JPH05157326A - Operation controller of air conditioner - Google Patents
Operation controller of air conditionerInfo
- Publication number
- JPH05157326A JPH05157326A JP3325692A JP32569291A JPH05157326A JP H05157326 A JPH05157326 A JP H05157326A JP 3325692 A JP3325692 A JP 3325692A JP 32569291 A JP32569291 A JP 32569291A JP H05157326 A JPH05157326 A JP H05157326A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- frequency
- capacity
- change amount
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、空気調和装置の運転制
御装置に係り、特に要求能力に応じた容量制御と過負荷
態解消のための容量制御とによるハンチングの防止対策
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner operation control device, and more particularly to a hunting prevention measure by capacity control according to required capacity and capacity control for overload condition elimination.
【0002】[0002]
【従来の技術】従来より、インバータにより運転周波数
を可変に調節される圧縮機を備えた空気調和装置の運転
制御装置として、室温と室温の設定値との差温つまり要
求能力に応じてインバータの出力周波数を増減変更する
容量制御は一般的な空気調和装置の容量制御として知ら
れている。2. Description of the Related Art Conventionally, as an operation control device for an air conditioner equipped with a compressor whose operating frequency is variably adjusted by an inverter, an inverter for an air conditioner is selected according to a temperature difference between room temperature and a set value of room temperature, that is, a required capacity. The capacity control for increasing / decreasing the output frequency is known as the capacity control of a general air conditioner.
【0003】また、冷媒の凝縮温度の過上昇を熱交温度
或は圧力スイッチによって検出し、凝縮温度の過上昇時
にインバータの周波数を一定値だけ低減することによ
り、過負荷状態を解消しようとするいわゆる過負荷制御
も一般的な制御として知られており、上記容量制御を行
いながら、それとは別に過負荷解消のための容量制御を
行うことも一般的に行われている。Further, an excessive rise in the condensing temperature of the refrigerant is detected by a heat exchange temperature or a pressure switch, and when the condensing temperature excessively rises, the frequency of the inverter is reduced by a constant value so as to eliminate the overload condition. So-called overload control is also known as general control, and it is also common to perform capacity control for eliminating overload separately from the above capacity control.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記要
求能力による容量制御を行いながら、一方で、要求能力
による容量制御とは別に過負荷解消のための容量低減制
御を行う場合、以下のような問題があった。However, when the capacity control based on the required capacity is performed while the capacity reduction control for overload elimination is performed separately from the capacity control based on the required capacity, the following problems occur. was there.
【0005】すなわち、図8に示すように、例えば凝縮
温度が59℃を越えると一律にインバータ周波数を1ス
テップだけ低減するいわゆる垂下領域を設けた場合、要
求能力の増大によりインバータ周波数を1ステップ上昇
させると、それに伴い凝縮温度も上昇するが(図中のU
1の部分)、過負荷制御による容量低減を行う所定値
(59℃)付近の条件下(過負荷条件下)では、凝縮温
度がすぐに59℃を越えて、垂下領域に突入し、インバ
ータ周波数が1ステップだけ低減される(図中のD1の
部分)。そして、この容量低減によって能力が不足する
と、再び要求能力側からインバータ周波数が1ステップ
増大するよう制御され(図中のU2の部分)、すぐに凝
縮温度が59℃を越えて、垂下領域に突入する(図中の
D2の部分)。そして、このようなインバータ周波数の
増大と低減とが繰返される1種のハンチング状態に陥る
と、インバータ周波数の頻繁な変化により不快感を与え
るとともに、冷媒状態が不安定となる虞れがあった。That is, as shown in FIG. 8, for example, when a so-called drooping region is provided to uniformly reduce the inverter frequency by one step when the condensation temperature exceeds 59 ° C., the inverter frequency is increased by one step due to an increase in required capacity. If this is done, the condensing temperature will rise accordingly (U in the figure
1)), under conditions near a predetermined value (59 ° C) for capacity reduction by overload control (overload condition), the condensation temperature immediately exceeds 59 ° C and plunges into the drooping region, causing inverter frequency Is reduced by one step (D1 portion in the figure). When the capacity is insufficient due to this capacity reduction, the inverter frequency is controlled again from the required capacity side so as to increase by one step (U2 portion in the figure), and the condensation temperature immediately exceeds 59 ° C and plunges into the drooping region. (D2 part in the figure). When one kind of hunting state in which such increase and decrease of the inverter frequency is repeated occurs, there is a possibility that the frequent change of the inverter frequency causes discomfort and the refrigerant state becomes unstable.
【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、要求能力による容量制御と、過負荷
状態の解消による容量低減とを統合した容量制御を行う
ことにより、ハンチングを防止することにある。The present invention has been made in view of the above points, and an object thereof is to perform hunting by performing capacity control that integrates capacity control by required capacity and capacity reduction by eliminating an overload condition. To prevent.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、インバータにより運転周波数を可変に調節される圧
縮機(1)を備えた空気調和装置を前提とする。In order to achieve the above object, the means of the invention as defined in claim 1 is, as shown in FIG. 1, a compressor (1) whose operating frequency is variably adjusted by an inverter. It is premised on the equipped air conditioner.
【0008】そして、空気調和装置の運転制御装置とし
て、室内温度を検出する室温検出手段(Thr)と、該室
温検出手段(Thr)の出力を受け、室内温度と設定温度
との差温に応じて上記インバータの周波数の増減変更量
を演算する変更量演算手段(15)と、冷媒の凝縮温度
を検出する凝縮温度検出手段(Thc)と、該凝縮温度検
出手段(Thc)の出力を受け、凝縮温度が過負荷状態の
判断値よりも低い所定値以上のとき、上記所定値と現在
の凝縮温度との温度差に応じて、上記変更量演算手段
(15)で演算されるインバータの周波数の増減変更量
を負側に補正する過負荷補正手段(16)と、該過負荷
補正手段(16)で補正された増減変更量に応じて、上
記インバータの出力周波数を増減調節する周波数制御手
段(10)とを設ける構成としたものである。Then, as an operation control device of the air conditioner, a room temperature detecting means (Thr) for detecting the room temperature and an output of the room temperature detecting means (Thr) are received to respond to the temperature difference between the room temperature and the set temperature. Change amount calculation means (15) for calculating the increase / decrease change amount of the frequency of the inverter, condensation temperature detection means (Thc) for detecting the condensation temperature of the refrigerant, and outputs of the condensation temperature detection means (Thc), When the condensing temperature is equal to or higher than a predetermined value lower than the judgment value of the overload state, the frequency of the inverter calculated by the change amount calculating means (15) is calculated according to the temperature difference between the predetermined value and the current condensation temperature. Overload correction means (16) for correcting the increase / decrease change amount to the negative side, and frequency control means for increasing / decreasing the output frequency of the inverter according to the increase / decrease change amount corrected by the overload correction means (16) ( 10) and In which was formed.
