JPS60202738A - Catalyst for denitrifying hydrocarbonic oil by hydrogenation - Google Patents
Catalyst for denitrifying hydrocarbonic oil by hydrogenationInfo
- Publication number
- JPS60202738A JPS60202738A JP5624284A JP5624284A JPS60202738A JP S60202738 A JPS60202738 A JP S60202738A JP 5624284 A JP5624284 A JP 5624284A JP 5624284 A JP5624284 A JP 5624284A JP S60202738 A JPS60202738 A JP S60202738A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- alumina
- group
- oil
- chromia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、炭化水素油中に含まれる式累化合物及び硫黄
化合物全効果的に除去するための水素化処理用触媒に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrotreating catalyst for effectively removing all formula compounds and sulfur compounds contained in hydrocarbon oil.
石油系原油、けつ岩油、石炭液化油及びタールサントビ
チューメン等の炭化水素油中には、窒素及び硫黄化合物
等の不純物が多量に含まれている。特にけつ岩油は石油
系原油に比べ多量の窒素化合物が含まれ、その窒素含有
量は1〜2重量%にも及ぶことが知られている。一般に
炭化水素油中に含まれる窒素化合物は、ピリジン類、キ
ノリン類、アミン類及びアミド類等の塩基性窒素化合物
、ビロール類及びインドール類等の弱酸性窒素化合物な
どである。これら窒素化合物を含む炭化水素油をそのま
ま燃料油として用いた場合、大気汚染の原因と&1′)
LTt境衛生上好ましくない。また窒素化合物は、製品
炭化水素油の色相や安定性等全低下させスラッジ等の生
成原因となる。一方、このような炭化水素油を接触分解
又は接触改質するとき、窒素化合物は触媒の活性を著し
く低下させる原因ともなる。Hydrocarbon oils such as petroleum crude oil, rock oil, liquefied coal oil, and tar sant bitumen contain large amounts of impurities such as nitrogen and sulfur compounds. In particular, rock oil contains a larger amount of nitrogen compounds than petroleum-based crude oil, and the nitrogen content is known to be as high as 1 to 2% by weight. Nitrogen compounds generally contained in hydrocarbon oils include basic nitrogen compounds such as pyridines, quinolines, amines and amides, and weakly acidic nitrogen compounds such as virols and indoles. If hydrocarbon oil containing these nitrogen compounds is used as fuel oil, it will cause air pollution.
LTtUnfavorable in terms of environmental hygiene. In addition, nitrogen compounds completely reduce the hue, stability, etc. of the product hydrocarbon oil and cause the formation of sludge and the like. On the other hand, when such hydrocarbon oils are subjected to catalytic cracking or catalytic reforming, nitrogen compounds also cause a significant reduction in the activity of the catalyst.
従来、炭化水素油中の窒素化合物及び硫黄化合物を除去
するため、水素の存在下に高温高圧で炭化水素油を水素
化処理する方法が広く知られている。また炭化水素油中
の窒素化合物は、共存する硫黄化合物と比べて極めて反
応性の低いことも知られている。したがって、より高活
性、長寿命の脱窒素触媒全開発すべく、多くの研究者に
よって研究され、またいくつかの提案もなされている。Conventionally, in order to remove nitrogen compounds and sulfur compounds from hydrocarbon oil, a method of hydrotreating hydrocarbon oil at high temperature and high pressure in the presence of hydrogen is widely known. It is also known that nitrogen compounds in hydrocarbon oil have extremely low reactivity compared to coexisting sulfur compounds. Therefore, many researchers are conducting research and making several proposals to develop denitrification catalysts with higher activity and longer life.
例えば、米国特許第5.778.565号においてはY
−ゼオライトとニッケル・タングステン、ニッケル・モ
リブデン又は亜鉛・タングステン等から成る触媒をアン
モニアで前処理したものが、けつ岩油の水素化脱窒素及
び水素化分解に有効であると述べられている。−!た米
国特許第4.128,505号においては炭化水素油を
水素化脱窒素及び脱硫するために、チタニア−ジルコニ
ア又はチタニア−ジルコニア−アルミナから成る担体に
Via族及びvm族金属を担持した触媒が提案されてい
る。米国特許第4,159,492号ではアルミナ又は
アルぐナーシリカ担体にVta族及び■族金属のホウフ
ッ化水素酸溶液を含浸、調製した触媒が水素化脱窒素に
有効であると述べられている。米国特許第4,139.
