JPH0515502B2 - - Google Patents

Info

Publication number
JPH0515502B2
JPH0515502B2 JP59056242A JP5624284A JPH0515502B2 JP H0515502 B2 JPH0515502 B2 JP H0515502B2 JP 59056242 A JP59056242 A JP 59056242A JP 5624284 A JP5624284 A JP 5624284A JP H0515502 B2 JPH0515502 B2 JP H0515502B2
Authority
JP
Japan
Prior art keywords
alumina
catalyst
hydrogel
chromia
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59056242A
Other languages
Japanese (ja)
Other versions
JPS60202738A (en
Inventor
Yukimasa Fukui
Heihachiro Mukoda
Masato Ida
Kaoru Sato
Toshio Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP5624284A priority Critical patent/JPS60202738A/en
Publication of JPS60202738A publication Critical patent/JPS60202738A/en
Publication of JPH0515502B2 publication Critical patent/JPH0515502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、炭化水素油中に含まれる窒素化合物
及び硫黄化合物を効果的に除去するための水素化
処理用触媒に関するものである。 〔発明の背景〕 石油系原油、けつ岩油、石炭液化油及びタール
サンドビチユーメン等の炭化水素油中には、窒素
及び硫黄化合物等の不純物が多量に含まれてい
る。特にけつ岩油は石油系原油に比べ多量の窒素
化合物が含まれ、その窒素含有量は1〜2重量%
にも及ぶことが知られている。一般に炭化水素油
中に含まれる窒素化合物は、ピリジン類、キノリ
ン類、アミン類及びアミド類等の塩基性窒素化合
物、ピロール類及びインドール類等の弱酸性窒素
化合物などである。これら窒素化合物を含む炭化
水素油をそのまま燃料油として用いた場合、大気
汚染の原因となり環境衛生上好ましくない。また
窒素化合物は、製品炭化水素油の色相や安定性等
を低下させスラツジ等の生成原因となる。一方、
このような炭化水素油を接触分解又は接触改質す
るとき、窒素化合物は触媒の活性を著しく低下さ
せる原因ともなる。 従来、炭化水素油中の窒素化合物及び硫黄化合
物を除去するため、水素の存在下に高温高圧で炭
化水素油を水素化処理する方法が広く知られてい
る。また炭化水素油中の窒素化合物は、共存する
硫黄化合物と比べて極めて反応性の低いことも知
られている。したがつて、より高活性、長寿命の
脱窒素触媒を開発すべく、多くの研究者によつて
研究され、またいくつかの提案もなされている。 例えば、米国特許第3778365号においてはY−
ゼオライトとニツケル・タングステン、ニツケ
ル・モリブテン又は亜鉛・タングステン等から成
る触媒をアンモニアで前処理したものが、けつ岩
油の水素化脱窒素及び水素化分解に有効であると
述べられている。また米国特許第4128505号にお
いては炭化水素油を水素化脱窒素及び脱硫するた
めに、チタンニア−ジルコニアまたはチタニア−
ジルコニア−アルミナから成る担体にa族及び
族金属を担持した触媒が提案されている。米国
特許第4139492号ではアルミナ又はアルミナ−シ
リカ担体にa族及び族金属のホウフツ化水素
酸溶液を含浸、調製した触媒が水素化脱窒素に有
効であると述べられている。米国特許第4139493
号においてはイオン交換法により調製したコバル
ト・モリブデン/シリカ−アルミナ又はニツケ
ル・モリブデン/シリカ−アルミナ等の触媒が炭
化水素油の水素化脱窒素に有効であると述べられ
ている。特開昭56−40432号においては炭化水素
油の水素化脱窒素用触媒として、酸化チタンに
a族及び族金属とリンやホウ素を担持したもの
が提案されている。 しかしながら、これらの触媒はいずれも炭化水
素油中の窒素化合物を効果的に除去するための工
夫がなされているためにもかかわらず、未だ十分
なものとはいえない。 〔発明の構成〕 本発明者らは、水素化脱硫活性に加え、優れた
水素化脱窒素活性を有する炭化水素油の水素化処
理用触媒を開発するため鋭意研究を重ねた結果、
本発明に至つた。 本発明はアルミナ−チタニア又はアルミナ−ジ
ルコニアに第三成分としてクロミアを添加した複
合酸化物に、モリブデンならびにニツケルの酸化
物を担持せしめた炭化水素油の水素化脱窒素用触
媒である。これら金属の担持方法としては特に制
限はなく、含浸法、噴射法等公知の任意の方法が
利用できる。 本発明に用いる複合酸化物は通常知られている
共沈法あるいはゲル混合法等によつて調製でき
る。即ち、それぞれの金属塩(例えば、硝酸アル
ミニウム、硝酸クロム、硝酸ジルコニル、塩化チ
タン等)の混合水溶液にアンモニア水を加え加水
分解して共沈物質を得る共沈法、あるいは均一沈
殿法、不均一沈殿法等公知の方法により、あらか
じめ各金属のヒドロゲルをそれぞれ別個に調製し
ておき、その後これらヒドロゲルを混練するゲル
混合法などが採用される。上記の方法によつて得
られる共沈物又は混練物は、水分調整を行つた
後、転動造粒、圧縮成形、押出成形等任意の方法
により所要の形状に成形し乾燥した後、400〜600
℃の温度で2〜5時間焼成し、担体として供され
る。 本発明に係る触媒は、炭化水素油の水素化脱窒
素及び水素化脱硫に有効である。特に、けつ岩油
などの窒素含有量の高い炭化水素油の水素化処理
に優れた効果を発揮する。この原因については明
らかでないが、第三成分であるクロミアの添加に
より触媒活性点が修飾され、高い脱窒素活性およ
びその持続作用が発現されたものと推定される。 該触媒に使用方法は固定床、移動床等通常の反
応形式で行うことができる。又水素化処理条件
は、温度100〜500℃、圧力10〜300Kg/cm2液空間
速度0.1〜10hr-1、水素対原料炭化水素の供給比
100〜3000Nl/の範囲内で行うのが好ましい。 次に、本発明を実施例ならびに比較例に基づき
更に詳細に説明する。 比較例 1 市販のアルミナ担体に所定量の硝酸ニツケル及
びパラモリブデン酸アンモニウムのアンモニア水
溶液を含浸させ、3時間放置した後120℃で4時
間乾燥し、これを550℃にて3時間焼成して触媒
Aを得た。 比較例 2 10%硝酸アルミニウム水溶液及び10%硝酸ジル
コニルの水溶液に夫々5%のアンモニア水を攪拌
しながら室温でPH9になるまで徐々に加え、沈殿
を過洗浄してアルミナヒドロゲル及びジルコニ
アヒドロゲルを得た。このアルミナヒドロゲル及
