてしまい、測定が困
難になるという問題があった。
However, the above conventional device has a problem that a large space is occupied because the two-dimensional camera and the laser light source need to be installed separately. Further, since a laser light source is used, there is a problem that the device configuration becomes complicated and expensive, and that there is a floating substance in the measurement environment, the laser light is scattered and measurement becomes difficult. It was

【0004】本発明は、上記問題を解決するためになさ
れたもので、簡単な装置構成で板材の歪を高精度に計測
することのできる板形状計測装置を提供することを目的
とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a plate shape measuring device capable of measuring the strain of a plate material with high accuracy with a simple device configuration.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は図1に例示するように、移送される板材の
幅方向の予め定める複数の計測点の板伸びを比較するこ
とによって板材の歪を計測する板形状計測装置におい
て、移送される前記板材の上方に、該板材の幅方向に配
置された棒状光源と、前記棒状光源に近接して配置さ
れ、前記板材表面に写る光源像を撮像する撮像手段と、
前記板材表面の傾斜角と該傾斜角に応じて変化する前記
光源像の位置との関係を示すデータを予め記憶した関係
データ記憶手段と、前記関係データ記憶手段を参照し
て、前記撮像手段により撮像された前記棒状光源の像の
位置に基づいて、前記板材の幅方向の前記複数の計測点
の傾斜角を求める傾斜角抽出手段と、前記傾斜角抽出手
段により抽出された傾斜角から前記板材の幅方向の前記
複数の計測点の板伸びを算出する板伸び算出手段と、を
備えたことを特徴とする板形状計測装置を要旨とする。
In order to achieve the above object, the present invention, as illustrated in FIG. 1, compares the plate elongations of a plurality of predetermined measurement points in the width direction of the transferred plate material by comparing the plate elongations. In the plate shape measuring device for measuring the distortion of the plate material, a rod-shaped light source arranged in the width direction of the plate material above the plate material to be transferred, and a light source image which is arranged in proximity to the rod-shaped light source and is reflected on the surface of the plate material. Imaging means for imaging
A relational data storage unit that stores in advance data indicating the relation between the inclination angle of the plate surface and the position of the light source image that changes according to the inclination angle; Based on the imaged position of the image of the rod-shaped light source, an inclination angle extracting unit that obtains inclination angles of the plurality of measurement points in the width direction of the plate member, and the plate member based on the inclination angle extracted by the inclination angle extracting unit. A plate shape measuring device characterized by comprising: a plate elongation calculating means for calculating plate elongations at the plurality of measurement points in the width direction.

【0006】[0006]

【作用】本願発明では、撮像手段が、棒状光源の板材表
面に写る像を撮像し、関係データ記憶手段が、板材表面
の傾斜角と該傾斜角に応じて変化する光源像の位置との
関係を示すデータを予め記憶し、傾斜角抽出手段が、関
係データ記憶手段を参照して、撮像手段により撮像され
た棒状光源の像の位置に基づいて板材の幅方向の予め定
める複数の計測点の傾斜角を求め、板伸び算出手段が、
傾斜角抽出手段により抽出された傾斜角から板材の幅方
向の上記複数の計測点の板伸びを算出する。
In the present invention, the image pickup means picks up an image of the rod-shaped light source on the surface of the plate material, and the relational data storage means stores the relation between the inclination angle of the plate surface and the position of the light source image which changes according to the inclination angle. Is stored in advance, and the inclination angle extraction means refers to the relational data storage means to determine a plurality of predetermined measurement points in the width direction of the plate material based on the position of the image of the rod-shaped light source imaged by the imaging means. The inclination angle is calculated, and the plate elongation calculation means
The plate elongation at the plurality of measurement points in the width direction of the plate material is calculated from the tilt angle extracted by the tilt angle extraction means.

【0007】[0007]

【実施例】以下、本発明の一実施例として、圧延ライン
を移送される連続した板材の形状を測定する板形状計測
装置を説明する。まず、本板形状測定装置の測定原理に
ついて説明する。図2(a)に示すように、蛍光灯1と
2次元CCDカメラ3とは、板材Tの上方に配置され、
蛍光灯1の高さと2次元CCDカメラ3のレンズ面の高
さとが等しくなるように両者はセットされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a plate shape measuring device for measuring the shape of a continuous plate material transferred on a rolling line will be described below. First, the measurement principle of the plate shape measuring device will be described. As shown in FIG. 2A, the fluorescent lamp 1 and the two-dimensional CCD camera 3 are arranged above the plate material T,
Both of the fluorescent lamp 1 and the lens surface of the two-dimensional CCD camera 3 are set to be equal in height.