【0009】請求項2の発明の講じた手段は、上記請求
項1記載の発明において、インバータ周波数を複数のス
テップに区画する。さらに、上記変更量演算手段(1
5)及び過負荷補正手段(16)を、インバータ周波数
の変更量をステップ値「1」,「0」,「−1」に整数
化して演算するように構成したものである。According to a second aspect of the present invention, in the first aspect of the present invention, the inverter frequency is divided into a plurality of steps. Further, the change amount calculation means (1
5) and the overload correction means (16) are configured so that the change amount of the inverter frequency is converted into an integer into step values "1", "0", "-1" for calculation.
【0010】[0010]
【作用】以上の構成により、請求項1の発明では、変更
量演算手段(15)により、室温検出手段(Thr)で検
出される室温と設定温度との差温を要求能力の指標とし
て、インバータ周波数の変更量が演算されるが、そのま
までは凝縮温度が過上昇して冷媒状態が悪化することが
ある。ここで、請求項1の発明では、凝縮温度が過負荷
状態の判断値よりも低い所定値以上のときには、過負荷
補正手段(16)により、この所定値と現在の凝縮温度
との温度差に応じて、上記変更量演算手段(15)で演
算された容量変更量が負側に補正されるので、要求能力
に応じた周波数制御による容量変更量に過負荷状態解消
のための容量低減量が組み込まれ、この補正された容量
変更量に応じて、周波数制御手段10により、インバー
タ周波数が増減調節されるので、両制御を個別に行うと
きのようなハンチングを生じることなく過負荷状態が解
消されることになる。With the above construction, in the first aspect of the invention, the change amount calculating means (15) uses the temperature difference between the room temperature and the set temperature detected by the room temperature detecting means (Thr) as an index of the required capacity of the inverter. Although the amount of change in frequency is calculated, the condensing temperature may rise excessively and the refrigerant state may deteriorate as it is. According to the first aspect of the present invention, when the condensing temperature is equal to or higher than the predetermined value lower than the judgment value of the overload state, the overload correction means (16) determines the temperature difference between the predetermined value and the present condensing temperature. Accordingly, the capacity change amount calculated by the change amount calculation means (15) is corrected to the negative side, so that the capacity change amount by the frequency control according to the required capacity is reduced by the capacity reduction amount for eliminating the overload condition. The frequency control means 10 increases or decreases the inverter frequency according to the corrected amount of change in the capacity, so that the overload state can be eliminated without causing hunting as in the case of performing both controls individually. Will be.
【0011】請求項2の発明では、上記請求項1の発明
において、変更量演算手段(15)及び過負荷補正手段
(16)により、インバータ周波数の変更量を1,0−
1に整数化するようにしたので、冷媒状態の変化が平滑
化され、細かいチャタリングの発生による制御の不安定
化が防止されることになる。According to a second aspect of the present invention, in the first aspect of the invention, the change amount calculation means (15) and the overload correction means (16) change the change amount of the inverter frequency by 1,0-.
Since the integer is set to 1, the change in the refrigerant state is smoothed, and the destabilization of control due to the occurrence of fine chattering is prevented.
【0012】[0012]
【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。Embodiments of the present invention will be described below with reference to the drawings starting from FIG.
【0013】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、一台の室外ユニット(A)に対して
一台の室内熱交換器(B)が接続されたいわゆるセパレ
ートタイプのものである。上記室外ユニット(A)に
は、インバータ(図示せず)により運転周波数が可変に
調節される圧縮機(1)と、冷房運転時には図中実線の
ごとく、暖房運転時には図中破線のごとく切換わる四路
切換弁(2)と、冷房運転時には凝縮器として、暖房運
転時には蒸発器として機能する室外熱交換器(3)と、
冷媒を減圧するための減圧部(20)と、圧縮機(1)
の吸入管に介設され、吸入冷媒中の液冷媒を除去するた
めのアキュムレ―タ(7)とが主要機器として配置され
ているまた、室内ユニット(B)には、冷房運転時には
蒸発器として、暖房運転時には凝縮器として機能する室
内熱交換器(6)が配置されている。上記各機器は冷媒
配管(8)により順次接続され、冷媒の循環により熱移
動を生ぜしめるようにした冷媒回路(9)が構成されて
いる。FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, which is a so-called separate type in which one indoor unit (A) is connected to one indoor heat exchanger (B). It is a thing. The outdoor unit (A) is switched to a compressor (1) whose operating frequency is variably adjusted by an inverter (not shown), and a solid line in the drawing during the cooling operation and a broken line in the drawing during the heating operation. A four-way switching valve (2), an outdoor heat exchanger (3) that functions as a condenser during cooling operation, and as an evaporator during heating operation,
A decompression unit (20) for decompressing the refrigerant, and a compressor (1)
The main unit includes an accumulator (7) for removing the liquid refrigerant in the suction refrigerant, which is installed in the suction pipe of the unit, and the indoor unit (B) serves as an evaporator during cooling operation. An indoor heat exchanger (6) that functions as a condenser during heating operation is arranged. The above-mentioned devices are sequentially connected by a refrigerant pipe (8), and a refrigerant circuit (9) is configured so that heat is transferred by circulating the refrigerant.