びジルコニアヒドロゲルを無水酸化物ベースで
90:10になるように混合し、水分を調整してニー
ダーでよく混練した後、抽出成形機を用いて1.6
mmφの円柱状に成形した。この成形体を120℃で
2時間乾燥し、更に550℃3時間焼成してアルミ
ナ−ジルコニア担体を得た。この担体に所定量の
ニツケル及びモリブデンを比較例1と同様の含浸
法にて担持し触媒Bを得た。 比較例 3 氷冷した10%の塩化チタン水溶液1に5%の
アンモニア水を徐々に加え、攪拌しながら加水分
解し、沈でんを過洗浄してチタニアヒドロゲル
を得た。このチタニアヒドロゲルを比較例2と同
様にして得たアルミナヒドロゲルと無水酸化物ベ
ースで10:90になるように混合した。これ以後の
調製は比較例2と同様の操作を繰返し行い触媒C
を得た。 実施例 1 1.5%の硝酸クロム水溶液4に尿素60gを加
え、加水分解してクロミアヒドロゲルを得た。こ
のクロミアヒドロゲルと比較例2と同様にして得
たアルミナヒドロゲル及びジルコニアヒドロゲル
を無水酸化物ベースで10:80:10となるように混
合して、ヒドロゲル混合物を得た。これ以後の触
媒調製は比較例2と同様の操作を行い、触媒Dを
得た。 実施例 2 比較例2により得られたアルミナヒドロゲル及
びジルコノアヒドロゲルを実施例1で得られたク
ロミアヒドロゲルと無水酸化物ベースで70:10:
20の比率になるように混合した。このヒドロゲル
混合物を比較例2と同様の操作を行い、触媒Eを
得た。 実施例 3 比較例2、比較例3及び実施例1で得られたア
ルミナヒドロゲル、チタニアヒドロゲル及びクロ
ミアヒドロゲルを無水酸化物ベースで80:10:10
の比率になるように混合した。このヒドロゲル混
合物を比較例2と同様の操作を行つて触媒Fを得
た。 実施例 4 比較例2、比較例3及び実施例1で得られたア
ルミナヒドロゲル、チタニアヒドロゲル及びクロ
ミアヒドロゲルを無水酸化物ベースで70:10:20
の比率になるように混合した。このヒドロゲル混
合物を比較例2と同様の操作を行つて触媒Gを得
た。 実施例 5 比較例1〜3及び実施例1〜4において調製し
た触媒の組成、比表面積及び細孔容積を第1表に
示す。比較例の触媒3種(A,B,C)及び実施
例の触媒4種(D,E,F,G)を用い、それぞ
れの触媒を固定床流通式反応装置に30ml充てん
し、触媒の予備硫化を行つたのち第2表に示す反
応条件で第3表に示す性状の米国コロラド産けつ
岩油の水素化処理実験を行い、通油開始50時間経
過後の生成油を採取して分析した。その結果を第
1表に示す。クロミアを含む三元複合酸化物担体
の触媒のうち、実施例1の触媒Dは、比較例2の
触媒Bと比べて明らかに活性が高い。また実施例
2は実施例1と比べてクロミアの比率を高くした
が、脱窒素率は変らなかつた。 次にアルミナ・チタニア・クロミア系の複合酸
化物担体の触媒FおよびGは、比較例3の触媒C
と比べて脱窒素率が高く、クロミアの比率を上げ
ることによつてさらに向上した。
[Industrial Application Field] The present invention relates to a hydrotreating catalyst for effectively removing nitrogen compounds and sulfur compounds contained in hydrocarbon oil. [Background of the Invention] Hydrocarbon oils such as petroleum crude oil, rock oil, liquefied coal oil, and tar sand bits contain large amounts of impurities such as nitrogen and sulfur compounds. In particular, rock oil contains a large amount of nitrogen compounds compared to petroleum-based crude oil, and its nitrogen content is 1 to 2% by weight.
It is known that it extends to Nitrogen compounds generally contained in hydrocarbon oils include basic nitrogen compounds such as pyridines, quinolines, amines and amides, and weakly acidic nitrogen compounds such as pyrroles and indoles. If hydrocarbon oil containing these nitrogen compounds is used as fuel oil as it is, it causes air pollution and is unfavorable in terms of environmental health. In addition, nitrogen compounds reduce the hue and stability of the product hydrocarbon oil and cause the formation of sludge and the like. on the other hand,
When such hydrocarbon oils are subjected to catalytic cracking or catalytic reforming, nitrogen compounds also cause a significant reduction in the activity of the catalyst. Conventionally, in order to remove nitrogen compounds and sulfur compounds from hydrocarbon oil, a method of hydrotreating hydrocarbon oil at high temperature and high pressure in the presence of hydrogen is widely known. It is also known that nitrogen compounds in hydrocarbon oil have extremely low reactivity compared to coexisting sulfur compounds. Therefore, many researchers have conducted research and made several proposals to develop denitrification catalysts with higher activity and longer life. For example, in U.S. Pat. No. 3,778,365, Y-