【0008】図2(a)において、歪のない板材を板材
T0 として実線で示し、歪のある板材を板材Ti として
一点鎖線で示す。歪がなく平坦な板材T0 を計測する場
合には、蛍光灯1の板材T0 に対する虚像は位置Q0 に
ある。このとき、CCDカメラ3側から見ると、板材T
0 の表面上の位置P0 に蛍光灯1の像が見えることにな
る。
In FIG. 2A, a plate material having no distortion is shown by a solid line as a plate material T0, and a plate material having a distortion is shown as a plate material Ti by a one-dot chain line. When measuring a flat plate material T0 without distortion, the virtual image of the fluorescent lamp 1 with respect to the plate material T0 is at the position Q0. At this time, when viewed from the CCD camera 3 side, the plate material T
The image of the fluorescent lamp 1 is visible at the position P0 on the surface of 0.

【0009】一方、歪のある板材Ti を計測する場合に
は、蛍光灯1の板材Ti に対する虚像は位置Qi にあ
る。このとき、CCDカメラ3側から見ると、板材Ti
の表面上の位置Pi に蛍光灯1の像が見えることにな
る。蛍光灯1の像はCCDカメラ3の撮像面に結像され
るが、その結像位置は後述するように、板材Tの歪(傾
き)に応じて、その傾きと相関して移動する。従って、
像の位置と板材Tの傾きとの関係を予め計測して、その
データを変換テーブルに記憶しておけば、所定のサンプ
リング周期毎に得られた所定の計測点の像の位置に基づ
いて、上記変換テーブルから該計測点における板材の傾
斜角θを抽出することができる。そして、この傾斜角θ
から該計測点における板材の伸びを以下のように算出す
る。
On the other hand, when measuring a distorted plate material Ti, the virtual image of the fluorescent lamp 1 with respect to the plate material Ti is at the position Qi. At this time, when viewed from the CCD camera 3 side, the plate material Ti
The image of the fluorescent lamp 1 is visible at the position Pi on the surface of the. The image of the fluorescent lamp 1 is formed on the image pickup surface of the CCD camera 3, and the image forming position moves according to the distortion (tilt) of the plate material T in correlation with the tilt, as described later. Therefore,
If the relationship between the position of the image and the inclination of the plate T is measured in advance and the data is stored in the conversion table, based on the position of the image of the predetermined measurement point obtained at each predetermined sampling cycle, The inclination angle θ of the plate material at the measurement point can be extracted from the conversion table. And this inclination angle θ
Then, the elongation of the plate material at the measurement point is calculated as follows.

【0010】板材の伸びの算出は、図2(b)に示すよ
うに、傾斜角θから傾斜辺の長さ(斜辺長)Lを求め、
そして、上記サンプリング周期毎に求められた斜辺長L
を積算して輪郭長を求めることにより行なう。ここで、
求められた輪郭長が相対的な伸び長さを表している。板
材の板幅方向に複数の計測点を設定して、各計測点で求
めた板伸びを比較することにより、板材の歪を求めるこ
とができる。
To calculate the elongation of the plate material, as shown in FIG. 2 (b), the length L of the inclined side (oblique side length) L is obtained from the inclination angle θ,
Then, the hypotenuse length L obtained for each sampling cycle
Is performed to obtain the contour length. here,
The contour length obtained represents the relative extension length. By setting a plurality of measurement points in the plate width direction of the plate material and comparing the plate elongations obtained at the respective measurement points, the strain of the plate material can be obtained.

【0011】上記テーブルは、以下の原理により作成さ
れる。図3に示すように、蛍光灯1とCCDカメラ3と
板材Tとを実際の板形状計測装置と同様な位置関係とな
るように配置する。即ち、CCDカメラ3を蛍光灯1か
ら200mm離れた位置に配置し、これらと板材Tとの
距離を2000mmとする。
The above table is created according to the following principle. As shown in FIG. 3, the fluorescent lamp 1, the CCD camera 3, and the plate material T are arranged so as to have a positional relationship similar to that of an actual plate shape measuring device. That is, the CCD camera 3 is arranged at a position 200 mm away from the fluorescent lamp 1, and the distance between these and the plate T is 2000 mm.