【0014】ここで、上記減圧部(20)には、液冷媒
を貯溜するためのレシ―バ(4)と、液冷媒の減圧機能
と流量調節機能とを有する電動膨張弁(5)とが配設さ
れ、上記レシ―バ(4)と電動膨張弁(5)とは、電動
膨張弁(5)がレシ―バ(4)の下部つまり液部に連通
するよう、室外熱交換器(3)の補助熱交換器(3a)
を介して共通路(8a)に直列に配置されている。そし
て、共通路(8a)のレシ―バ(4)上流側の端部
(P)と室外熱交換器(3)との間は、室外熱交換器
(3)からレシ―バ(4)への冷媒の流通のみを許容す
る第1逆止弁(D1)を介して第1流入路(8b1)によ
り、上記共通路(8a)の点(P)と室内熱交換器
(6)との間は室内熱交換器(6)からレシ―バ(4)
への冷媒の流通のみを許容する第2逆止弁(D2)を介
して第2流入路(8b2)により、それぞれ接続されてい
る一方、共通路(8a)の上記電動膨張弁(5)他端側
の端部(Q)と上記第2逆止弁(D2)−室内熱交換器
(6)間の点(R)との間は電動膨張弁(5)から室内
熱交換器(6)への冷媒の流通のみを許容する第3逆止
弁(D3)を介して第1流出路(8c1)により、共通路
(8a)の上記点(Q)と上記第1逆止弁(D1)−室
外熱交換器(3)間の点(S)との間は電動膨張弁
(5)から室外熱交換器(3)への冷媒の流通のみを許
容する第4逆止弁(D4)を介して第2流出路(8c2)
により、それぞれ接続されている。The pressure reducing section (20) is provided with a receiver (4) for storing the liquid refrigerant and an electric expansion valve (5) having a pressure reducing function and a flow rate adjusting function for the liquid refrigerant. The receiver (4) and the electric expansion valve (5) are disposed so that the electric expansion valve (5) communicates with the lower portion of the receiver (4), that is, the liquid portion. ) Auxiliary heat exchanger (3a)
Are arranged in series on the common path (8a). Then, between the outdoor end (P) of the receiver (4) upstream of the common path (8a) and the outdoor heat exchanger (3), the outdoor heat exchanger (3) goes to the receiver (4). Between the point (P) of the common path (8a) and the indoor heat exchanger (6) by the first inflow path (8b1) via the first check valve (D1) that allows only the circulation of the refrigerant of Is from the indoor heat exchanger (6) to the receiver (4)
The electric expansion valve (5) and the like on the common path (8a), while being connected to each other by the second inflow path (8b2) through the second check valve (D2) that allows only the flow of the refrigerant to the Between the end portion (Q) on the end side and the point (R) between the second check valve (D2) and the indoor heat exchanger (6), the electric expansion valve (5) is connected to the indoor heat exchanger (6). The first check valve (D1) and the point (Q) of the common path (8a) by the first outflow passage (8c1) through the third check valve (D3) that allows only the flow of the refrigerant to the first check valve (D1). A fourth check valve (D4) which allows only the flow of the refrigerant from the electric expansion valve (5) to the outdoor heat exchanger (3) between the outdoor heat exchanger (3) and the point (S). Through the 2nd outflow path (8c2)
Are connected to each other.
【0015】また、上記レシ―バ(4)の上流側の点
(P)と流出側の点(Q)との間には、キャピラリチュ
―ブ(C)を介設してなる液封防止バイパス路(8f)
が設けられていて、該液封防止バイパス路(8f)によ
り、圧縮機(1)の停止時における液封を防止するとと
もに、ガス冷媒がレシ―バ(4)上部から第1流出路
(8c1)側に移動しうるようになされている。なお、上
記キャピラリチュ―ブ(C)の減圧度は電動膨張弁
(5)よりも十分大きくなるように設定されていて、通
常運転時における電動膨張弁(5)による冷媒流量調節
機能を良好に維持しうるようになされている。Further, a capillary tube (C) is interposed between a point (P) on the upstream side and a point (Q) on the outflow side of the receiver (4) to prevent liquid sealing. Bypass road (8f)
Is provided, the liquid sealing prevention bypass passage (8f) prevents liquid sealing when the compressor (1) is stopped, and the gas refrigerant flows from the upper portion of the receiver (4) to the first outflow passage (8c1). ) Is able to move to the side. The degree of pressure reduction of the capillary tube (C) is set to be sufficiently larger than that of the electric expansion valve (5), so that the electric flow expansion function of the electric expansion valve (5) during normal operation can be improved. It is designed to be maintainable.
【0016】なお、(F1)〜(F4)は冷媒中の塵埃
を除去するためのフィルタ、(ER)は圧縮機(1)の
運転音を低減させるための消音器である。Incidentally, (F1) to (F4) are filters for removing dust in the refrigerant, and (ER) is a silencer for reducing the operation noise of the compressor (1).
【0017】さらに、空気調和装置にはセンサ類が設け
られていて、(Th2)は吐出管に配置され、吐出管温度
T2を検出する吐出管センサ、(Tha)は室外ユニット
(A)の空気吸込口に配置され、外気温度である吸込空
気温度Taを検出する室外吸込センサ、(Thc)は室外
熱交換器(3)に配置され、冷房運転時には凝縮温度と
なり暖房運転時には蒸発温度となる外熱交温度Tcを検
出する凝縮温度検出手段としての外熱交センサ、(Th
r)は室内ユニット(B)の空気吸込口に配置され、室
内温度である吸込空気温度Trを検出する室温検出手段
としての室内吸込センサ、(The)は室内熱交換器
(6)に配置され、冷房運転時には凝縮温度となり暖房
運転時には蒸発温度となる内熱交温度Teを検出する内
熱交センサ、(HPS)は高圧側圧力の過上昇によりオン
となって後述の保護装置(11)を作動させる高圧圧力
スイッチ、(LPS)は低圧側圧力の過低下によりオンと
なって保護装置(11)を作動させる低圧圧力スイッチ
である。上記各センサ類の信号は(10)は空気調和装
置の運転を制御するコントローラに入力可能に接続され
ており、該コントローラ(10)により、上記各センサ
類の信号に応じて、空気調和装置の運転を制御するよう
になされている。Further, the air conditioner is provided with sensors, (Th2) is arranged in the discharge pipe, the discharge pipe sensor detects the discharge pipe temperature T2, and (Tha) is the air of the outdoor unit (A). The outdoor suction sensor (Thc), which is arranged at the suction port and detects the intake air temperature Ta that is the outside air temperature, is arranged in the outdoor heat exchanger (3) and becomes the condensation temperature during the cooling operation and the evaporation temperature during the heating operation. An external heat exchange sensor as a condensation temperature detecting means for detecting the heat exchange temperature Tc, (Th
r) is arranged at the air suction port of the indoor unit (B), an indoor suction sensor as room temperature detecting means for detecting the suction air temperature Tr, which is the indoor temperature, and (The) is arranged at the indoor heat exchanger (6). , An internal heat exchange sensor Te for detecting the internal heat exchange temperature Te which becomes the condensation temperature during the cooling operation and becomes the evaporation temperature during the heating operation, and (HPS) is turned on due to the excessive increase in the high-pressure side pressure, and the protection device (11) described later The high-pressure pressure switch (LPS) to be operated is a low-pressure pressure switch that is turned on by the excessive decrease of the low-pressure side pressure to operate the protection device (11). The signals (10) of each sensor are connected to a controller that controls the operation of the air conditioner, and the controller (10) outputs signals of the air conditioner according to the signals of each sensor. It is designed to control driving.