It is said that a catalyst consisting of zeolite and nickel/tungsten, nickel/molybdenum, or zinc/tungsten pretreated with ammonia is effective for the hydrodenitrogenation and hydrocracking of rock oil. Further, in U.S. Pat. No. 4,128,505, titanium nia-zirconia or titania
Catalysts have been proposed in which group A and group metals are supported on a carrier made of zirconia-alumina. U.S. Pat. No. 4,139,492 states that a catalyst prepared by impregnating an alumina or alumina-silica support with a hydroborofluoric acid solution of Group A and Group metals is effective for hydrodenitrogenation. US Patent No. 4139493
No. 2, it is stated that catalysts such as cobalt-molybdenum/silica-alumina or nickel-molybdenum/silica-alumina prepared by an ion exchange method are effective for hydrodenitrification of hydrocarbon oils. JP-A No. 56-40432 proposes a catalyst for hydrodenitrification of hydrocarbon oils in which titanium oxide supports group A and group metals, as well as phosphorus and boron. However, although all of these catalysts have been devised to effectively remove nitrogen compounds from hydrocarbon oil, they are still not sufficient. [Structure of the Invention] The present inventors have conducted intensive research to develop a catalyst for hydrotreating hydrocarbon oil that has excellent hydrodenitrogenation activity in addition to hydrodesulfurization activity.
This led to the present invention. The present invention is a catalyst for hydrodenitrogenization of hydrocarbon oil, in which molybdenum and nickel oxides are supported on a composite oxide obtained by adding chromia as a third component to alumina-titania or alumina-zirconia. There are no particular limitations on the method of supporting these metals, and any known methods such as impregnation and spraying methods can be used. The composite oxide used in the present invention can be prepared by a commonly known coprecipitation method or gel mixing method. That is, a coprecipitation method, a homogeneous precipitation method, and a heterogeneous precipitation method, in which aqueous ammonia is added to a mixed aqueous solution of each metal salt (for example, aluminum nitrate, chromium nitrate, zirconyl nitrate, titanium chloride, etc.) and hydrolyzed to obtain a coprecipitated substance. A gel mixing method is employed in which hydrogels of each metal are prepared separately in advance by a known method such as a precipitation method, and then these hydrogels are kneaded. After adjusting the moisture content, the coprecipitate or kneaded product obtained by the above method is molded into a desired shape by any method such as rolling granulation, compression molding, extrusion molding, etc., and dried. 600