【0012】そして、板材Tの傾きを変化させてCCD
カメラ3で板材Tの表面に写る蛍光灯の像(虚像)を撮
像し、蛍光灯の像の中心の位置と板材Tの傾斜角との関
係を求める。本実施例では、光度のピーク点を、蛍光灯
1の像の中心とするが、この光度のピーク点として、該
ピーク点を有する光度曲線と所定の閾値レベルとが交差
する2点の中間点を近似的に用いる。つまり、上記光度
曲線と所定の閾値レベルとが交差する2点の中間点を算
出して、算出された中間点を光度のピーク点とする。
Then, the inclination of the plate T is changed to change the CCD.
The camera 3 captures an image (virtual image) of the fluorescent lamp on the surface of the plate T, and obtains the relationship between the center position of the image of the fluorescent lamp and the inclination angle of the plate T. In this embodiment, the peak point of the luminous intensity is set to the center of the image of the fluorescent lamp 1, but as the peak point of the luminous intensity, an intermediate point between two points where the luminous intensity curve having the peak point intersects with a predetermined threshold level. Is used approximately. That is, the midpoint between the two points where the above-mentioned luminous intensity curve and the predetermined threshold level intersect is calculated, and the calculated midpoint is taken as the peak point of luminous intensity.

【0013】このようにして求めた蛍光灯像の中心位置
と板材Tの傾斜角との関係を図4に示す。グラフの横軸
は板材Tの傾きを示し、縦軸は光度がピークであるピク
セル(画素)の位置を示す。尚、蛍光灯像はCCDカメ
ラ3の撮像面上において、板材の幅方向に対応する方向
に延在しているが、ここでは、板材の幅方向の複数の計
測点の内の1つの計測点において上記計測を実施してい
る。つまり、図4に示す各ピクセルの位置は、撮像面上
において板材の搬送方向に対応する方向に平行な1つの
直線上にある。
FIG. 4 shows the relationship between the center position of the fluorescent lamp image thus obtained and the inclination angle of the plate material T. The horizontal axis of the graph indicates the inclination of the plate material T, and the vertical axis indicates the position of the pixel (pixel) where the luminous intensity has a peak. The fluorescent lamp image extends in the direction corresponding to the width direction of the plate material on the imaging surface of the CCD camera 3, but here, one of the plurality of measurement points in the width direction of the plate material is measured. The above measurement is carried out in. That is, the position of each pixel shown in FIG. 4 is on one straight line parallel to the direction corresponding to the transport direction of the plate material on the imaging surface.

【0014】図4から、板材Tの傾斜角と板材Tに写る
蛍光灯像の位置とが1対1対応であることがわかる。次
に、本測定原理により得られる角度の精度について説明
する。平坦面上にスペーサを置き、その上に板材Tを傾
斜させて配置し、スペーサの高さを変えることにより、
板材の角度を微少変化させた。この場合における板材T
の実際の角度と、蛍光灯像の位置に基づいて得られた角
度との角度差を下記の表1に例示する。尚、この場合に
は、CCDカメラ3を上記の場合とは異なり、蛍光灯1
から125mm離れた位置に配置し、これらと板材Tと
の距離を上記の場合と同様2000mmとした。
It can be seen from FIG. 4 that there is a one-to-one correspondence between the inclination angle of the plate material T and the position of the fluorescent lamp image reflected on the plate material T. Next, the accuracy of the angle obtained by this measurement principle will be described. By placing the spacer on the flat surface, arranging the plate material T on the flat surface, and changing the height of the spacer,
The angle of the plate was slightly changed. Plate material T in this case
The following Table 1 illustrates the angle difference between the actual angle of 1 and the angle obtained based on the position of the fluorescent lamp image. In this case, unlike the above case, the CCD camera 3 is different from the fluorescent lamp 1.
It is arranged at a position separated by 125 mm from the plate material, and the distance between these and the plate material T is set to 2000 mm as in the above case.

【0015】[0015]

【表1】 [Table 1]

【0016】表1において、最左欄の板材Tの角度は、
上記スペーサの高さと位置に基づく幾何学的演算により
得られた板材Tの実際の角度であり、その右の欄の像位
置は、光度のピーク位置のピクセル番号であり、その右
の欄の角度は、上記条件と同一の条件で予め作成した変
換テーブルを用いて得られた角度である。
In Table 1, the angle of the plate material T in the leftmost column is
It is the actual angle of the plate material T obtained by the geometric calculation based on the height and position of the spacer, the image position in the right column is the pixel number of the peak position of the luminous intensity, and the angle in the right column is Is an angle obtained using a conversion table created in advance under the same conditions as above.