495号においてはイオン変換法により調製したコバル
ト・モリブデン/シリカ−アルミナ又はニッケル・モリ
ブデン/シリカ−アルミナ等の触媒が炭化水素油の水素
化脱窒素に有効であると述べられている。特開[56−
1に0452号においては炭化水素油の水素化脱窒集用
触媒として、酸化チタンにVta族及びVl族金属とリ
ンやホウ集音担持したものが提案されている。For example, in U.S. Patent No. 5.778.565, Y
- Catalysts consisting of zeolite and nickel-tungsten, nickel-molybdenum, or zinc-tungsten, etc., pretreated with ammonia are said to be effective for hydrodenitrogenation and hydrocracking of shale oil. -! U.S. Pat. No. 4,128,505 discloses a catalyst in which Via group metals and Vm group metals are supported on a titania-zirconia or titania-zirconia-alumina support to hydrodenitrogenate and desulfurize hydrocarbon oil. Proposed. US Pat. No. 4,159,492 states that a catalyst prepared by impregnating an alumina or alguna-silica support with a borohydrofluoric acid solution of Vta group and II group metals is effective for hydrodenitrogenation. U.S. Patent No. 4,139.
No. 495 states that catalysts such as cobalt-molybdenum/silica-alumina or nickel-molybdenum/silica-alumina prepared by an ion conversion method are effective for the hydrodenitrogenation of hydrocarbon oils. Unexamined publication [56-
No. 1, No. 0452 proposes a catalyst in which Vta group and Vl group metals and phosphorus or boron are supported on titanium oxide as a hydrodenitrification catalyst for hydrocarbon oil.
しかしながら、これらの触媒ハいずれも炭化水素油中の
窒素化合物を効果的に除去するための工夫がなされてい
るにもかかわらず、未だ十分なものとはいえない。However, although all of these catalysts have been devised to effectively remove nitrogen compounds from hydrocarbon oil, they are still not sufficient.
本発明者らは、水素化脱硫活性に加え、優れた水素化脱
硫活性を有する炭化水素油の水素化処理用触媒を開発す
るため鋭意研究を重ねた結果、本発明に至った。The present inventors have conducted extensive research to develop a catalyst for hydrotreating hydrocarbon oil that has excellent hydrodesulfurization activity in addition to hydrodesulfurization activity, and as a result, has arrived at the present invention.
本発明はアルミナ−チタニア又はアルミナ−ジルコニア
に第三成分としてクロミア全添加した複合酸化物に、周
期律表Vla族ならびに■閂族よりなる群から選択した
少なくとも1種の金属又はその化合物を担持した炭化水
素油の水素化脱窒集用触媒である。この場合、担持金属
として用いる周期律表Via族及び■族金属は、クロム
、モリブデン、タングステン、鉄、コバルト、ニッケル
、ルテニウム、ロジウム、パラジウム、オスミニウム、
イリジウム及び白金であり、特に好ましくは、ニイケル
・モリブデン、ニッケル・タングステン又はニッケル・
コノ(ルト・モリブデンの組合せである。これら金属の
担持方法としては特に制限はなく、含浸法、噴霧法等公
知の任意の方法が利用できる。In the present invention, at least one metal selected from the group consisting of Group Vla and Group III of the periodic table or a compound thereof is supported on a composite oxide in which chromia is completely added as a third component to alumina-titania or alumina-zirconia. It is a catalyst for hydrodenitrification of hydrocarbon oil. In this case, the metals of Group Via and Group II of the periodic table used as supported metals include chromium, molybdenum, tungsten, iron, cobalt, nickel, ruthenium, rhodium, palladium, osminium,
Iridium and platinum, particularly preferably nickel-molybdenum, nickel-tungsten or nickel-molybdenum.
This is a combination of Kono(rutho) and molybdenum. There are no particular restrictions on the method of supporting these metals, and any known method such as impregnation or spraying can be used.