It is fired at a temperature of 2 to 5 hours and used as a carrier. The catalyst according to the present invention is effective for hydrodenitrogenation and hydrodesulfurization of hydrocarbon oil. In particular, it exhibits excellent effects in the hydrogenation treatment of hydrocarbon oils with high nitrogen content, such as rock oil. The cause of this is not clear, but it is presumed that the addition of chromia, the third component, modifies the catalytic active sites, resulting in high denitrification activity and sustained action. The catalyst can be used in a conventional reaction format such as fixed bed or moving bed. The hydrogenation treatment conditions are: temperature 100-500℃, pressure 10-300Kg/ cm, liquid hourly space velocity 0.1-10hr -1 , and supply ratio of hydrogen to feedstock hydrocarbon.
It is preferable to carry out within the range of 100 to 3000 Nl/. Next, the present invention will be explained in more detail based on Examples and Comparative Examples. Comparative Example 1 A commercially available alumina carrier was impregnated with a predetermined amount of an ammonia aqueous solution of nickel nitrate and ammonium paramolybdate, left to stand for 3 hours, dried at 120°C for 4 hours, and then calcined at 550°C for 3 hours to prepare the catalyst. I got an A. Comparative Example 2 5% ammonia water was gradually added to each of a 10% aluminum nitrate aqueous solution and a 10% zirconyl nitrate aqueous solution with stirring until the pH reached 9 at room temperature, and the precipitate was overwashed to obtain an alumina hydrogel and a zirconia hydrogel. . This alumina hydrogel and zirconia hydrogel are based on anhydrous oxide.
Mix it to a ratio of 90:10, adjust the moisture content, knead well with a kneader, and then use an extraction molding machine to make a 1.6
It was molded into a cylindrical shape with mmφ. This molded body was dried at 120°C for 2 hours and further calcined at 550°C for 3 hours to obtain an alumina-zirconia support. A predetermined amount of nickel and molybdenum was supported on this carrier by the same impregnation method as in Comparative Example 1 to obtain catalyst B. Comparative Example 3 5% aqueous ammonia was gradually added to an ice-cooled 10% titanium chloride aqueous solution 1, hydrolyzed with stirring, and the precipitate was overwashed to obtain a titania hydrogel. This titania hydrogel was mixed with alumina hydrogel obtained in the same manner as in Comparative Example 2 at a ratio of 10:90 based on anhydrous oxide. For the subsequent preparation, the same operation as in Comparative Example 2 was repeated to prepare catalyst C.
I got it. Example 1 60 g of urea was added to 1.5% chromium nitrate aqueous solution 4 and hydrolyzed to obtain chromia hydrogel. This chromia hydrogel was mixed with alumina hydrogel and zirconia hydrogel obtained in the same manner as in Comparative Example 2 in a ratio of 10:80:10 based on anhydrous oxide to obtain a hydrogel mixture. The subsequent catalyst preparation was carried out in the same manner as in Comparative Example 2, and Catalyst D was obtained. Example 2 The alumina hydrogel and zirconoa hydrogel obtained in Comparative Example 2 were mixed with the chromia hydrogel obtained in Example 1 in a ratio of 70:10 on an anhydrous oxide basis.
Mixed in a ratio of 20:1. This hydrogel mixture was subjected to the same operation as in Comparative Example 2 to obtain Catalyst E. Example 3 The alumina hydrogel, titania hydrogel and chromia hydrogel obtained in Comparative Example 2, Comparative Example 3 and Example 1 were mixed in an 80:10:10 ratio on an anhydrous oxide basis.