【0017】表1において、実際の角度と計測された角
度とは、良く一致している。このことから、蛍光灯像の
中心位置から板材Tの角度を高精度に求めることができ
ることが分かる。尚、板材Tが上下方向に平行移動して
板材Tの高さが変わると、板材Tの傾斜角度が同一であ
っても、像は異なった位置に撮像されるように考えられ
るが、上記実験を板材Tの高さを変えて実施したとこ
ろ、次のような結果が得られた。
In Table 1, the actual angle and the measured angle are in good agreement. From this, it is understood that the angle of the plate material T can be obtained with high accuracy from the center position of the fluorescent lamp image. It should be noted that when the plate material T moves in parallel in the vertical direction and the height of the plate material T changes, even if the plate material T has the same inclination angle, it is considered that images are captured at different positions. Was carried out while changing the height of the plate material T, the following results were obtained.

【0018】[0018]

【表2】 [Table 2]

【0019】表2は、板材Tの高さを基準位置(0m
m)、基準位置から70mm上方、基準位置から150
mm上方、基準位置から250mm上方のそれぞれの位
置に設定し、板材Tの角度を0°から9°まで1°づつ
変えて測定して得られた。表中の数字は、照度のピーク
位置のピクセルの番号である。尚、基準位置は、蛍光灯
1およびCCDカメラ3と板材Tの距離が2000mm
の位置である。蛍光灯1とCCDカメラ3との距離は表
1の場合と同様125mmにセットした。
Table 2 shows the height of the plate T as a reference position (0 m
m), 70 mm above the reference position, 150 from the reference position
mm and above the reference position by 250 mm, and the angle of the plate material T was changed from 0 ° to 9 ° by 1 ° and measured. The numbers in the table are the numbers of pixels at the peak position of illuminance. At the reference position, the distance between the fluorescent lamp 1 and the CCD camera 3 and the plate material T is 2000 mm.
Is the position. The distance between the fluorescent lamp 1 and the CCD camera 3 was set to 125 mm as in the case of Table 1.

【0020】表2から、同一の角度であれば、板材Tの
高さが異なっても、像の位置はほぼ同じであることが分
かる。従って、板材が上下方向に平行移動して、板材の
高さが変化するような場合においても、得られた像の位
置により、板材Tの傾斜角は一義的に定まることが分か
る。
From Table 2, it can be seen that, if the angles are the same, the positions of the images are almost the same even if the heights of the plate materials T are different. Therefore, even when the plate material moves in parallel in the vertical direction and the height of the plate material changes, it can be seen that the inclination angle of the plate material T is uniquely determined by the position of the obtained image.

【0021】図5に本実施例の板形状計測装置のブロッ
ク図を示す。図5において、板形状計測装置は、蛍光灯
1と2次元CCDカメラ3と処理装置5と表示装置7と
を備える。光源としての蛍光灯1は、その長手方向が搬
送ラインの板材Tの幅方向と同じ方向となるようにされ
て、板材Tから例えば2000mm上方に配置される。
撮像手段としての2次元CCDカメラ3は、蛍光灯1か
ら200mm離れた位置に設置される。上述したよう
に、蛍光灯1の高さと2次元CCDカメラ3のレンズ面
の高さとが等しくなるように両者はセットされる。
FIG. 5 shows a block diagram of the plate shape measuring apparatus of this embodiment. In FIG. 5, the plate shape measuring device includes a fluorescent lamp 1, a two-dimensional CCD camera 3, a processing device 5, and a display device 7. The fluorescent lamp 1 as a light source is arranged such that its longitudinal direction is the same direction as the width direction of the plate material T of the transport line, and is arranged, for example, 2000 mm above the plate material T.
The two-dimensional CCD camera 3 as an image pickup means is installed at a position 200 mm away from the fluorescent lamp 1. As described above, the two are set so that the height of the fluorescent lamp 1 and the height of the lens surface of the two-dimensional CCD camera 3 become equal.

