JPH0361491B2 - - Google Patents

Info

Publication number
JPH0361491B2
JPH0361491B2 JP57094023A JP9402382A JPH0361491B2 JP H0361491 B2 JPH0361491 B2 JP H0361491B2 JP 57094023 A JP57094023 A JP 57094023A JP 9402382 A JP9402382 A JP 9402382A JP H0361491 B2 JPH0361491 B2 JP H0361491B2
Authority
JP
Japan
Prior art keywords
catalyst
composite oxide
ternary composite
alumina
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57094023A
Other languages
Japanese (ja)
Other versions
JPS58210847A (en
Inventor
Shigeo Baba
Teikichi Hosoi
Yukio Shibata
Hideo Takaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP9402382A priority Critical patent/JPS58210847A/en
Publication of JPS58210847A publication Critical patent/JPS58210847A/en
Publication of JPH0361491B2 publication Critical patent/JPH0361491B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、重金属及びアスフアルテンを多量に
含有する重質炭化水素油(以下単に重質油とい
う)を水素化処理する触媒及びその触媒を用いて
重質油を効率的に水素化処理する、該触媒の使用
方法に関する。 本発明で対象とする重質油は、原油及びこれを
常圧あるいは減圧蒸留した残査油、タールサンド
から抽出した抽出油、あるいは石炭液化油又はこ
れらの混合物からなるものであり、これらには通
常アスフアルテン、重金属、硫黄化合物、窒素化
合物などが大量に含まれている。ここでいう重金
属とは、主にバナジウム、ニツケルをさし、これ
ら重金属はかなりの部分アスフアルテン等縮合芳
香族炭化水素中に存在することが知られている。
該重金属は重質油の接触水素化処理を行う際に触
媒上に炭素質と共にたい積し、著しく触媒活性を
低下せしめることが知られており、高金属含有重
質油を水素化処理あるいは接触分解処理するため
には、あらかじめ原料重質油を脱金属した後、接
触処理工程に送ることが必要であり、前段の脱金
属工程を用いる脱金属活性及び触媒寿命の優れた
触媒の開発が望まれていた。 本発明者らはアルミナ・チタニアから成る主成
分にシリカ又はマグネシアを第三成分として添加
することによつて得られる三元複合酸化物を特徴
とする触媒が重質油の特に水素化脱金属に極めて
高活性であることを見出した。 本発明の目的は、重質油の接触水素化処理に高
活性である触媒及びその使用方法を提供すること
にある。 すなわち本発明を概説すれば、本発明の第1の
発明は、アルミナ−チタニアに、第三成分として
シリカ又はマグネシアが添加された形態の三元複
合酸化物であることを特徴とする重質油の水素化
処理用触媒に関する。 本発明の触媒の使用方法に係る発明は、重質油
を、30〜250Kg/cm2の水素圧力、320〜500℃の温
度で接触水素化処理する方法において、上記いず
れかの触媒を使用する、該触媒の使用方法に関す
る。 該三元複合酸化物は、通常知られている水素化
成分を含有することなく重質油を接触的に水素化
脱金属できることが特徴である。その際、適当な
反応条件を選択することにより、水素化分解、水
素化脱硫は適度に抑えられるので、水素化脱金属
のみを行いたい場合、本発明における上記三元複
合酸化物は水素消費量の少ない好ましい触媒とな
る。この場合、好ましくは、多段反応装置におい
て、前段に本発明による三元複合酸化物を用い、
後段に通常の水素化金属成分担持触媒を用いると
よい。このように、本発明触媒を前段に用いるこ
とにより、後段の通常の脱金属触媒あるいは脱硫
触媒を保護し、全体として高活性で長寿命の脱金
属を行うことができる。 三元複合酸化物触媒は、通常知られている共沈
法あるいはゲル混合法などで調製することができ
る。すなわち、通常のアルミニウム塩水溶液、例
えば塩化アルミニウム水溶液あるいは硝酸アルミ
ニウム水溶液などにチタン酸塩を混合し更にマグ
ネシウム又はケイ素の無機塩を加え、水溶液のPH
を変化させることによつて共沈ヒドロゲルケーキ
を得る共沈法、あるいは個個に適当な方法によつ
て調製された各金属の水酸化物ヒドロゲルケーキ
を混練するゲル混合法などが採用される。該三元
複合酸化物は、少なくとも20重量%のアルミナ、
10〜70重量%のチタニア、及び10〜70重量%のシ
リカ又はマグネシアを含む。三元複合酸化物触媒
はどのような形状で反応に供しても差支えない
が、0.79〜1.59mmの押出し成形品にて使用するこ
とが望ましい。その表面積は70〜250m2/g、細
孔容積は0.2〜1.4c.c./gであることが望ましく、
これら三元複合酸化物の成形時にポリエチレング
リコールなどの細孔調整剤を少量混入させること
により、細孔分布及び表面積をある程度変化させ
ることも可能である。 本発明者らは、該三元複合酸化物触媒を採用す
ることにより重質油の水素化処理を能率的に行わ
せる方法を見出した。本発明の方法における水素
化処理条件は320〜500℃、好ましくは340〜440℃
の範囲内の温度、30〜250Kg/cm2、好ましくは70
〜200Kg/cm2の範囲内の水素圧力である。0.1〜
6.0h-1好ましくは0.2〜3.0h-1の範囲内の液空間速
度で操作される。上記条件の反応管への全水素供
給量(補給及び再循環水素)は、炭化水素供給原
料1当り水素200〜2500N/好ましくは500
〜2000N/である。反応形式は固定床、流動
床、沸騰床等通常の流通式反応形式で行うことが
できる。 三元複合酸化物触媒を用いた水素化処理法は重
金属を多量に含有する重質油を原料油とする場合
に特に有効な方法である。この原因については明
らかではないが、通常分解活性点として知られて
いるシリカ・アルミナ触媒、シリカ−チタニア触
媒などにみられる強酸点の発現とは異なり、3種
の金属を複合した三元複合酸化物触媒は新たな活
性点を提供し、該活性点が重質油中の重金属、特
にアスフアルテン中の重金属の除去に効果的に働
くものと推定される。 該触媒を用いた水素化処理法において適当な反
応条件を選択することにより、選択的に脱金属を
行わせ、水素消費量を抑え、後段の水素化処理、
水素化分解、接触分解等に備えることもできる。
これらの水素化処理段階において、通常用いられ
る水素化脱硫触媒に比べ三元複合酸化物触媒は触
媒上への炭素質の析出が少なく、金属たい積が触
媒粒子全域にわたつて起るので活性の劣化が起り
難く、効率的な水素化処理法を提供する。 次に本発明を実施例により更に詳しく説明す
る。この実施例は本発明を具体的に説明するもの
であつてこれら実施例によつて本発明が限定され
るべきものではない。 実施例 1 下記第1表に示した組成の三元複合酸化物触媒
を調製した。
The present invention provides a catalyst for hydrotreating heavy hydrocarbon oil (hereinafter simply referred to as heavy oil) containing large amounts of heavy metals and asphaltenes, and a method for efficiently hydrotreating heavy oil using the catalyst. Concerning how to use the catalyst. The heavy oil targeted by the present invention consists of crude oil, residual oil obtained by distilling it under normal pressure or reduced pressure, extracted oil extracted from tar sands, coal liquefied oil, or a mixture thereof, and these include It usually contains large amounts of asphaltenes, heavy metals, sulfur compounds, and nitrogen compounds. The heavy metals mentioned here mainly refer to vanadium and nickel, and it is known that a considerable portion of these heavy metals is present in condensed aromatic hydrocarbons such as asphaltene.
It is known that these heavy metals accumulate on the catalyst together with carbonaceous substances when carrying out catalytic hydrotreating of heavy oil, significantly reducing the catalytic activity. In order to process the raw material, it is necessary to demetallize the raw material heavy oil in advance and then send it to the contact treatment process.Therefore, it is desirable to develop a catalyst with excellent demetalization activity and catalyst life that uses the first stage demetalization process. was. The present inventors have discovered that a catalyst characterized by a ternary composite oxide obtained by adding silica or magnesia as a third component to a main component consisting of alumina and titania is useful for the hydrodemetallization of heavy oil in particular. It was found that it has extremely high activity. An object of the present invention is to provide a highly active catalyst for catalytic hydrotreatment of heavy oil and a method for using the same. That is, to summarize the present