were mixed in a ratio of . This hydrogel mixture was subjected to the same operation as in Comparative Example 2 to obtain catalyst F. Example 4 Alumina hydrogel, titania hydrogel and chromia hydrogel obtained in Comparative Example 2, Comparative Example 3 and Example 1 were mixed in a ratio of 70:10:20 on an anhydrous oxide basis.
were mixed in a ratio of . This hydrogel mixture was subjected to the same operation as in Comparative Example 2 to obtain catalyst G. Example 5 Table 1 shows the composition, specific surface area, and pore volume of the catalysts prepared in Comparative Examples 1 to 3 and Examples 1 to 4. Using three types of catalysts (A, B, C) of comparative examples and four types of catalysts (D, E, F, G) of examples, 30 ml of each catalyst was filled into a fixed bed flow reactor, and a preliminary catalyst was prepared. After sulfidation, a hydrotreatment experiment was carried out on rock oil from Colorado, USA, with the properties shown in Table 3, under the reaction conditions shown in Table 2, and the resulting oil was collected and analyzed after 50 hours had passed since the start of oil flow. . The results are shown in Table 1. Among the catalysts having a ternary composite oxide carrier containing chromia, catalyst D of Example 1 clearly has higher activity than catalyst B of Comparative Example 2. Further, in Example 2, the ratio of chromia was increased compared to Example 1, but the denitrification rate remained unchanged. Next, catalysts F and G of alumina-titania-chromia-based composite oxide carrier were used as catalyst C of Comparative Example 3.
The denitrification rate was higher than that of the chromia, and it was further improved by increasing the chromia ratio.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 アルミナ−チタニア又はアルミナ−ジルコニ
アに第三成分としてクロミアを添加し配合した複
合酸化物よりなる担体上に、モリブデンならびに
ニツケルの酸化物を担持させてなる炭化水素油の
水素化脱窒素用触媒。 2 複合酸化物が、少なくとも20重量%のアルミ
ナ、5〜50重量%のチタニア及び5〜50重量%の
クロミアを含む特許請求の範囲第1項に記載の触
媒。 3 複合酸化物が、少なくとも20重量%のアルミ
ナ、5〜50重量%のジルコニア及び5〜50重量%
のクロミアを含む特許請求の範囲第1項に記載の
触媒。
[Claims] 1. Hydrogen in a hydrocarbon oil made by supporting molybdenum and nickel oxides on a carrier made of a composite oxide prepared by adding chromia as a third component to alumina-titania or alumina-zirconia. Catalyst for denitrification. 2. The catalyst according to claim 1, wherein the composite oxide contains at least 20% by weight alumina, 5-50% by weight titania and 5-50% by weight chromia. 3. The composite oxide comprises at least 20% by weight alumina, 5-50% by weight zirconia, and 5-50% by weight
A catalyst according to claim 1, comprising chromia.
JP5624284A 1984-03-26 1984-03-26 Catalyst for denitrifying hydrocarbonic oil by hydrogenation Granted JPS60202738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5624284A JPS60202738A (en) 1984-03-26 1984-03-26 Catalyst for denitrifying hydrocarbonic oil by hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5624284A JPS60202738A (en) 1984-03-26 1984-03-26 Catalyst for denitrifying hydrocarbonic oil by hydrogenation

