JPS63198808A - Method and device for optical shape detection of rolled stock - Google Patents

Method and device for optical shape detection of rolled stock

Info

Publication number
JPS63198808A
JPS63198808A JP62030877A JP3087787A JPS63198808A JP S63198808 A JPS63198808 A JP S63198808A JP 62030877 A JP62030877 A JP 62030877A JP 3087787 A JP3087787 A JP 3087787A JP S63198808 A JPS63198808 A JP S63198808A
Authority
JP
Japan
Prior art keywords
rolled material
strain
rod
reflected
shaped light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62030877A
Other languages
Japanese (ja)
Inventor
Yasuhiko Miyake
三宅 保彦
Kenji Yamaguchi
健司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62030877A priority Critical patent/JPS63198808A/en
Publication of JPS63198808A publication Critical patent/JPS63198808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the strain of a rolled stock with high accuracy by irradiating the rolled material by plural rod type light sources and adding the quantities of distortion of plural reflected light beams from the rolled stock. CONSTITUTION:Plural slits 3a and 3b are formed in a slit plate 3 and light passed through those slits 3a and 3b is projected on the rolled stock 1. Reflected light beams R1 and R2 reflected by the rolled stock 1 are picked up by an image pickup camera 4 and monitored on a monitor 5. Further, the picked-up image signal is binarized by a binarization signal generating circuit 7, which is integrated by an integration circuit 8. An arithmetic circuit 9 calculates the strain of the rolled stock 1 from the integral output. A control circuit 10 controls the rolling condition of the rolled stock 1 according to the calculated strain quantity. Thus, plural quantities of strain based on the reflected light beams are summed up to detect the strain of the rolled stock, so the detection accuracy is improved.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は複数の棒状光源の圧延材上の反射像(虚像)を
撮像することによって圧延材の形状検出の検出精度を向
上させた圧延材の光学式形状検出方法およびその装置に
関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for detecting a rolled material that improves the accuracy of shape detection of the rolled material by capturing reflected images (virtual images) of a plurality of rod-shaped light sources on the rolled material. The present invention relates to an optical shape detection method and an apparatus thereof.

〔従来の技術〕[Conventional technology]

従来の圧延材の光学式形状検出装置として、例えば、[
磁性と加工Vo1.121’h124(1971−5)
 Jに示すものがある。第4母はこの圧延材の光学式形
状検出装置を示し、圧延機2によって圧延された圧延材
1に棒状光源11による光を照射し、その反射像(虚像
)をテレビカメラ4で撮像し、モニター5に映し出し、
所定の検出操作に基づいて圧延材1のひずみを検出する
ものである。この検出装置によれば、非接触式の検出を
行うため、圧延材の磁性、波の高さに関係せず、換言す
れば圧延材の材質(銅系の材料、Fe系の材料)に無関
係に適用できる利点がある。検出精度は圧延材の波のピ
ッチI5、波の高さmとすると、急峻度λ=m/ L 
xlOO= 0.5%程度のときは熱間圧延材並びに広
幅材にとって所定の精度が得られる。
As a conventional optical shape detection device for rolled material, for example, [
Magnetism and processing Vo1.121'h124 (1971-5)
There is something shown in J. The fourth base shows an optical shape detection device for this rolled material, which irradiates the rolled material 1 rolled by the rolling mill 2 with light from a rod-shaped light source 11, and captures the reflected image (virtual image) with a television camera 4. Displayed on monitor 5,
The strain in the rolled material 1 is detected based on a predetermined detection operation. Since this detection device performs non-contact detection, it is not related to the magnetism of the rolled material or the height of the waves, in other words, it is unrelated to the material of the rolled material (copper-based material, Fe-based material). There are advantages that can be applied to The detection accuracy is given by the wave pitch I5 of the rolled material and the wave height m, steepness λ=m/L
When xlOO=about 0.5%, a predetermined accuracy can be obtained for hot-rolled materials and wide-width materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の圧延材の光学式形状検出装置によれば、
板幅が200龍以下と狭幅になると棒状光源の照射によ
る反射像のゆがみが小さくなるため、検出精度が低下す
る不都合がある。また、ゆがみが圧延材の前後方張力の
 、影響を受けやすく、前方張力が20kgf/+az
以上に大きくなると、板の中央部(T、)と端部(T8
)の張力差T、、l−T、が小さくなるため、ゆがみの
波が一見が消えてしまい棒状光源像のゆがみが見えなく
なり、形状検出の精度が低下あるいは不可能となる問題
がある。
However, according to the conventional optical shape detection device for rolled materials,
When the plate width is as narrow as 200 mm or less, the distortion of the reflected image due to the irradiation from the rod-shaped light source becomes small, resulting in a disadvantage that the detection accuracy decreases. In addition, distortion is easily affected by the front and back tension of the rolled material, and the front tension is 20kgf/+az.
If it becomes larger than the center part (T, ) and end part (T8) of the plate,
), the tension difference T,, l-T, becomes small, so the distortion waves disappear at first glance, and the distortion of the bar-shaped light source image becomes invisible, resulting in a problem that the precision of shape detection decreases or becomes impossible.