invention, the first invention of the present invention is a heavy oil characterized in that it is a ternary composite oxide in the form of alumina-titania with silica or magnesia added as a third component. The present invention relates to a hydrotreating catalyst. The invention relating to the method of using the catalyst of the present invention is a method of catalytically hydrogenating heavy oil at a hydrogen pressure of 30 to 250 Kg/cm 2 and a temperature of 320 to 500°C, which uses any of the above catalysts. , relates to methods of using the catalyst. The ternary composite oxide is characterized in that it can catalytically hydrodemetallize heavy oil without containing any commonly known hydrogenation components. At that time, by selecting appropriate reaction conditions, hydrogenolysis and hydrodesulfurization can be moderately suppressed, so if only hydrodemetallization is desired, the above ternary composite oxide of the present invention has a hydrogen consumption rate of It is a preferable catalyst with low In this case, preferably, the ternary composite oxide according to the present invention is used in the first stage of the multistage reaction apparatus,
It is preferable to use a usual hydrogenation metal component supported catalyst in the latter stage. In this way, by using the catalyst of the present invention in the first stage, it is possible to protect the normal demetalization catalyst or desulfurization catalyst in the second stage, and to perform demetallization with high activity and long life as a whole. The ternary composite oxide catalyst can be prepared by a commonly known coprecipitation method or gel mixing method. That is, a titanate is mixed with a normal aluminum salt aqueous solution, such as an aluminum chloride aqueous solution or an aluminum nitrate aqueous solution, and then an inorganic salt of magnesium or silicon is added to adjust the pH of the aqueous solution.
A coprecipitation method in which a coprecipitated hydrogel cake is obtained by changing the hydroxide hydrogel cake, or a gel mixing method in which hydroxide hydrogel cakes of each metal individually prepared by an appropriate method are kneaded are employed. The ternary composite oxide contains at least 20% by weight of alumina,
Contains 10-70% by weight titania and 10-70% by weight silica or magnesia. The ternary composite oxide catalyst may be used in any shape for the reaction, but it is preferable to use it in an extrusion molded product of 0.79 to 1.59 mm. It is desirable that the surface area is 70 to 250 m 2 /g and the pore volume is 0.2 to 1.4 cc/g.
It is also possible to change the pore distribution and surface area to some extent by incorporating a small amount of a pore regulator such as polyethylene glycol during molding of these ternary composite oxides. The present inventors have discovered a method for efficiently hydrogenating heavy oil by employing the ternary composite oxide catalyst. Hydrotreating conditions in the method of the present invention are 320-500°C, preferably 340-440°C
Temperature within the range of 30-250Kg/cm 2 , preferably 70
Hydrogen pressure in the range ~200Kg/ cm2 . 0.1~
It is operated at a liquid hourly space velocity of 6.0 h -1 , preferably in the range 0.2 to 3.0 h -1 . The total amount of hydrogen supplied to the reaction tube under the above conditions (make-up and recirculated hydrogen) is 200 to 2500 N of hydrogen per hydrocarbon feedstock/preferably 500 N of hydrogen per hydrocarbon feedstock.
~2000N/. The reaction can be carried out in a conventional flow reaction format such as a fixed bed, fluidized bed, or boiling bed. The hydrotreating method using a ternary composite oxide catalyst is a particularly effective method when the feedstock is heavy oil containing a large amount of heavy metals. The cause of this is not clear, but unlike the development of strong acid sites found in silica-alumina catalysts and silica-titania catalysts, which are known to be active sites for decomposition, ternary composite oxidation using a combination of three metals It is presumed that the catalyst provides new active sites, and these active sites work effectively to remove heavy metals from heavy oil, particularly heavy metals from asphaltene. By selecting appropriate reaction conditions in the hydrotreating method using this catalyst, demetallization can be carried out selectively, hydrogen consumption can be suppressed, and subsequent hydrogen treatment,
It can also be prepared for hydrogen cracking, catalytic cracking, etc.
In these hydrotreating steps, compared to commonly used hydrodesulfurization catalysts, ternary composite oxide catalysts cause less carbonaceous precipitation on the catalyst, and metal accumulation occurs over the entire catalyst particle, resulting in deterioration of activity. To provide an efficient hydrotreating method that is unlikely to occur. Next, the present invention will be explained in more detail with reference to Examples. These Examples specifically explain the present invention, and the present invention should not be limited by these Examples. Example 1 A ternary composite oxide catalyst having the composition shown in Table 1 below was prepared.