【0022】処理装置5は周知のCPU51,ROM5
3,RAM55,入出力回路57等を備える算術論理演
算回路である。入出力回路57には2次元CCDカメラ
3や、結果等のデータを表示する表示装置7が接続され
る。処理装置5のROM53には、表面形状の計測にか
かる各種のプログラム、例えば輪郭長演算処理ルーチン
や、輪郭長を比較して表面形状を最終的に計測する公知
の手法に基づくプログラム等が格納される。また、板材
の表面の傾斜角に応じて変化する蛍光灯1の像位置のず
れ量と傾斜角との関係を示す関係データ記憶手段として
の変換テーブル(図4のグラフと同等)が格納されてい
る。
The processing unit 5 is a well-known CPU 51 and ROM 5
3, an arithmetic logic operation circuit including a RAM 55, an input / output circuit 57, and the like. The two-dimensional CCD camera 3 and the display device 7 for displaying data such as results are connected to the input / output circuit 57. The ROM 53 of the processing device 5 stores various programs for measuring the surface shape, such as a contour length calculation processing routine and a program based on a known method for finally measuring the surface shape by comparing the contour lengths. It In addition, a conversion table (equivalent to the graph of FIG. 4) is stored as a relational data storage unit that indicates the relationship between the tilt amount and the amount of displacement of the image position of the fluorescent lamp 1 that changes according to the tilt angle of the surface of the plate material. There is.

【0023】図6は輪郭長演算ルーチンの処理を説明す
るためのフローチャートである。次に、本実施例の板形
状計測装置により、輪郭長を求める処理について説明す
る。ステップS1では、板材の幅方向に設定された各計
測点Mi (i =1〜5)における蛍光灯3の像の位置P
i を計測し、得られた像位置Pi と基準の像位置P0 と
の差Di を求める。この差Di は、撮像面上の板材搬送
方向に対応する方向におけるピクセル単位の距離であ
る。
FIG. 6 is a flow chart for explaining the processing of the contour length calculation routine. Next, a process of obtaining the contour length by the plate shape measuring apparatus of this embodiment will be described. In step S1, the position P of the image of the fluorescent lamp 3 at each measurement point Mi (i = 1 to 5) set in the width direction of the plate material.
i is measured, and the difference Di between the obtained image position Pi and the reference image position P0 is obtained. The difference Di is a pixel-wise distance in the direction corresponding to the plate material conveying direction on the imaging surface.

【0024】次に、ステップS2において、上記差Di
に基づいて、上記変換テーブルから差Di に対応する傾
斜角θi を抽出する。次に、ステップS3では、1/C
OSθi を演算し、斜辺長Li を求める。次に、ステッ
プS4では、斜辺長Li の積算を行なう。
Next, in step S2, the difference Di
Based on the above, the tilt angle θi corresponding to the difference Di is extracted from the conversion table. Next, in step S3, 1 / C
OSθi is calculated to obtain the hypotenuse length Li. Next, in step S4, the hypotenuse length Li is integrated.

【0025】次に、ステップS5では、搬送ラインに設
けられた図示しないセンサから送出される信号に基づい
て、板材Tの一定長が搬送されたか否かを判別し、一定
長が搬送されていなければ、ステップS1に戻る。一定
長が搬送された場合には、ステップS6において、斜辺
長Li の積算の結果を輪郭長RLi とする。
Next, in step S5, it is judged whether or not a certain length of the plate material T has been conveyed based on a signal sent from a sensor (not shown) provided on the conveying line, and the certain length must be conveyed. If so, the process returns to step S1. When the fixed length has been conveyed, in step S6, the result of integration of the hypotenuse length Li is set as the contour length RLi.

【0026】板材の幅方向の5つの計測点について測定
された各輪郭長RLiを比較することにより、板歪が演
算され、その結果が表示装置7に表示される。尚、ステ
ップS1およびS2の処理が傾斜角抽出手段として働
き、ステップS3ないしS6の処理が板伸び算出手段と
して働く。
The plate strain is calculated by comparing the contour lengths RLi measured at five measurement points in the width direction of the plate material, and the result is displayed on the display device 7. The processes of steps S1 and S2 function as inclination angle extracting means, and the processes of steps S3 to S6 function as plate elongation calculating means.