最近におけるICリードフレームのような電子部品材料
では、装置の小型化、素子の高集積化の著しい進展から
、リードフレームの寸法形状はもとより、仮クラウンの
精度も益々高いものが要求されるようになっている。
In recent years, with electronic component materials such as IC lead frames, due to the remarkable progress in miniaturization of devices and higher integration of devices, not only the dimensions and shape of lead frames but also the precision of temporary crowns are required to be increasingly high. It has become.

このような背景から、ICリードフレーム用クラツド材
の形状精度の改善が望まれている。
Against this background, it is desired to improve the shape accuracy of cladding materials for IC lead frames.

また、圧延条件の制御を行うのに必要なデータを短時間
で数値化処理を行って得ることも望まれている。
It is also desired to obtain data necessary for controlling rolling conditions by performing numerical processing in a short time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり一圧延材の板
幅が20011以下の狭幅、あるいは前後方張力付加中
での圧延材ライン中においても高精度の形状検出を可能
とするため、複数の棒状光tX(多条スリット通過光を
含む)によって圧延材を照射し、各反射光(虚像)の複
数のひずみ量を加算するようにした圧延材の光学式形状
検出方法およびその装置を提供するものである。
The present invention has been made in view of the above, and in order to enable highly accurate shape detection even when the width of one rolled material is as narrow as 20011 mm or less, or during a rolled material line where longitudinal tension is being applied. A method and device for optical shape detection of a rolled material, in which the rolled material is irradiated with a plurality of bar-shaped lights tX (including light passing through multiple slits) and a plurality of strain amounts of each reflected light (virtual image) are added. This is what we provide.

〔実施例〕〔Example〕

第1図(alは本発明の第1の実施例を示し、圧延材(
板幅60mm、板厚0.4鰭の複合材)1を圧延する圧
延1(ワークロール径φ100の4段圧延機)2と、ス
リット幅Pb=10+u、スリット間隔PL=50謹真
の2本のスリン)光3a、3bを出射するスリット板3
(光源は特に図示せず)と、圧延材1の上に照射された
スリット光3a、3bの反射像R1、R2を検出するテ
レビカメラ4と、テレビカメラ4により検出した反射像
R1、R2を表示するモニタ(CRT)5を有する。
FIG. 1 (al indicates the first embodiment of the present invention, and the rolled material (
Roller 1 (4-high rolling mill with work roll diameter φ100) 2 that rolls composite material (composite material with plate width 60 mm and plate thickness 0.4 fin) 1, and 2 rollers with slit width Pb = 10 + u and slit interval PL = 50. Slit plate 3 that emits the lights 3a and 3b
(the light source is not particularly shown), a television camera 4 that detects the reflected images R1 and R2 of the slit lights 3a and 3b irradiated onto the rolled material 1, and a television camera 4 that detects the reflected images R1 and R2 detected by the television camera 4. It has a monitor (CRT) 5 for displaying.