【表】 上記触媒の調製に際し下記の段階を採用した。 (1) 所定量のアルミニウム塩(例えば硝酸アルミ
ニウム)を塩基(例えばアンモニア)で中和
し、過洗浄を繰返しアルミナヒドロゲルを
得、 (2) 所定量のチタン塩(例えば塩化チタン)を(1)
と同様に塩基を加えてチタニアヒドロゲルケー
キを得、 (3) (1)及び(2)より得られる2種のヒドロゲルに所
定量のケイ酸塩(ケイ酸ナトリウム)又はマグ
ネシウム塩(塩化マグネシウム)の酸処理によ
つて得たシリカヒドロゲル又はマグネシウムヒ
ドロゲルを加え、必要ならば細孔調整剤として
ポリエチレングリコールなどを加え数時間混練
し、 (4) 次に直径1.6mmのダイスを通す押出し成形機
によつて上記の混練りケーキをシリンダー形に
成形し、同程度の長さの円柱型触媒とし、乾燥
後空気中550℃、約5時間の焼成作業を行う。 以上の手法により調製された触媒A〜Eについ
て第2表に示した物理性状値を得た。
[Table] The following steps were adopted in the preparation of the above catalyst. (1) Neutralize a predetermined amount of aluminum salt (e.g., aluminum nitrate) with a base (e.g., ammonia) and repeat overwashing to obtain an alumina hydrogel; (2) Add a predetermined amount of titanium salt (e.g., titanium chloride) to (1)
Similarly, a base is added to obtain a titania hydrogel cake, and (3) a predetermined amount of silicate (sodium silicate) or magnesium salt (magnesium chloride) is added to the two types of hydrogels obtained from (1) and (2). Add the silica hydrogel or magnesium hydrogel obtained by acid treatment, add polyethylene glycol as a pore control agent if necessary, and knead for several hours. The above kneaded cake was then formed into a cylinder shape to form a cylindrical catalyst of approximately the same length, and after drying, a calcination operation was performed at 550°C in air for about 5 hours. The physical property values shown in Table 2 were obtained for catalysts A to E prepared by the above method.