本発明に用いる複合酸化物は通常用られている共沈法あ
るいはゲル混合法等によって調製できる。即ち、それぞ
れの金属塩(例えば、硝酸アルミニウム、硝酸クロム、
硝酸ジルコニル、塩化チタン等)の混合水溶液にアンモ
ニア水を加え加水分解して共沈物質を得る共沈法、ある
いは均−沈殿法、不拘−沈殿法等公知の方法により、あ
らかじめ各金属のヒドロゲルをそれぞれ別個に調製して
おき、その後これらヒドロゲルを混練するゲル混合法な
どが採用される。上記の方法によって得られる共沈物又
は混線物は、水分調整を行った後、転勤造粒、圧縮成形
、押出成形等任意の方法により所要の形状に成形し乾燥
した後、400 へ600℃の温度で2〜5時間焼成し
、担体として供される。The composite oxide used in the present invention can be prepared by a commonly used coprecipitation method or gel mixing method. That is, the respective metal salts (e.g. aluminum nitrate, chromium nitrate,
Aqueous ammonia is added to a mixed aqueous solution of zirconyl nitrate, titanium chloride, etc.) and hydrolyzed to obtain a coprecipitated substance. Hydrogels of each metal are prepared in advance by a known method such as a coprecipitation method, a homogeneous precipitation method, an unrestricted precipitation method, etc. A gel mixing method is employed in which each hydrogel is prepared separately and then these hydrogels are kneaded. After adjusting the moisture content, the coprecipitate or mixed substance obtained by the above method is molded into a desired shape by any method such as transfer granulation, compression molding, extrusion molding, etc., dried, and then heated at 400 to 600 °C. Calcinate at a temperature of 2 to 5 hours and serve as a carrier.
本発明に係る触媒は、炭化水素油の水素化脱窒素及び水
素化脱硫に有効である。%に、けつ岩油などの音素含有
量の高い炭化水素油の水素化処理に優れた効果を発揮す
る。この原因については明らかでないが、第三成分であ
るクロミアの添加にエフ触媒活性点が修飾され、高い脱
望素活性およびその持続作用が発現されたものと推定さ
れる。The catalyst according to the present invention is effective for hydrodenitrogenation and hydrodesulfurization of hydrocarbon oil. %, it exhibits excellent effects in the hydrogenation treatment of hydrocarbon oils with high phoneme content, such as rock oil. Although the cause of this is not clear, it is presumed that the addition of chromia, the third component, modifies the active site of the F catalyst, resulting in high elimination element activity and its sustained action.
該触媒の使用方法は固定床、移動床等通常の反応形式で
行うことができる。又水素化処理条件は、温度100へ
500℃、圧力10〜300kg/crn2液空間速度
11〜10 hr−”、水素対原料炭化水素の供給比1
00〜3000 Nt/lの範囲内で行うのが好ましい
。The catalyst can be used in a conventional reaction format such as fixed bed or moving bed. Hydrogenation conditions were as follows: temperature: 100 to 500°C, pressure: 10 to 300 kg/crn2, liquid hourly space velocity: 11 to 10 hr-'', and supply ratio of hydrogen to feedstock hydrocarbon: 1.
It is preferable to carry out within the range of 00 to 3000 Nt/l.
次に、本発明全実施例ならびに比較例に基づき更に詳細
に説明する。Next, a more detailed explanation will be given based on all examples of the present invention and comparative examples.
比較例1
市販のアルミナ担体に所定量の硝酸ニッケル及びパラモ
リブデン酸アンモニウムのアンモニア水浴液を含浸させ
、6時間放置した後120℃で4時間乾燥し5.これ1
550℃にて5時間焼成して触媒Aを得た。Comparative Example 1 A commercially available alumina carrier was impregnated with a predetermined amount of an ammonia water bath solution of nickel nitrate and ammonium paramolybdate, left to stand for 6 hours, and then dried at 120° C. for 4 hours. This 1
Catalyst A was obtained by calcining at 550°C for 5 hours.
比較例2
10%硝酸アルミニウム水溶液及び10%硝酸ジルコニ
ルの水溶液に夫々5%のアンモニア水全攪拌しながら室
温でpH9VCなるまで徐々に加え、沈殿をe過洗浄し
て勢命4アルミナヒドロゲル及びジルコニアヒドロゲル
金得た。このアルミナヒドロゲル及びジルコニアヒドロ
ゲルを無水酸化物ベースで90:10i1?:なるよう
に混合し、水分全調整してニーダ−でよく混練した後、
押出成形機を用いて1.6 mφの円柱状に成形した。Comparative Example 2 5% ammonia water was gradually added to a 10% aluminum nitrate aqueous solution and a 10% zirconyl nitrate aqueous solution at room temperature with complete stirring until the pH reached 9VC, and the precipitate was overwashed to obtain Vigor 4 alumina hydrogel and zirconia hydrogel. I got money. This alumina hydrogel and zirconia hydrogel on an anhydrous oxide basis are 90:10i1? : After adjusting the moisture content and kneading well with a kneader,
It was molded into a cylindrical shape of 1.6 mφ using an extrusion molding machine.