第1図(alは、以上の構成に加えて、テレビカメラの
撮像に基づいて映像信号を出力する映像信号発生回路6
と、映像信号と所定のスライスレベルを比較して白、黒
の2値信号を発生する2値信号発生回路7と、2値信号
のrLJとサンプリング信号の間にAND条件が成立し
たとき積分操作を開始して当該走査線の終了までm続す
る積分回路8と、積分回路8の積分値出力に基づいてエ
ツジウェーブ、センタウェーブ等の演算を行う演算回路
9と、演算回路9の演算結果に基づいて圧延材2の圧延
条件(前後方張力を含めて)を制御する圧延装置制御回
路10を有する。
In addition to the above configuration, FIG.
, a binary signal generation circuit 7 that compares the video signal with a predetermined slice level and generates white and black binary signals, and an integral operation when an AND condition is established between the binary signal rLJ and the sampling signal. an integrating circuit 8 that continues m from the start to the end of the scanning line; an arithmetic circuit 9 that performs edge wave, center wave, etc. calculations based on the integral value output of the integrating circuit 8; It has a rolling device control circuit 10 that controls the rolling conditions (including longitudinal tension) of the rolled material 2 based on the rolling conditions.

以上の構成において操作を説明する。圧延機2によって
圧延成形された圧延材1に照射角(θ)を85″に設定
したスリット板3を通過したスリット光3a、3bを照
射し、反射像R,,R,を得る。反射像R+、Rzは圧
延材1のひずみに応じて、例えば、図示の如く、ゆがん
だ2本の線となる。第1図(blはこれを示し、圧延材
1にひずみ(中伸び:センターウェーブ)の波1aが形
成されている状態である。この反射像R,,R2をテレ
ビカメラ4によって撮像し、モニタ5により表示し、か
つ、映像信号発生回路6の映像信号を24fi化信号発
生回路7で2値化し、それに基づく積分回路8の積分信
号を演算回路9が演算する。これによりひずみを適格に
検出する。
The operation will be explained in the above configuration. A rolled material 1 that has been rolled and formed by a rolling mill 2 is irradiated with slit lights 3a and 3b that have passed through a slit plate 3 whose irradiation angle (θ) is set to 85'' to obtain reflected images R,,R,.Reflected images R+ and Rz become two distorted lines depending on the strain of the rolled material 1, for example, as shown in the figure. Fig. 1 (bl indicates this), and the strain (medium elongation: center wave) in the rolled material 1. The reflected images R, , R2 are captured by the television camera 4 and displayed on the monitor 5, and the video signal from the video signal generation circuit 6 is converted into a 24-fi signal generation circuit 7. The arithmetic circuit 9 calculates the integrated signal of the integrating circuit 8 based on the binarized signal.Thereby, distortion can be properly detected.