【表】 実施例 2 高圧流通式固定床式の実験装置を用いて水素化
処理実験を行つた。反応管内径は17mm、長さは
600mmとし、その中央部に触媒20mlを充てんした。
原料重質油は高圧ポンプにより、水素ガスはボン
ベ詰水素ガスを圧縮機により所定圧力に昇圧し、
原料重質油に混合して反応管に送つた。反応管を
出た油とガスの混合物は、高圧分離器にてガスと
油に分離し分析に供した。原料重質油としては、
金属分高含有の中東系重質常圧残油〔比重(15/
4℃)0.967、アスフアルテン分6.5重量%、硫黄
分3.01重量%、窒素分3760ppm、バナジウム分
138ppm、ニツケル分42ppm〕を用いた。反応条
件は下記第3表のとおりである。
[Table] Example 2 A hydrogenation treatment experiment was conducted using a high-pressure flow fixed bed type experimental apparatus. The inner diameter of the reaction tube is 17 mm, and the length is
The diameter was 600 mm, and 20 ml of catalyst was filled in the center.
Raw material heavy oil is pressurized using a high-pressure pump, and hydrogen gas is pressurized from a cylinder of hydrogen gas using a compressor.
It was mixed with raw material heavy oil and sent to a reaction tube. The mixture of oil and gas that came out of the reaction tube was separated into gas and oil using a high-pressure separator and subjected to analysis. As raw material heavy oil,
Middle Eastern heavy atmospheric residual oil with high metal content [specific gravity (15/
4℃) 0.967, asphaltene content 6.5% by weight, sulfur content 3.01% by weight, nitrogen content 3760ppm, vanadium content
138ppm, nickel content 42ppm] was used. The reaction conditions are shown in Table 3 below.