【0018】また、上記コントローラ(10)内には、
空気調和装置の運転中、何らかの異常が生じた時に作動
して、空気調和装置を異常停止させる保護装置(11)
と、室温の設定値をセットするための設定スイッチ(1
2)とが内蔵されている。そして、上記保護装置(1
1)には、図示しないが、上記高低圧スイッチ(HP
S),(LPS)の他、吐出管センサ(Th2)の信号も入
力されており、吐出管温度T2が所定温度以上になる
と、保護装置(11)が作動して空気調和装置を異常停
止させ、圧縮機(1)の焼損等の事故を防止するように
なされている。In the controller (10),
Protective device (11) that operates when an abnormality occurs during operation of the air conditioner to abnormally stop the air conditioner
And the setting switch (1
2) and are built in. Then, the protection device (1
Although not shown in 1), the high / low pressure switch (HP
In addition to S) and (LPS), the signal of the discharge pipe sensor (Th2) is also input. When the discharge pipe temperature T2 becomes higher than a predetermined temperature, the protection device (11) operates to abnormally stop the air conditioner. It is designed to prevent accidents such as burnout of the compressor (1).
【0019】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流入路(8b1)から流入し、第1逆止弁(D1)を経
てレシ―バ(4)に貯溜され、電動膨張弁(5)で減圧
された後、第1流出路(8c1)を経て室内熱交換器
(6)で蒸発して圧縮機(1)に戻る循環となる一方、
暖房運転時には、室内熱交換器(6)で凝縮液化された
液冷媒が第2流入路(8b2)から流入し、第2逆止弁
(D2)を経てレシ―バ(4)に貯溜され、電動膨張弁
(5)で減圧された後、第2流出路(8c2)を経て室外
熱交換器(3)で蒸発して圧縮機(1)に戻る循環とな
る。In the refrigerant circuit (9), during cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow passage (8b1), and the first check valve (D1) is turned on. After being stored in the receiver (4) and decompressed by the electric expansion valve (5), it is evaporated in the indoor heat exchanger (6) through the first outflow passage (8c1) and returned to the compressor (1). While becoming a cycle,
During the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) flows in from the second inflow passage (8b2), is stored in the receiver (4) via the second check valve (D2), After the pressure is reduced by the electric expansion valve (5), it is circulated through the second outflow passage (8c2) to evaporate in the outdoor heat exchanger (3) and return to the compressor (1).
【0020】ここで、図3は、冷房運転時における負荷
つまり差温ΔTの変化とインバータ周波数のステップ値
Nとの関係を示す。同図に示すように、差温ΔTは、−
1.0〜1.5℃の間で0.5℃間隔の複数ゾーンに区
画されており、そのうち0〜0.5℃の間が快適ゾーン
である。図中、N=1は圧縮機(1)の停止を、N=2
は最低容量を、N=9は最大容量を示し、図中の右端の
数字はサーモ復帰時の周波数のステップ値を示す。Here, FIG. 3 shows the relationship between the load, that is, the change in the temperature difference ΔT and the step value N of the inverter frequency during the cooling operation. As shown in the figure, the temperature difference ΔT is −
It is divided into a plurality of zones at intervals of 0.5 ° C between 1.0 and 1.5 ° C, of which 0 to 0.5 ° C is the comfort zone. In the figure, N = 1 indicates that the compressor (1) is stopped, and N = 2.
Indicates the minimum capacity, N = 9 indicates the maximum capacity, and the rightmost number in the figure indicates the step value of the frequency when the thermostat is returned.
【0021】空気調和装置の運転開始(図中の時刻t
o)直後の立上がりモード(図中の領域Mo)では、圧
縮機(1)を最大容量(N=9)で運転し、差温ΔTが
1.5℃以下の連続運転モード(図中の領域M1)に入
ると、以下のように周波数の調整を行う。まず、差温Δ
Tが減小して0.5℃以下になるとN=N−1に、差温
ΔTが0℃以下になるとN=N−2に、差温ΔTが−
0.5℃以下になるとN=N−3にして、それまでのス
テップ値Nを低減するとともに、差温ΔTが−1℃以下
になると、一律にN=1にするつまり圧縮機(1)を停
止させる(所定時間待機後)。一方、差温ΔTが増大す
るときには、差温ΔTが0℃を越えるとN=N+1に、
差温ΔTが0.5℃を越えるとN=N+2に、差温ΔT
が1.0℃を越えるとN=N+3に変更し、それまでの
ステップ値Nを増大させるとともに、差温ΔTが1.5
℃を越えると圧縮機(1)の容量を最大容量(N=9)
にする。なお、差温ΔTが0℃以下で一定時間の間(例
えば3分間程度の時間)、一定に(0.5℃幅の各区
間)保持されるときには、周波数のステップ値Nを1ス
テップ低減し、0.5℃以上の領域で一定時間の間一定
に保持されるときには周波数のステップ値Nを「1」だ
け増大させるようにしている。Start of operation of the air conditioner (time t in the figure)
o) Immediately after the start-up mode (area Mo in the figure), the compressor (1) is operated at the maximum capacity (N = 9) and the continuous operation mode in which the temperature difference ΔT is 1.5 ° C. or less (area in the figure) Upon entering M1), the frequency is adjusted as follows. First, the temperature difference Δ
When T is reduced to 0.5 ° C or lower, N = N-1, and when the temperature difference ΔT is 0 ° C or lower, N = N-2, and the temperature difference ΔT is-.
When it becomes 0.5 ° C. or less, N = N−3 is set to reduce the step value N until then, and when the temperature difference ΔT becomes −1 ° C. or less, N = 1 is uniformly set, that is, the compressor (1). Is stopped (after waiting for a predetermined time). On the other hand, when the temperature difference ΔT increases, when the temperature difference ΔT exceeds 0 ° C., N = N + 1,
When the temperature difference ΔT exceeds 0.5 ° C, N = N + 2, and the temperature difference ΔT
When the temperature exceeds 1.0 ° C., N = N + 3 is changed to increase the step value N until then, and the temperature difference ΔT is 1.5.
When the temperature exceeds ℃, the capacity of the compressor (1) becomes the maximum capacity (N = 9).
To When the temperature difference ΔT is maintained at 0 ° C. or less for a certain period of time (for example, about 3 minutes) (constant of 0.5 ° C. width), the frequency step value N is reduced by one step. , The step value N of the frequency is increased by "1" when it is kept constant for a certain time in the region of 0.5 ° C. or higher.