圧延材1のひずみは、換言すれば、反射像R1、R2の
ゆがみは2条通過光を用いることによって、反射線R+
 、Rz間のひずみとして検出することができる。ここ
で、板端側の反射線間(光源幅)をり。、反射像R1の
中央のひずんでいる圧延方向のゆがみ長さLl、反射像
R2の中央のひずんでいる圧延方向のゆがみ長さR3,
2条の反射像R,、R2の圧延方向のゆがみの長さR2
として、寸法L1とR2を板幅方向に連続的に測定し、
その和を求めると、Lz +]l、、 = (Lo +
 R3)  トLl =l、o +2Ll となる。従
来の棒状光源(1条通過光)では、前方張力が20kg
f/m+e”以上になると反射像のひずみLlが小さく
なってしまうことがあるが、での方法では上式によって
、反射像のゆがみ検出は2L+ となり検出精度を2倍
以上向上させることができる。実施例では、前方張力が
40 kg f / mu zであったが、不拘−伸び
を検出できた。この時の検出精度は(L+  ”Lz 
)/L+ −(5+27.5) / 5 = 6.5と
なり、従来のものより6.5倍の精度であった。スリッ
ト幅すなわち光源幅は、圧延材の表面の金属により光の
反射率が異なるため、反射率の比較的大きいA1につい
ては0 、5 +nの光源幅の小さいものを、一方、l
’;’e−Ni合金のように反射率の比較的小さいもの
については5〜low1幅の光源幅を用いた方が適する
。反射角θは反射像のひずみをテレビカメラで撮像する
際の反射像の取り込みを容易にするため、および光源幅
L0を同一のスリット通過光幅で変化させるため45°
〜85°の間で変更される。以上の検出結果に基づいて
圧延装置制御回路10は圧延機2の圧延条件を制御する
In other words, the distortion of the rolled material 1, in other words, the distortion of the reflected images R1 and R2, is determined by the reflection line R+ by using two-line passing light.
, Rz. Here, calculate the distance between the reflection lines (light source width) on the board edge side. , Distortion length Ll in the rolling direction at the center of the reflected image R1, Distortion length R3 in the rolling direction at the center of the reflected image R2,
Length R2 of distortion in the rolling direction of the two reflected images R, , R2
As, the dimensions L1 and R2 were measured continuously in the board width direction,
When we calculate the sum, Lz +]l,, = (Lo +
R3) Ll = l, o +2Ll. With a conventional rod-shaped light source (single passing light), the forward tension is 20 kg.
f/m+e'' or more, the distortion Ll of the reflected image may become small, but in the above method, the distortion of the reflected image can be detected as 2L+ by the above equation, and the detection accuracy can be improved by more than twice. In the example, although the forward tension was 40 kg f/mu z, unrestrained elongation could be detected.The detection accuracy at this time was (L+"Lz
)/L+-(5+27.5)/5=6.5, which is 6.5 times more accurate than the conventional method. The slit width, that is, the light source width, differs in light reflectance depending on the metal on the surface of the rolled material.
';'For materials with relatively low reflectance such as e-Ni alloy, it is more suitable to use a light source width of 5 to low1. The reflection angle θ is set to 45° in order to easily capture the reflected image when capturing the reflected image with a television camera and to change the light source width L0 with the same slit passing light width.
~85°. The rolling device control circuit 10 controls the rolling conditions of the rolling mill 2 based on the above detection results.

第2図は本発明の第2の実施例を示し、光源としてスリ
ンI・幅pb −5mmの網目状の50mm(P、)の
定ピンチ多条スリット光源16aを設けた網目状スリッ
ト板16を用いて板幅100■■の狭幅の圧延材1の形
状検出を行った例である。他の符号は共通に付き説明を
省略する。
FIG. 2 shows a second embodiment of the present invention, in which a mesh-like slit plate 16 is provided with a 50 mm (P,) constant pinch multi-slit light source 16a having a mesh shape of Surin I and width pb -5 mm as a light source. This is an example in which the shape of a narrow rolled material 1 with a plate width of 100 mm was detected using this method. The other symbols are common and their explanation will be omitted.