【0027】以上のように、本実施例によれば、光源と
して蛍光灯を用いているので、浮遊物が存在していても
測定することができ、従来のレーザを用いたものに比
べ、環境に左右されることが少ない。また、蛍光灯を板
幅方向に配置したので、板材の板幅により光源やCCD
カメラの位置を移動する必要がない。この結果、移動の
ための機構部を要しないので、メンテナンスが容易とな
る。更に、上述のことから、本計測装置を安価に製作可
能である。
As described above, according to the present embodiment, since the fluorescent lamp is used as the light source, it is possible to measure even in the presence of suspended matter, and the environment is better than that using the conventional laser. Less affected by. Further, since the fluorescent lamps are arranged in the width direction of the plate, the light source and the CCD may be changed depending on the plate width of the plate material.
No need to move the camera position. As a result, a mechanism for moving is not required, which facilitates maintenance. Further, from the above, the present measuring device can be manufactured at low cost.

【0028】また、蛍光灯とCCDカメラを近接して配
置できるので、設置スペースが少なくて済む。蛍光灯と
CCDカメラとを板面から同じ高さに配置することで、
板材が平行移動して板材の高さが変化しても、精度良く
板歪を検出することができる。
Further, since the fluorescent lamp and the CCD camera can be arranged close to each other, the installation space can be reduced. By placing the fluorescent lamp and the CCD camera at the same height from the board surface,
Even if the plate material moves in parallel and the height of the plate material changes, the plate strain can be accurately detected.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、棒状光
源を板幅方向に配置したので、従来のように板材の板幅
により光源やCCDカメラの位置を移動する必要がな
い。この結果、移動のための機構部を要しないので、メ
ンテナンスが容易となると共に、安価に製作可能とな
る。
As described above, according to the present invention, since the rod-shaped light source is arranged in the plate width direction, it is not necessary to move the positions of the light source and the CCD camera depending on the plate width of the plate material as in the prior art. As a result, a mechanism for moving is not required, which facilitates maintenance and enables inexpensive manufacturing.

【0030】また、棒状光源と撮像手段とを近接して配
置できるので、設置スペースが少なくて済む。更に、光
源として従来のようにレーザ光を用いる必要がないの
で、測定環境中に浮遊物等が存在していても、精度の低
下なく測定を行うことが可能である。
Further, since the rod-shaped light source and the image pickup means can be arranged close to each other, the installation space can be reduced. Furthermore, since it is not necessary to use a laser beam as a light source as in the conventional case, even if a suspended matter or the like exists in the measurement environment, it is possible to perform the measurement without lowering the accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的構成を例示したブロック図であ
る。
FIG. 1 is a block diagram illustrating a basic configuration of the present invention.

【図2】本発明の一実施例としての板形状計測装置の測
定原理を示す説明図である。
FIG. 2 is an explanatory diagram showing a measurement principle of a plate shape measuring apparatus as an embodiment of the present invention.

【図3】蛍光灯の像位置と傾斜角との関係を測定する測
定装置の模式図である。
FIG. 3 is a schematic diagram of a measuring device that measures the relationship between the image position and the tilt angle of a fluorescent lamp.

【図4】蛍光灯の像の位置と傾斜角との関係の測定結果
を示すグラフである。
FIG. 4 is a graph showing the measurement result of the relationship between the position of the image of the fluorescent lamp and the tilt angle.

【図5】本実施例の板形状計測装置の構成を示すブロッ
ク図である。
FIG. 5 is a block diagram showing a configuration of a plate shape measuring apparatus according to this embodiment.

【図6】輪郭長演算処理ルーチンを示すフローチャート
である。
FIG. 6 is a flowchart showing a contour length calculation processing routine.

【符号の説明】[Explanation of symbols]

1…蛍光灯 3…CCDカメラ 5…処理装置
7…表示装置 51…CPU 53…ROM 55…RAM
1 ... Fluorescent lamp 3 ... CCD camera 5 ... Processing device
7 ... Display device 51 ... CPU 53 ... ROM 55 ... RAM