この成形体を120℃で2時間乾燥し、更に550℃で
3時間焼成してアルミナ−ジルコニア担体を得た。この
担体に所定量のニッケル及びモリブデン全比較例1と同
様の含浸法にて担持し触媒Bi得た。This molded body was dried at 120° C. for 2 hours and further calcined at 550° C. for 3 hours to obtain an alumina-zirconia support. A predetermined amount of nickel and molybdenum was supported on this carrier by the same impregnation method as in Comparative Example 1 to obtain catalyst Bi.
比較例6
氷冷した10%の塩化チタン水浴液1tに5チのアンモ
ニア水を徐々に加え、攪拌しながら加水分解し、沈でん
會r過洗浄してチタニアヒドロゲルを得た。このチタニ
アヒドロゲル全比較例2と同様にして得たアルミナヒド
ロゲルと無水酸化物ベースで10:90になるように混
合した。これ以後の調製は比較例2と同様の操作を繰返
し行い触媒C會得た。Comparative Example 6 5 tons of ammonia water was gradually added to 1 ton of ice-cooled 10% titanium chloride water bath solution, hydrolyzed with stirring, and washed with precipitation to obtain a titania hydrogel. This titania hydrogel was mixed with alumina hydrogel obtained in the same manner as in Comparative Example 2 at a ratio of 10:90 based on anhydrous oxide. For the subsequent preparations, the same operations as in Comparative Example 2 were repeated to obtain catalyst C.
実施例1
1.5チの硝酸クロム水溶液4tに原票6Of金加え、
加水分解してクロミアヒドロゲル全得た。このクロミア
ヒドロゲルと比較例2と同様にして得たアルミナヒドロ
ゲル及びジルコニアヒドロゲル全無水酸化物ベースで1
0:80:10となるように混合して、ヒドロゲル混合
物を1#′fc。 これ以後の触媒調製は比較例2と同
様の操作全行い、触#Dを得た。Example 1 Add 6 of gold to 4 tons of 1.5 t of chromium nitrate aqueous solution,
The entire chromia hydrogel was obtained by hydrolysis. This chromia hydrogel, alumina hydrogel and zirconia hydrogel obtained in the same manner as in Comparative Example 2, and a total anhydrous oxide base of 1
Mix the hydrogel mixture at a ratio of 0:80:10 to 1#'fc. The subsequent catalyst preparation was carried out in the same manner as in Comparative Example 2 to obtain Catalyst #D.
実施例2
比較例2によp得られたアルミナヒドロゲル及びジルコ
ニアヒドロゲルを実施例1で得られたクロミアヒドロゲ
ルと無水酸化物ベースで70:10:20の比率になる
ように混合した。Example 2 The alumina hydrogel and zirconia hydrogel obtained in Comparative Example 2 were mixed with the chromia hydrogel obtained in Example 1 in a ratio of 70:10:20 based on anhydrous oxide.
このヒドロゲル混合物を比較例2と同様の操作全行い、
触媒Eを得た。This hydrogel mixture was subjected to all the same operations as in Comparative Example 2,
Catalyst E was obtained.
実施例6
比較例2、比較例3及び実施例1で得られたアルミナヒ
ドロゲル、チタニアヒドロゲル及びクロミアヒドロゲル
全無水酸化物ベースで80:10:10の比率になるよ
うに混合した。このヒドロゲル混合物全比較例2と同様
の操作全行って触媒Fを得た。Example 6 Alumina hydrogel, titania hydrogel, and chromia hydrogel obtained in Comparative Example 2, Comparative Example 3, and Example 1 were mixed in a ratio of 80:10:10 based on total anhydrous oxide. This hydrogel mixture was subjected to all the same operations as in Comparative Example 2 to obtain catalyst F.
実施例4
比較例2、比較例6及び実施例1で得られたアルミナヒ
ドロゲル、チタニアヒドロゲル及びクロミアヒドロゲル
を無水酸化物ベースで70:ID:20の比率になる工
9に混合した。このヒドロゲル混合物を比較例2と同様
の操作を行って触媒Gi得た。Example 4 The alumina hydrogel, titania hydrogel and chromia hydrogel obtained in Comparative Example 2, Comparative Example 6 and Example 1 were mixed into Process 9 in a ratio of 70:ID:20 based on anhydrous oxide. This hydrogel mixture was subjected to the same operation as in Comparative Example 2 to obtain a catalyst Gi.