以上の構成において、操作を説明する。圧延機2によっ
て圧延成形された圧延材1 (板幅100龍、板厚1.
Olの複合材)に照射角(θ)606に設定し網目状ス
リット板16の多条スリット通過光16aを照射し、図
示のような反射像RI”’ R4を得る。この反射像R
3〜R4のひずみ状況をテレビカメラ4で撮像し、映像
信号を発生し、第1の実施例と同様に2値化処理し、演
算処理を行う。第3図はCRT表示を行った結果を示し
1、圧延材の不拘−伸びを表わし、中伸びが適格に検出
された。第2の実施例では網目状光源を用いることによ
って、縦(長手)方向の反射像R3、R4のひずみを検
出可能とし、圧延材の不均−伸びを幅方向(B+ 、L
z)と同時に長手方向(Bl 、B2)も検出し検出精
度を上げている。また、5〜50m■の正方形の網目状
を用いるのは、圧延材幅によって区間の数を多くしたり
、小さくしたりするためであり、一方、5m−の正方形
により小さくなるとテレビカメラ4でのひずみの判別が
困珪となるためである。綱目状スリットは、本実施例で
は3個のものを使用したが、多数の正方形、あるいは多
数の長方形でも応用可能である。また、コンピュータに
よる定量化処理は本実施例のように映像信号の2値化処
理、あるいは2値化処理に基づく演算の他、映像信号(
反射像R4〜R4)と座標軸の重ね合せでも可能である
In the above configuration, the operation will be explained. Rolled material 1 rolled and formed by rolling mill 2 (width: 100 mm, thickness: 1.
The irradiation angle (θ) is set to 606, and the light 16a passing through the multi-slits of the mesh-like slit plate 16 is irradiated onto the composite material (Ol composite material) to obtain a reflected image RI"' R4 as shown in the figure. This reflected image R
The distortion conditions of 3 to R4 are imaged by a television camera 4, a video signal is generated, and the video signal is binarized and arithmetic processed in the same manner as in the first embodiment. FIG. 3 shows the results of CRT display 1, which shows the unrestricted elongation of the rolled material, and medium elongation was properly detected. In the second embodiment, by using a mesh light source, it is possible to detect the strain of the reflected images R3 and R4 in the vertical (longitudinal) direction, and the uneven elongation of the rolled material can be detected in the width direction (B+, L
z) and the longitudinal direction (Bl, B2) at the same time to improve detection accuracy. Also, the reason why a square mesh shape of 5 to 50 m is used is to increase or reduce the number of sections depending on the width of the rolled material. This is because it becomes difficult to distinguish strain. Although three mesh-shaped slits are used in this embodiment, it is also possible to use a large number of square slits or a large number of rectangular slits. In addition, the computer-based quantification process includes the binarization process of the video signal as in this embodiment, or the calculation based on the binarization process, as well as the video signal (
It is also possible to superimpose the reflected images R4 to R4) and the coordinate axes.

更に、本発明の光源としては、螢光燈、ハロゲン光、レ
ーザー光の他、赤外線、紫外線でも可能である。
Further, as the light source of the present invention, in addition to fluorescent light, halogen light, and laser light, infrared rays and ultraviolet rays can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の圧延材の光学式形状検出方
法およびその装置によれば、複数の棒状光源(多条スリ
ット通過光を含む)によって圧延材を照射し、各反射光
に基づく複数のひずみ量を加算することによって圧延材
のひずみを検出するため、検出精度を向上させることが
でき、例えば、圧延材の板幅が200 s1以下の狭幅
、あるいは、前後方張力が20kgf/m+i2以上で
も圧延材のひずみを適格に検出することができる。
As explained above, according to the method and apparatus for optical shape detection of a rolled material of the present invention, the rolled material is irradiated with a plurality of rod-shaped light sources (including light passing through multiple slits), and a plurality of shapes are detected based on each reflected light. Since the strain in the rolled material is detected by adding the amount of strain, the detection accuracy can be improved.For example, if the width of the rolled material is as narrow as 200 s1 or less, or the longitudinal tension is 20 kgf/m+i2 or more, However, it is possible to accurately detect strain in rolled materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の第1の実施例の説明図
。第2図は本発明の第2の実施例の説明図。第3図は本
発明の第2の実施例の不均−伸び量のCRT表示の説明
図。第4図は従来の棒状光源を利用した光学式形状検出
装置の説明図。 符号の説明 ■−・−圧延材     2−・・・・圧延機3a、3
 b−−−−−スリット光 4−−一−・−テレビカメラ  5−・−一−−−モニ
ター11−一・−・−棒状光源 16−・−−−一・スリット仮 16a−−一〜−−スリット光 Tt−一・−前方(ロール出口)張力 P b ’−”−−スリット幅 PL−一−−−−スリットピッチ θ−−−−−・−照射角 L o ””’−−圧延材表面の圧延方向反射像線間隅
L + ”−’−’−’ 1条反射像の圧延方向ゆがみ
長さB2−・−一−2条反射像の圧延方向ゆがみ長さB
3−−−−一他の1条反射像の 圧延方向ゆがみ長さ
FIGS. 1(a) and 1(b) are explanatory diagrams of a first embodiment of the present invention. FIG. 2 is an explanatory diagram of a second embodiment of the present invention. FIG. 3 is an explanatory diagram of a CRT display of uneven elongation amount according to the second embodiment of the present invention. FIG. 4 is an explanatory diagram of an optical shape detection device using a conventional rod-shaped light source. Explanation of symbols■--Rolled material 2--Rolling mills 3a, 3
b-----Slit light 4--1--Television camera 5--1--Monitor 11-1--Bar-shaped light source 16-----1 Slit provisional 16a--1~ --Slit light Tt--1.--Front (roll exit) tension P b'--"--Slit width PL-----Slit pitch θ-------Irradiation angle L o ""'-- Corner L between the rolling direction reflection image lines on the surface of the rolled material + "-'-'-' Rolling direction distortion length B2--1-2 reflection image rolling direction distortion length B
3---Length of distortion in the rolling direction of one other single-line reflection image