【0022】次に、上記コントローラ(10)の具体的
な制御内容について説明する。図4は、上記コントロー
ラ(10)の冷房運転時における制御内容を示し、ステ
ップST1で、上記室内吸込センサ(Thr)で検出され
る吸込空気温度Trと設定スイッチ(12)でセットさ
れた室温の設定値Tsとの差温ΔTr(=Ts−Tr)
に基づき、インバータ周波数のステップ値Nの要求能力
による変更量dN9を、下記数式(1) dN9=f(ΔTr) =1.0(ΔTr−ΔTr-6 )+0.25(ΔTr+2ΔTr-3 +ΔTr-6 ) +0.05(ΔTr−2ΔTr-3 +ΔTr-6 ) (1) によって演算する。ここで、Tr-3 は15秒前の検出
値、Tr-6 は30秒前の検出値であって(サンプリング
タイムが5秒)、上記数式(1) はディジタル系でのいわ
ゆるPID制御の演算式となっている。Next, specific control contents of the controller (10) will be described. FIG. 4 shows the control contents during the cooling operation of the controller (10). In step ST1, the intake air temperature Tr detected by the indoor intake sensor (Thr) and the room temperature set by the setting switch (12) are set. Temperature difference ΔTr with set value Ts (= Ts-Tr)
Based on, the change amount dN9 depending on the required capacity of the step value N of the inverter frequency is calculated by the following formula (1) dN9 = f (ΔTr) = 1.0 (ΔTr−ΔTr-6) +0.25 (ΔTr + 2ΔTr-3 + ΔTr-6 ) +0.05 (ΔTr-2ΔTr-3 + ΔTr-6) (1) Here, Tr-3 is the detection value 15 seconds before, Tr-6 is the detection value 30 seconds before (sampling time is 5 seconds), and the above equation (1) is the so-called PID control calculation in the digital system. It is a formula.
【0023】次に、ステップST2で、負荷ゾーンが変
化してからの時間を積算するT18タイマ(図示せず)が
10min 以上になったか否かを判別し、10min 以上で
あればステップST3でT18タイマのカウントT18を
「0」に設定した後、10min以上でなければそのまま
で、それぞれステップST4に進み、上記ステップST
1で演算された容量変更量dN9が0.5以上か否かを
判別する。Next, in step ST2, it is judged whether or not a T18 timer (not shown) for accumulating the time after the load zone is changed is 10 min or longer. If it is 10 min or longer, T18 is set in step ST3. After the count T18 of the timer is set to "0", if it is not longer than 10 minutes, it is left as it is, and the process proceeds to step ST4.
It is determined whether the capacity change amount dN9 calculated in 1 is 0.5 or more.
【0024】そして、上記ステップST4における判別
がNOのとき、つまり容量変更量dN9が0.5以上で
なければ、さらにステップST5で容量変更量dN9が
−0.5以下か否かを判別し、容量変更量dN9が−
0.5以下でなければ、圧縮機(1)の容量を変更させ
る必要はないと判断して、ステップST6に進み、dN
9=0に決定する。When the determination in step ST4 is NO, that is, when the capacity change amount dN9 is not 0.5 or more, it is further determined in step ST5 whether the capacity change amount dN9 is -0.5 or less, Capacity change amount dN9-
If it is not less than 0.5, it is determined that it is not necessary to change the capacity of the compressor (1), the process proceeds to step ST6, and dN
9 = 0 is decided.
【0025】一方、上記ステップST4の判別で、dN
9≧0.5のときには、以下の手順により、容量増大の
ための演算を行う。まず、ステップST7で、周波数の
ステップ値Nが周波数の定格ステップ値Ntに一定ステ
ップ値3を加算した値(Nt+3)よりも大きいか否か
を判別する。そして、N>Nt+3でなければ、ステッ
プST12に移行してdN9=1とすぐに容量変更量d
N9を増大値「1」に設定するが、N>Nt+3であれ
ば、下記のステップST8〜ST11の制御を行った
後、ステップST12の制御を行う。つまり、図6に示
すように、周波数のステップ値が定格値Ntに達した後
は限界に近付いているので、保護装置(11)の作動を
回避するために周波数を徐々に増大するようにしている
(図中の領域SU)。On the other hand, in the determination of the above step ST4, dN
When 9 ≧ 0.5, the calculation for capacity increase is performed by the following procedure. First, in step ST7, it is determined whether or not the frequency step value N is larger than the value (Nt + 3) obtained by adding the constant step value 3 to the rated frequency step value Nt. If N> Nt + 3 is not satisfied, the process proceeds to step ST12 and dN9 = 1 and immediately the capacity change amount d
Although N9 is set to the increase value "1", if N> Nt + 3, the control of step ST12 is performed after the control of the following steps ST8 to ST11. That is, as shown in FIG. 6, since the step value of the frequency approaches the limit after reaching the rated value Nt, the frequency is gradually increased in order to avoid the operation of the protection device (11). (SU in the figure).
【0026】まず、ステップST8で、フラグF6が
「1」かを判別し、F6=1でなければすぐに容量を増
大しても差し付けないと判断して、上記ステップST1
2の制御に移行する一方、F6=1であれば、ステップ
ST9に進んで、T18タイマのカウントが「0」か否か
を判別する。ここで、F6は、インバータ周波数が上昇
中に「1」となるフラグである。そして、T18=0であ
ればステップST10でT18タイマのカウントを開始さ
せた後、T18=0でなければそのままで、それぞれステ
ップST11に進み、T18タイマのカウントT18が40
sec 以上に達するまで待ってから上記ステップST12
に進む。そして、ステップST12でdN=9に決定し
た後、ステップST13で、T18タイマをリセットす
る。First, in step ST8, it is determined whether or not the flag F6 is "1". If F6 = 1, it is determined that the capacity will not be increased even if the capacity is immediately increased.
On the other hand, when F6 = 1 while shifting to the control of 2, it proceeds to step ST9 and determines whether or not the count of the T18 timer is "0". Here, F6 is a flag that becomes "1" while the inverter frequency is increasing. If T18 = 0, the counting of the T18 timer is started in step ST10, and if T18 = 0 is not satisfied, the process proceeds to step ST11, and the count T18 of the T18 timer is set to 40.
Wait until it reaches sec or more, and then step ST12 above.
Proceed to. After determining dN = 9 in step ST12, the T18 timer is reset in step ST13.