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 移送される板材の幅方向の予め定める複
数の計測点の板伸びを比較することによって板材の歪を
計測する板形状計測装置において、 移送される前記板材の上方に、該板材の幅方向に配置さ
れた棒状光源と、 前記棒状光源に近接して配置され、前記板材表面に写る
光源像を撮像する撮像手段と、 前記板材表面の傾斜角と該傾斜角に応じて変化する前記
光源像の位置との関係を示すデータを予め記憶した関係
データ記憶手段と、 前記関係データ記憶手段を参照して、前記撮像手段によ
り撮像された前記棒状光源の像の位置に基づいて、前記
板材の幅方向の前記複数の計測点の傾斜角を求める傾斜
角抽出手段と、 前記傾斜角抽出手段により抽出された傾斜角から前記板
材の幅方向の前記複数の計測点の板伸びを算出する板伸
び算出手段と、 を備えたことを特徴とする板形状計測装置。
1. A plate shape measuring device for measuring strain of a plate material by comparing plate elongations at a plurality of predetermined measurement points in the width direction of the plate material to be transferred, the plate material being above the plate material to be transferred. A rod-shaped light source arranged in the width direction of the plate member, an image pickup unit arranged in the vicinity of the rod-shaped light source for capturing a light source image reflected on the surface of the plate material, and an inclination angle of the plate surface and the inclination angle that changes according to the inclination angle. Based on the position of the image of the rod-shaped light source imaged by the imaging unit, referring to the relational data storage unit, the relational data storage unit that stores in advance the data indicating the relation with the position of the light source image, Inclination angle extraction means for obtaining the inclination angles of the plurality of measurement points in the width direction of the plate material, and plate elongation of the plurality of measurement points in the width direction of the plate material is calculated from the inclination angle extracted by the inclination angle extraction means. Sheet elongation calculation Plate-shaped measuring apparatus characterized by comprising: a stage, a.
JP3323335A 1991-12-06 1991-12-06 Plate shape measuring device Expired - Lifetime JPH0778417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323335A JPH0778417B2 (en) 1991-12-06 1991-12-06 Plate shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323335A JPH0778417B2 (en) 1991-12-06 1991-12-06 Plate shape measuring device

Publications (2)

Publication Number Publication Date
JPH05157536A true JPH05157536A (en) 1993-06-22
JPH0778417B2 JPH0778417B2 (en) 1995-08-23

Family

ID=18153654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323335A Expired - Lifetime JPH0778417B2 (en) 1991-12-06 1991-12-06 Plate shape measuring device

Country Status (1)

Country Link
JP (1) JPH0778417B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096859A (en) * 2011-11-01 2013-05-20 Kobe Steel Ltd Height measuring apparatus and height measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254809A (en) * 1985-05-08 1986-11-12 Nippon Steel Corp Inferior shape detector
JPS63198808A (en) * 1987-02-13 1988-08-17 Hitachi Cable Ltd Method and device for optical shape detection of rolled stock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254809A (en) * 1985-05-08 1986-11-12 Nippon Steel Corp Inferior shape detector
JPS63198808A (en) * 1987-02-13 1988-08-17 Hitachi Cable Ltd Method and device for optical shape detection of rolled stock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096859A (en) * 2011-11-01 2013-05-20 Kobe Steel Ltd Height measuring apparatus and height measuring method

Also Published As

Publication number Publication date
JPH0778417B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
TWI635252B (en) Methods and system for inspecting a 3d object using 2d image processing
EP2700903A1 (en) Tire surface shape measuring device and tire surface shape measuring method
CN101506614A (en) Method and apparatus for 3-dimensional vision and inspection of ball and like protrusions of electronic components
JP2010190886A (en) Pantograph height measuring device and calibration method therefor
EP0483362B1 (en) System for measuring length of sheet
JPH06147863A (en) Bending angle detector for bending machine
CN1844899A (en) Wide article detection method
JPH07260444A (en) Method and apparatus for measuring object three-dimensionally by light section method
KR19990037109A (en) Bending angle detection device
JP5702634B2 (en) Camera resolution automatic measurement method, automatic adjustment method, and image inspection method and apparatus
JPH05157536A (en) Plate-shape measuring apparatus
JPH0778418B2 (en) Plate shape measuring device
JP2009243920A (en) Reference plate, optical axis adjustment method of surface inspection apparatus and surface inspection apparatus
CN100468456C (en) A method for measuring dimensions by means of a digital camera
JP2011033428A (en) Pantograph height measuring device
KR20130000923A (en) High accuracy width gauge and measuring method using this
US10161879B1 (en) Measurement of thickness, surface profile, and optical power of a transparent sheet
JP2001280939A (en) Method of evaluating abnormal condition of object surface
JP2021063780A (en) Object detection system and program for objection detection system
JP3855062B2 (en) Method and apparatus for measuring shape of continuous object by monotonically increasing waveform projection
JP2001033397A (en) Method and apparatus for detecting surface flaw of object
JPH08285550A (en) Instrument for measuring-steel plate displacement
JPH11132735A (en) Ic lead floating inspection device and inspection method
JP3939866B2 (en) Headlight optical axis adjustment method
JPH07234116A (en) Warpage rate measuring method for plate material