Claims (7)

【特許請求の範囲】[Claims] (1)圧延材を棒状光源によって照射し、その反射光に
基づいて圧延材のひずみを検出する圧延材の光学式形状
検出方法において、 前記圧延材を複数の棒状光源で照射し、 前記複数の棒状光源の前記圧延材の複数の 反射光を撮像し、 前記複数の反射光の各ひずみ量を加算して 前記圧延材のひずみを検出することを特徴とする圧延材
の光学式形状検出方法。
(1) In an optical shape detection method for a rolled material in which the rolled material is irradiated with a rod-shaped light source and the strain of the rolled material is detected based on the reflected light, the rolled material is irradiated with a plurality of rod-shaped light sources, and the plurality of An optical shape detection method for a rolled material, comprising: imaging a plurality of reflected lights of the rolled material from a rod-shaped light source; and detecting strain in the rolled material by adding up respective amounts of strain of the plurality of reflected lights.
(2)圧延材による棒状光源の反射光に基づいて前記圧
延材のひずみを検出する圧延材の光学式検出装置におい
て、 前記圧延材を照射する複数の棒状光源と、 前記複数の棒状光源の圧延材による複数の 反射光を撮像する撮像手段と、 前記複数の反射光に基づいて各反射光に対 応する圧延材の各位置のひずみ量を演算し、前記各位置
のひずみ量の加算によって前記ひずみを検出する演算手
段を備えたことを特徴とする圧延材の光学式検出装置。
(2) An optical detection device for a rolled material that detects strain in the rolled material based on light reflected from a rod-shaped light source by the rolled material, comprising: a plurality of rod-shaped light sources that irradiate the rolled material; and rolling of the plurality of rod-shaped light sources. an imaging means for capturing images of a plurality of reflected lights from the material; and an image pickup means for capturing an image of a plurality of reflected lights from the material, and calculating an amount of strain at each position of the rolled material corresponding to each reflected light based on the plurality of reflected lights, and calculating the amount of strain by adding the amounts of strain at each of the positions. What is claimed is: 1. An optical detection device for rolled material, characterized by comprising a calculation means for detecting.
(3)前記複数の棒状光源が前記圧延材のひずみの波の
周期に応じた間隔で配置されている構成の特許請求の範
囲第2項記載の圧延材の光学式検出装置。
(3) The optical detection device for a rolled material according to claim 2, wherein the plurality of rod-shaped light sources are arranged at intervals corresponding to a period of a strain wave in the rolled material.
(4)前記複数の棒状光源が前記間隔を有して形成され
た複数のスリットを有したスリット板と、前記スリット
を通過するスリット光を発生する単一の光源から構成さ
れる特許請求の範囲第3項記載の圧延材の光学式検出装
置。
(4) A claim in which the plurality of rod-shaped light sources are constituted by a slit plate having a plurality of slits formed at the intervals, and a single light source that generates slit light passing through the slits. 4. The optical detection device for rolled material according to item 3.
(5)前記スリット板はスリット幅0.5〜10mm、
前記間隔50mmの前記スリットを有し、照射角45°
〜85°で前記圧延材上に配置される構成の特許請求の
範囲第4項記載の圧延材の光学式検出装置
(5) The slit plate has a slit width of 0.5 to 10 mm,
The slits are spaced apart from each other by 50 mm, and the irradiation angle is 45°.
The optical detection device for a rolled material according to claim 4, configured to be arranged on the rolled material at an angle of ~85°.
(6)前記スリット板は5〜50mmの正方形の網目状
のスリット幅0.5〜10mmの複数のスリットを有す
る構成の特許請求の範囲第4項記載の圧延材の光学式検
出装置
(6) The optical detection device for rolled material according to claim 4, wherein the slit plate has a plurality of slits having a square mesh shape of 5 to 50 mm and a slit width of 0.5 to 10 mm.
(7)前記演算手段が前記圧延材のひずみに基づいて圧
延装置制御手段を介して圧延装置の圧延条件を制御する
構成の特許請求の範囲第2項記載の圧延材の光学式検出
装置
(7) The optical detection device for a rolled material according to claim 2, wherein the calculation means controls the rolling conditions of the rolling device via the rolling device control means based on the strain of the rolled material.
JP62030877A 1987-02-13 1987-02-13 Method and device for optical shape detection of rolled stock Pending JPS63198808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62030877A JPS63198808A (en) 1987-02-13 1987-02-13 Method and device for optical shape detection of rolled stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62030877A JPS63198808A (en) 1987-02-13 1987-02-13 Method and device for optical shape detection of rolled stock