【0027】一方、上記ステップST5の判別で、dN
9≦−0.5であれば、容量を低減すべきと判断して、
ステップST14以下の容量低減制御を行う。まず、ス
テップST14で、周波数のステップ値Nが最低ステッ
プ値2に一定ステップ値3を加算した値5以下か否かを
判別し、N≦5でなければ、すぐにステップST19に
移行して、容量変更量dN9を低減値「−1」に設定す
る一方、N≦5であれば、上記図6に示すように、徐々
に低減すべき状態と判断して、ステップST15〜ST
18で、上記ステップST8〜ST11と同様の待機制
御を行った後、ステップST19に進む。ただし、F7
は、インバータ周波数が下降中に「1」となるフラグで
ある。そして、ステップST19で、dN=−1に設定
した後、ステップST20で、T18タイマのカウントを
リセットし、さらに、ステップST21に進んで、フラ
グF8が「1」か否かを判別し、F8=1でなければそ
のままで、F8=1であれば、上記ステップST6の制
御を行った後、負荷に応じた容量制御を終了する。ただ
し、F8は、油戻し運転中に「1」となるフラグであっ
て、インバータ周波数を加工させることが決まっても、
油戻しのためにインバータ周波数を増大している最中で
あればその油戻し制御が終了するまではインバータ周波
数を低減しないようになされている。On the other hand, in the determination of step ST5, dN
If 9 ≦ −0.5, it is determined that the capacity should be reduced,
The capacity reduction control of step ST14 and thereafter is performed. First, in step ST14, it is determined whether or not the step value N of the frequency is less than or equal to the value 5 obtained by adding the constant step value 3 to the lowest step value 2. If N ≦ 5, the process immediately proceeds to step ST19, While the capacity change amount dN9 is set to the reduction value “−1”, if N ≦ 5, as shown in FIG. 6, it is determined that the state should be gradually reduced, and steps ST15 to ST15 are performed.
In step 18, the same standby control as in steps ST8 to ST11 is performed, and then the process proceeds to step ST19. However, F7
Is a flag that becomes "1" while the inverter frequency is decreasing. Then, after setting dN = -1 in step ST19, the count of the T18 timer is reset in step ST20, and further, in step ST21, it is determined whether or not the flag F8 is "1", and F8 = If it is not 1, if it is F8 = 1, if F8 = 1, the capacity control according to the load is terminated after the control of the step ST6. However, F8 is a flag that becomes "1" during the oil return operation, and even if it is decided to process the inverter frequency,
If the inverter frequency is being increased for oil return, the inverter frequency is not reduced until the oil return control is completed.
【0028】次に、図5は上記フローで演算された容量
変更量dN9に対して、過負荷状態を解消するために補
正する過負荷補正制御の内容を示す。まず、ステップS
R1で、上記外熱交センサ(Thc)で検出される冷媒の
凝縮温度Tcが、過負荷状態の判断値(59℃)よりも
やや低い所定値(56−XH1℃)(ただし、XH1は室内
外ユニット(A),(B)間の連絡配管長に応じた配管
補正値)を越えたか否かを判別し、過負荷補正値X8を
凝縮温度Tcの関数として演算する。すなわち、下記数
式(2) X8=0.83{56−(Tc−XH1)} (2) に基づき過負荷補正値X8を算出する。Next, FIG. 5 shows the contents of the overload correction control for correcting the capacity change amount dN9 calculated in the above flow in order to eliminate the overload condition. First, step S
At R1, the condensing temperature Tc of the refrigerant detected by the external heat exchange sensor (Thc) is a predetermined value (56-XH1 ° C) slightly lower than the judgment value (59 ° C) of the overload state (where XH1 is indoors). It is determined whether or not a pipe correction value according to the communication pipe length between the outer units (A) and (B) is exceeded, and the overload correction value X8 is calculated as a function of the condensing temperature Tc. That is, the overload correction value X8 is calculated based on the following mathematical expression (2) X8 = 0.83 {56- (Tc-XH1)} (2).
【0029】一方、上記ステップSR1の判別で、Tc
>56−XH1でなければ、過負荷状態に陥る虞れはない
と判断して、ステップSR3で、X8=0にした後、そ
れぞれステップSR4に進み、ステップSR4で、X8
≦−0.5か否かを判別し、X8≦−0.5であれば容
量変更量dN9を負側に補正する必要があると判断し
て、ステップSR5で、X8=−1に設定する一方、X
8≦−0.5でなければ、容量変更量dN9を変更する
必要はないと判断して、ステップSR6で、X8=0に
設定する。On the other hand, if it is determined in step SR1 that Tc
If it is not> 56-XH1, it is judged that there is no danger of falling into the overload state, and X8 = 0 is set in step SR3, and then the processing proceeds to step SR4, and in step SR4, X8 is set.
It is determined whether or not ≦ −0.5. If X8 ≦ −0.5, it is determined that the capacity change amount dN9 needs to be corrected to the negative side, and in step SR5, X8 = −1 is set. On the other hand, X
Unless 8 ≦ −0.5, it is determined that it is not necessary to change the capacity change amount dN9, and X8 = 0 is set in step SR6.
【0030】そして、ステップSR7で、dN9=dN
9+X8として、過負荷解消のための補正を考慮した容
量変更量dN9を算出し、さらに、ステップSR8〜S
R12で、この容量変更量dN9について、「1」以上
であれば「1」に、「−1」以下であれば「−1」に、
それ以外のときには「0」にする整数化を行って、過負
荷解消のための補正制御を終了する。Then, in step SR7, dN9 = dN
9 + X8, the capacity change amount dN9 in consideration of the correction for overload elimination is calculated, and further, steps SR8 to S8
In R12, if the capacity change amount dN9 is "1" or more, it is "1", and if it is "-1" or less, it is "-1".
In other cases, it is converted into an integer of "0" and the correction control for overload elimination is completed.
【0031】上記制御のフローにおいて、ステップST
1〜ST21の制御により、請求項1の発明にいう変更
量演算手段(15)が構成され、ステップSR1〜SR
12の制御により、過負荷補正手段(16)が構成され
ている。In the above control flow, step ST
The change amount calculation means (15) according to the invention of claim 1 is constituted by the control of 1 to ST21, and steps SR1 to SR
The control of 12 constitutes an overload correction means (16).
【0032】なお、上記実施例では冷房運転における制
御について説明したが、暖房運転についても、同様の手
順によって負荷に応じた容量制御及び過負荷解消のため
の補正制御が行われる。ただし、暖房運転時には、上記
ステップSR1の制御は、Tc>54−XH1か否かを判
断するようにしている。Although the control in the cooling operation has been described in the above embodiment, the capacity control according to the load and the correction control for overload elimination are performed in the heating operation as well. However, during the heating operation, the control in step SR1 determines whether or not Tc> 54-XH1.
【0033】したがって、上記実施例では、変更量演算
手段(15)により、室内吸込センサ(Thr)で検出さ
れる吸込空気温度(室温)Trと設定温度Tsとの差温
ΔTrを要求能力(負荷)の指標として、インバータ周
波数のステップ値Nの変更量つまり容量変更量dN9が
演算される。Therefore, in the above embodiment, the change amount calculating means (15) calculates the temperature difference ΔTr between the intake air temperature (room temperature) Tr detected by the indoor intake sensor (Thr) and the set temperature Ts as the required capacity (load). ), The change amount of the step value N of the inverter frequency, that is, the capacity change amount dN9 is calculated.