【表】 上記反応条件の下で、実施例1の方法で得られ
た触媒A、D、E、及び実施例1と同様の方法で
調製した担体に、金属として5.0重量%のモリブ
デンを通常の含浸法で担持して得た触媒を用いて
その活性評価試験を行つた。その結果を第4表及
び第5表に示す。三元複合酸化物の優れた触媒活
性が明らかである。
[Table] Under the above reaction conditions, 5.0% by weight of molybdenum as metal was added to the catalysts A, D, and E obtained by the method of Example 1 and the support prepared by the same method as Example 1. An activity evaluation test was conducted using the catalyst supported by the impregnation method. The results are shown in Tables 4 and 5. The excellent catalytic activity of the ternary composite oxide is obvious.

【表】【table】

【表】 比較例 1 下記第6表に示した組成のアルミナ単独、ある
いはアルミナ−チタニア、アルミナ−マグネシ
ア、アルミナ−シリカの二元系複合酸化物触媒を
調製した。
[Table] Comparative Example 1 Alumina alone, alumina-titania, alumina-magnesia, and alumina-silica binary composite oxide catalysts having the compositions shown in Table 6 below were prepared.

【表】 次に実施例2と同様の方法で活性評価試験を行
つた。その結果を第7表に示す。
[Table] Next, an activity evaluation test was conducted in the same manner as in Example 2. The results are shown in Table 7.

【表】 この結果から、本発明に係わる三元複合酸化物
触媒は、アルミナ単独あるいはアルミナ−チタニ
ア、アルミナ−マグネシア、アルミナ−シリカの
二元系複合酸化物のものに比べて、脱金属活性及
び脱アスフアルテン活性が高く、活性の劣化も少
なかつた。 以上詳細に説明したように、本発明によれば、
脱金属活性に優れ、更には、脱アスフアルテン活
性に優れ、しかも寿命が長くかつ触媒の製造につ
いては簡便で経済的にも有利な水素化処理用触媒
が提供された点で、本発明は顕著な効果を奏する
ものである。
[Table] From this result, the ternary composite oxide catalyst according to the present invention has a higher demetal removal activity than alumina alone or binary composite oxides of alumina-titania, alumina-magnesia, and alumina-silica. The asphaltene removal activity was high, and there was little deterioration in activity. As explained in detail above, according to the present invention,
The present invention is remarkable in that it provides a hydroprocessing catalyst that has excellent metal removal activity, furthermore has excellent asphaltene removal activity, has a long life, is simple to produce, and is economically advantageous. It is effective.

Claims (1)

【特許請求の範囲】 1 アルミナ−チタニアに、第三成分としてシリ
カ又はマグネシアが添加された形態の三元複合酸
化物であることを特徴とする重質炭化水素油の水
素化処理用触媒。 2 該三元複合酸化物が、10〜70重量%のチタニ
ア及び少なくとも20重量%のアルミナを含むもの
である特許請求の範囲第1項に記載の触媒。 3 該三元複合酸化物が、該第三成分を10〜70重
量%含むものである特許請求の範囲第1項又は第
2項に記載の触媒。 4 硫黄及び金属を含有するアスフアルテン含有
重質炭化水素油を、30〜250Kg/cm2の水素圧力、
320〜500℃の温度で接触水素化処理する方法にお
いて、その触媒が、アルミナ−チタニアに、第三
成分としてシリカ又はマグネシアが添加された形
態の三元複合酸化物であることを特徴とする上記
触媒の使用方法。 5 該接触水素化処理が、水素化脱金属処理であ
る特許請求の範囲第4項に記載の使用方法。
[Scope of Claims] 1. A catalyst for hydrotreating heavy hydrocarbon oil, which is a ternary composite oxide in the form of alumina-titania with silica or magnesia added as a third component. 2. The catalyst according to claim 1, wherein the ternary composite oxide contains 10 to 70% by weight of titania and at least 20% by weight of alumina. 3. The catalyst according to claim 1 or 2, wherein the ternary composite oxide contains 10 to 70% by weight of the third component. 4 Asphaltene-containing heavy hydrocarbon oil containing sulfur and metals is heated at a hydrogen pressure of 30 to 250 Kg/ cm2 ,
The method of catalytic hydrogenation treatment at a temperature of 320 to 500°C, characterized in that the catalyst is a ternary composite oxide in the form of alumina-titania to which silica or magnesia is added as a third component. How to use the catalyst. 5. The method of use according to claim 4, wherein the catalytic hydrogenation treatment is a hydrodemetalization treatment.
JP9402382A 1982-06-03 1982-06-03 Catalyst for hydrogenation of heavy hydrocarbon oil and using method thereof Granted JPS58210847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9402382A JPS58210847A (en) 1982-06-03 1982-06-03 Catalyst for hydrogenation of heavy hydrocarbon oil and using method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9402382A JPS58210847A (en) 1982-06-03 1982-06-03 Catalyst for hydrogenation of heavy hydrocarbon oil and using method thereof