Publications (2)

Publication Number Publication Date
JPS60202738A JPS60202738A (en) 1985-10-14
JPH0515502B2 true JPH0515502B2 (en) 1993-03-01

Family

ID=13021622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5624284A Granted JPS60202738A (en) 1984-03-26 1984-03-26 Catalyst for denitrifying hydrocarbonic oil by hydrogenation

Country Status (1)

Country Link
JP (1) JPS60202738A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836510B1 (en) 2007-03-08 2008-06-09 재단법인서울대학교산학협력재단 Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142095A (en) * 1974-08-14 1976-04-09 Basf Ag Seiseishokubaino seiho
JPS55165145A (en) * 1979-06-07 1980-12-23 Filtrol Corp Hydrogenating desulfurizing catalyst and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142095A (en) * 1974-08-14 1976-04-09 Basf Ag Seiseishokubaino seiho
JPS55165145A (en) * 1979-06-07 1980-12-23 Filtrol Corp Hydrogenating desulfurizing catalyst and its preparation

Also Published As

Publication number Publication date
JPS60202738A (en) 1985-10-14

Similar Documents

Publication Publication Date Title
WO1993021283A1 (en) Demetallation catalyst
US3925197A (en) Hydrodesulfurization process
EP0543157B1 (en) Catalyst composition, method of preparing same and process for hydrodesulfurizing sulfur-containing hydrocarbons by using the catalyst composition
WO1993005878A1 (en) Resid hydroprocessing catalyst
JPH0263553A (en) Residue hydrotreating catalyst, production thereof and catalytic hydrotreatment of hydrocarbon containing oil using said catalyst
EP0184268A1 (en) Catalyst suitable for hydrotreating
JP2631704B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oils
JP2996423B2 (en) Catalyst for hydrotreating hydrocarbon oils
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
US4820679A (en) Hydrotreating catalysts prepared from hydrogels
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JPH0515502B2 (en)
JPH0573466B2 (en)
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
EP0266012A1 (en) Process for preparing hydrotreating catalysts from hydrogels
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JPH0254396B2 (en)
US3227661A (en) Method of preparing a catalyst composition by coprecipitation at a constant ph
JPS60202190A (en) Removal of arsenic from hydrocarbon oil
SU1424863A1 (en) Method of producing catalyst for hydrofining petroleum raw material
JPH0361491B2 (en)
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
US4820680A (en) Hydrotreating catalysts prepared from hydrogels
JP3303533B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same