【0034】一方、高外気冷房等の過負荷状態では、凝
縮温度Tcが過上昇するなど、そのまま放置すると冷媒
回路(9)中の冷媒状態が悪化するので、圧縮機(1)
の容量を低減する等の処置が必要となるが、従来のよう
に負荷に応じた容量制御とは切り離しした容量低減を行
うと、上述のように制御がハンチング状態に陥る虞れが
生じる(図8参照)。On the other hand, in an overloaded state such as high outside air cooling, the refrigerant temperature in the refrigerant circuit (9) deteriorates if left unattended, such as the condensation temperature Tc rising excessively.
Although it is necessary to take measures such as reducing the capacity of the control, if the capacity reduction is performed separately from the conventional capacity control according to the load, there is a risk that the control will fall into the hunting state as described above (Fig. 8).
【0035】ここで、上記実施例では、凝縮温度Tcが
過負荷状態の判断値(上記実施れでは59℃)よりも低
い所定値(上記実施例では配管長の補正項XH1を無視す
ると56℃)以上のときには、過負荷補正手段(16)
により、この所定値(56℃)と現在の凝縮温度Tcと
の温度差に応じて、上記変更量演算手段(15)で演算
された容量変更量が負側に補正され、容量制御手段とし
てのコントローラ(10)により、この補正された容量
変更量dN9に応じて、インバータ周波数Nが増減調節
される。Here, in the above embodiment, the condensing temperature Tc is a predetermined value lower than the judgment value of the overload state (59 ° C. in the above embodiment) (56 ° C. if the pipe length correction term XH1 is ignored in the above embodiment). ) In the above case, overload correction means (16)
As a result, the capacity change amount calculated by the change amount calculation means (15) is corrected to the negative side in accordance with the temperature difference between the predetermined value (56 ° C.) and the current condensing temperature Tc, and as the capacity control means. The controller (10) increases or decreases the inverter frequency N according to the corrected capacity change amount dN9.
【0036】すなわち、図7に示すように、59℃より
もやや低い所定値56℃になると、その後過負荷状態に
陥ることを予想して、この過負荷状態を解消するために
必要な容量低減量である過負荷補正値X8が容量変更量
dN9に組み込まれ、結局、要求能力からの容量変更量
dN9と過負荷解消に必要な容量低減とが合算されるの
で、凝縮温度Tcが所定値(56℃)付近に収束するこ
とになる。よって、インバータ周波数の各ステップにつ
いて、制御ブロックごとにハンチングの発生を防止する
ことができ、制御の安定化を図ることができる。That is, as shown in FIG. 7, when a predetermined value of 56 ° C., which is slightly lower than 59 ° C., is expected to fall into an overload state after that, the capacity required to eliminate this overload state is reduced. The overload correction value X8, which is the amount, is incorporated into the capacity change amount dN9, and eventually the capacity change amount dN9 from the required capacity and the capacity reduction necessary for overload elimination are added, so that the condensing temperature Tc is the predetermined value ( 56 ° C). Therefore, for each step of the inverter frequency, hunting can be prevented from occurring for each control block, and the control can be stabilized.
【0037】また、上記実施例のごとく、インバータ周
波数の変更量dN9について、1,0,−1に整数化す
るようにした場合、冷媒状態の変化を平滑化することが
でき、細かいチャタリングの発生による制御の不安定化
を防止しうる利点がある。Further, as in the above embodiment, when the inverter frequency change amount dN9 is made into an integer of 1, 0, -1, the change of the refrigerant state can be smoothed and fine chattering occurs. There is an advantage in that the control can be prevented from becoming unstable.
【0038】[0038]
【発明の効果】以上説明したように、請求項1の発明に
よれば、インバータで運転周波数が可変に調節される圧
縮機を備えた空気調和装置の運転制御装置として、室温
と設定温度との差温に応じてインバータ周波数の増減変
更量を演算するとともに、凝縮温度が過負荷状態の判断
値よりも低い所定値以上のとき、所定値と現在の凝縮温
度との温度差に応じて増減変更量の演算値を負側に補正
し、この補正された増減変更量に応じて圧縮機の容量を
増減調節するようにしたので、過負荷状態の解消と要求
能力に応じた容量制御とをハンチングを招くことなく行
うことができ、制御の安定化を図ることができる。As described above, according to the first aspect of the present invention, as the operation control device for the air conditioner having the compressor whose operating frequency is variably adjusted by the inverter, there are provided a room temperature and a preset temperature. The inverter frequency increase / decrease amount is calculated according to the temperature difference, and when the condensing temperature is equal to or higher than a predetermined value that is lower than the judgment value of the overload condition, the increase / decrease is changed according to the temperature difference between the predetermined value and the current condensation temperature. The calculated value of the amount is corrected to the negative side, and the capacity of the compressor is increased or decreased according to the corrected increase / decrease change amount, so hunting is performed to eliminate the overload condition and control the capacity according to the required capacity. Can be performed without inviting, and the control can be stabilized.
【0039】請求項2の発明によれば、上記請求項1の
発明において、インバータ周波数のステップ値を複数の
ステップ値に区画し、インバータ周波数の変更量をステ
ップ値1,0,−1に整数化して演算するようにしたの
で、冷媒状態の変化を平滑化することができ、細かいチ
ャタリングの発生を防止することができる。According to the invention of claim 2, in the invention of claim 1, the step value of the inverter frequency is divided into a plurality of step values, and the change amount of the inverter frequency is set to an integer step value 1, 0, -1. Since the calculation is performed by changing the values, the change in the refrigerant state can be smoothed, and the occurrence of fine chattering can be prevented.
【図1】発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the invention.
【図2】空気調和装置の冷媒配管系統図である。FIG. 2 is a refrigerant piping system diagram of the air conditioner.
【図3】冷房運転時における差温の変化とインバータ周
波数との関係を示す線図である。FIG. 3 is a diagram showing a relationship between a change in differential temperature and an inverter frequency during a cooling operation.
【図4】要求能力に応じた周波数制御の内容を示すフロ
―チャ―ト図である。FIG. 4 is a flowchart showing the contents of frequency control according to the required capacity.
【図5】インバータ周波数の変更量の補正制御の内容を
示すフロ―チャ―ト図である。FIG. 5 is a flow chart showing the contents of correction control of an inverter frequency change amount.
【図6】インバータ周波数の変更方法を示す説明図であ
る。FIG. 6 is an explanatory diagram showing a method of changing an inverter frequency.