Publications (2)

Publication Number Publication Date
JPS58210847A JPS58210847A (en) 1983-12-08
JPH0361491B2 true JPH0361491B2 (en) 1991-09-20

Family

ID=14098957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9402382A Granted JPS58210847A (en) 1982-06-03 1982-06-03 Catalyst for hydrogenation of heavy hydrocarbon oil and using method thereof

Country Status (1)

Country Link
JP (1) JPS58210847A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232244A (en) * 1984-05-02 1985-11-18 Nippon Mining Co Ltd Catalyst for hydro-demetallization of heavy oil and demetallization of heavy oil using the same
JP4673966B2 (en) * 2000-09-14 2011-04-20 出光興産株式会社 Hydrocarbon oil hydrotreating catalyst production method and hydrocarbon oil hydrotreating method
WO2002051540A1 (en) * 2000-12-22 2002-07-04 Basf Aktiengesellschaft Oxide catalysts containing at least silica and a group ivb oxide
KR101385721B1 (en) * 2012-04-13 2014-04-15 롯데케미칼 주식회사 Complex metal oxide, and method for preparing polyesters using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049183A (en) * 1973-08-31 1975-05-01
JPS571445A (en) * 1980-05-06 1982-01-06 Mobil Oil Corp Method of improving quality of residual oil and catalyst used for said method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049183A (en) * 1973-08-31 1975-05-01
JPS571445A (en) * 1980-05-06 1982-01-06 Mobil Oil Corp Method of improving quality of residual oil and catalyst used for said method

Also Published As

Publication number Publication date
JPS58210847A (en) 1983-12-08

Similar Documents

Publication Publication Date Title
JP3387700B2 (en) Desulfurization method of catalytic cracking gasoline
CA1163946A (en) Multi-stage process for demetalation and desulfurization of petroleum oils
US3876523A (en) Catalyst for residua demetalation and desulfurization
US3891541A (en) Process for demetalizing and desulfurizing residual oil with hydrogen and alumina-supported catalyst
EP0201762B2 (en) Catalyst for hydroconversion of heavy oils
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
EP2411145B1 (en) A high surface area composition for use in the catalytic hydroconversion of a heavy hydrocarbon feedstock, a method making such composition and its use
US4431526A (en) Multiple-stage hydroprocessing of hydrocarbon oil
US10563134B2 (en) Catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
JPS62199687A (en) Hydrogenation using catalyst having large pores
KR20100071016A (en) Hydrodemetallization and hydrodesulphurization catalysts, and use in a single formulation in a concatenated process
JPS6326157B2 (en)
EP1651347B1 (en) A process for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom
KR20180014008A (en) High Hydrogenation Nitrogen Selectivity Hydrogen Treatment Catalyst
US4032433A (en) Hydrorefining asphaltenic petroleum charge stocks
EP3065868B1 (en) Process for preparing a hydrotreating catalyst
WO1998026866A1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
CA1273311A (en) Process for demetallation and desulfurization of heavy hydrocarbons
US20140166540A1 (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
US7556729B2 (en) Method for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
EP1392798A2 (en) Two-stage hydroprocessing process and catalyst
EP0497436B1 (en) Preparation of a carrier for a hydrotreating catalyst
US4707466A (en) Catalyst for demetallation and desulfurization of heavy hydrocarbons
JPH0361491B2 (en)
JPH0456078B2 (en)