Publications (1)

Publication Number Publication Date
JPS63198808A true JPS63198808A (en) 1988-08-17

Family

ID=12315964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62030877A Pending JPS63198808A (en) 1987-02-13 1987-02-13 Method and device for optical shape detection of rolled stock

Country Status (1)

Country Link
JP (1) JPS63198808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157536A (en) * 1991-12-06 1993-06-22 Sumitomo Light Metal Ind Ltd Plate-shape measuring apparatus
JPH05157537A (en) * 1991-12-06 1993-06-22 Sumitomo Light Metal Ind Ltd Plate-shape measuring apparatus
JP2007047022A (en) * 2005-08-10 2007-02-22 Gen Tec:Kk Surface shape measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157536A (en) * 1991-12-06 1993-06-22 Sumitomo Light Metal Ind Ltd Plate-shape measuring apparatus
JPH05157537A (en) * 1991-12-06 1993-06-22 Sumitomo Light Metal Ind Ltd Plate-shape measuring apparatus
JP2007047022A (en) * 2005-08-10 2007-02-22 Gen Tec:Kk Surface shape measuring device

Similar Documents

Publication Publication Date Title
US8459073B2 (en) Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
US10527410B2 (en) Shape measurement apparatus and shape measurement method
DE112021004793T5 (en) Device for three-dimensional measurements
JP4896828B2 (en) Shape detection method and shape detection apparatus
JPH049605A (en) Sheet length measuring system
JP2004226240A (en) Optical shape measuring method
JPS63198808A (en) Method and device for optical shape detection of rolled stock
JP2004141956A (en) Method and instrument for measuring meandering of metal plate and manufacturing method for metal plate using the measuring method
JP2010133846A (en) Appearance inspection device
JPH11125514A (en) Bending angle detecting device
JPH05187825A (en) Method and apparatus for measuring shape of steel bar of irregular shape
JPS63198809A (en) Method and device for optical shape detection of rolled stock
JP2005308494A (en) Centering device and misalignment measuring method of rolling line
JPH08285550A (en) Instrument for measuring-steel plate displacement
JP3145296B2 (en) Defect detection method
JPS6464625A (en) Endoscopic apparatus
JPH06201347A (en) Shape detection for traveling strip, its device and rolling device
TWI658266B (en) Method and system for evaluating quality of surface of work roll
WO2022163177A1 (en) Steel-sheet walking amount measurement device, steel-sheet walking amount measurement method, hot-rolling equipment for hot-rolled steel strip, and hot-rolling method for hot-rolled steel strip
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JPH07234116A (en) Warpage rate measuring method for plate material
JPS60169581A (en) Method for discriminating remaining scale condition of copper strip
JPH0599623A (en) Displacement measuring apparatus
JP2021110690A (en) Inspection method, inspection apparatus and control method of rolling apparatus
JP3189721B2 (en) Estimation method of thickness of tapered steel plate