【図7】本発明における凝縮温度の変化状態を示す図で
ある。FIG. 7 is a diagram showing a changing state of the condensation temperature in the present invention.
【図8】従来の制御装置による凝縮温度の変化状態を示
す図である。FIG. 8 is a diagram showing a change state of a condensing temperature by a conventional control device.
1 圧縮機 10 コントローラ(周波数制御手段) 15 変更量演算手段 16 過負荷補正手段 Thr 室内吸込センサ(室温検出手段) Thc 外熱交センサ(凝縮温度検出手段) 1 Compressor 10 Controller (frequency control means) 15 Change amount calculation means 16 Overload correction means Thr Indoor suction sensor (room temperature detection means) Thc External heat exchange sensor (condensation temperature detection means)
Claims (2)
節される圧縮機(1)を備えた空気調和装置において、 室内温度を検出する室温検出手段(Thr)と、該室温検
出手段(Thr)の出力を受け、室内温度と設定温度との
差温に応じて上記インバータの周波数の増減変更量を演
算する変更量演算手段(15)と、冷媒の凝縮温度を検
出する凝縮温度検出手段(Thc)と、該凝縮温度検出手
段(Thc)の出力を受け、凝縮温度が過負荷状態の判断
値よりも低い所定値以上のとき、上記所定値と現在の凝
縮温度との温度差に応じて、上記変更量演算手段(1
5)で演算されるインバータの周波数の増減変更量を負
側に補正する過負荷補正手段(16)と、該過負荷補正
手段(16)で補正された増減変更量に応じて、上記イ
ンバータの出力周波数を増減調節する周波数制御手段
(10)とを備えたことを特徴とする空気調和装置の運
転制御装置。1. An air conditioner equipped with a compressor (1) whose operating frequency is variably adjusted by an inverter, wherein a room temperature detecting means (Thr) for detecting an indoor temperature and an output of the room temperature detecting means (Thr). In response, the change amount calculation means (15) calculates the increase / decrease change amount of the frequency of the inverter according to the temperature difference between the room temperature and the set temperature, and the condensation temperature detection means (Thc) that detects the condensation temperature of the refrigerant. Receiving the output of the condensing temperature detecting means (Thc) and, when the condensing temperature is equal to or higher than a predetermined value lower than the judgment value of the overload state, the change is made according to the temperature difference between the predetermined value and the current condensing temperature. Quantity calculation means (1
5) Overload correction means (16) for correcting the increase / decrease change amount of the inverter frequency calculated in 5) to the negative side, and the inverter increase / decrease amount according to the increase / decrease change amount corrected by the overload correction means (16). An operation control device for an air conditioner, comprising: a frequency control means (10) for increasing / decreasing an output frequency.
装置において、 インバータ周波数は複数のステップに区画されており、
上記変更量演算手段(15)及び過負荷補正手段(1
6)は、インバータ周波数の変更量をステップ値
「1」,「0」,「−1」に整数化して演算することを
特徴とする空気調和装置の運転制御装置。2. The operation control device for an air conditioner according to claim 1, wherein the inverter frequency is divided into a plurality of steps,
The change amount calculation means (15) and the overload correction means (1)
6) is an operation control device for an air conditioner, characterized in that the change amount of the inverter frequency is calculated by converting it into integers into step values "1", "0", and "-1".
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3325692A JP2671677B2 (en) | 1991-12-10 | 1991-12-10 | Operation control device for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3325692A JP2671677B2 (en) | 1991-12-10 | 1991-12-10 | Operation control device for air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05157326A true JPH05157326A (en) | 1993-06-22 |
JP2671677B2 JP2671677B2 (en) | 1997-10-29 |
Family
ID=18179648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3325692A Expired - Lifetime JP2671677B2 (en) | 1991-12-10 | 1991-12-10 | Operation control device for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2671677B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013217620A (en) * | 2012-04-12 | 2013-10-24 | Toyota Home Kk | Air conditioning system of multiple dwelling house |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60152853A (en) * | 1984-01-20 | 1985-08-12 | Daikin Ind Ltd | Operation controlling device of air conditioner |
JPS61272554A (en) * | 1985-05-25 | 1986-12-02 | 株式会社東芝 | Air conditioner |
JPH04106355A (en) * | 1990-08-28 | 1992-04-08 | Toshiba Corp | Air conditioner |
-
1991
- 1991-12-10 JP JP3325692A patent/JP2671677B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60152853A (en) * | 1984-01-20 | 1985-08-12 | Daikin Ind Ltd | Operation controlling device of air conditioner |
JPS61272554A (en) * | 1985-05-25 | 1986-12-02 | 株式会社東芝 | Air conditioner |
JPH04106355A (en) * | 1990-08-28 | 1992-04-08 | Toshiba Corp | Air conditioner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013217620A (en) * | 2012-04-12 | 2013-10-24 | Toyota Home Kk | Air conditioning system of multiple dwelling house |
Also Published As
Publication number | Publication date |
---|---|
JP2671677B2 (en) | 1997-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2783065B2 (en) | Operation control device for air conditioner | |
JPH11108485A (en) | Method for controlling air conditioner and outlet temperature of refrigerant heater | |
JP2936961B2 (en) | Air conditioner | |
JP2500522B2 (en) | Refrigeration system operation controller | |
JP4271275B2 (en) | Electronic expansion valve control device and electronic expansion valve control method | |
JP3097323B2 (en) | Operation control device for air conditioner | |
JP2671677B2 (en) | Operation control device for air conditioner | |
JP2551238B2 (en) | Operation control device for air conditioner | |
JP2842020B2 (en) | Operation control device for air conditioner | |
JPH1038387A (en) | Operation controller of air conditioner | |
JP2822764B2 (en) | Operation control device for outdoor fan of air conditioner | |
JP2757685B2 (en) | Operation control device for air conditioner | |
JP2522116B2 (en) | Operation control device for air conditioner | |
JP2500524B2 (en) | Refrigeration system operation controller | |
JP2666660B2 (en) | Operation control device for air conditioner | |
JP2503785B2 (en) | Operation control device for air conditioner | |
JP2768148B2 (en) | Operation control device for air conditioner | |
JPH0243011Y2 (en) | ||
JP2504338B2 (en) | Operation control device for air conditioner | |
JPH05264089A (en) | Defrosting controller for freezer | |
JPH05256496A (en) | Operation controller for air conditioner | |
JP4318369B2 (en) | Screw type refrigerator | |
JP2536354B2 (en) | Refrigerator protection device | |
JPH01225852A (en) | High pressure controller for air conditioner | |
JP2600815B2 (en) | Heat pump system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970610 |