実施例5
比較例1〜3及び実施例1〜4において調製した触媒の
組成、比表面積及び細孔容積全第1表に示す。比較例の
触媒3種(A、B、0)及び実施例の触媒4種(D、
E、F、G)を用い、それぞれの触媒を固定床流通式反
応装置に50−充てんし、触媒の予備硫化を行ったのち
第2表に示す反応条件で第5表に示す性状の米国コロラ
ド産けつ岩油の水素化処理実験を行い、通油開始50時
間経過後の生成油を採取して分析した。その結果′t−
第1表に示す。クロミアを含む三元複合酸化物担体の触
媒のうち、実施例1の触媒(D)は、比較例2の触媒C
B)と比べて明らかに活性が商い。また実施例2は実施
例1と比べてクロミアの比率ケ高くしたが、脱窒素率は
変らなかった。Example 5 The compositions, specific surface areas, and pore volumes of the catalysts prepared in Comparative Examples 1 to 3 and Examples 1 to 4 are all shown in Table 1. Three types of catalysts of comparative examples (A, B, 0) and four types of catalysts of examples (D,
E, F, G), each catalyst was packed in a fixed bed flow reactor at 50% capacity, pre-sulfurized the catalyst, and then processed under the reaction conditions shown in Table 2 with the properties shown in Table 5. A hydrotreatment experiment was conducted on produced rock oil, and the produced oil was collected and analyzed 50 hours after the start of oil flow. As a result't-
Shown in Table 1. Among the catalysts of the ternary composite oxide carrier containing chromia, the catalyst (D) of Example 1 was different from the catalyst C of Comparative Example 2.
It is clearly more active than B). Further, in Example 2, the chromia ratio was increased compared to Example 1, but the denitrification rate remained unchanged.
Claims (1)
第三成分としてクロミアを添加し配合した複合酸化物よ
Vなる担体上に、周期律表Vla族ならびKVI族工p
なる群から選択した少なくとも1種の金属又はその化合
物を担持させてなる炭化水素油の水素化脱窒素剤触媒。 2 複合酸化物が、少なくとも20重量愛のアルミナ、
5〜50重量%のチタニア及び5〜50重量−のクロミ
アを含む特許請求の範囲第1項に記載の触媒。 五 複合酸化物が、少なくとも20重量%のアルミナ、
5へ50重量−のジルコニア及び5〜50重量%のクロ
ミアを含む特許請求の範囲第1項に記載の触媒。 4、担持金属がモリブデン、タングステン、コバルト及
びニッケルよりなる群から選択した少なくとも1種の金
属j夕なる特許請求の範囲第1項、第2項又は第6項記
載の触媒。[Scope of Claims] 1. On a carrier called V, which is a composite oxide prepared by adding chromia as a third component to alumina-titania or alumina-zirconia, a group Vla group of the periodic table and a group KVI group P of the periodic table are prepared.
A hydrodenitrifying agent catalyst for hydrocarbon oil, which supports at least one metal selected from the group consisting of: 2. The composite oxide is at least 20% alumina by weight,
Catalyst according to claim 1, comprising from 5 to 50% by weight of titania and from 5 to 50% by weight of chromia. (v) alumina containing at least 20% by weight of the composite oxide;
Catalyst according to claim 1, comprising 5 to 50% by weight of zirconia and 5 to 50% by weight of chromia. 4. The catalyst according to claim 1, 2 or 6, wherein the supported metal is at least one metal selected from the group consisting of molybdenum, tungsten, cobalt and nickel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5624284A JPS60202738A (en) | 1984-03-26 | 1984-03-26 | Catalyst for denitrifying hydrocarbonic oil by hydrogenation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5624284A JPS60202738A (en) | 1984-03-26 | 1984-03-26 | Catalyst for denitrifying hydrocarbonic oil by hydrogenation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60202738A true JPS60202738A (en) | 1985-10-14 |
JPH0515502B2 JPH0515502B2 (en) | 1993-03-01 |
Family
ID=13021622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5624284A Granted JPS60202738A (en) | 1984-03-26 | 1984-03-26 | Catalyst for denitrifying hydrocarbonic oil by hydrogenation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60202738A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100836510B1 (en) | 2007-03-08 | 2008-06-09 | 재단법인서울대학교산학협력재단 | Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5142095A (en) * | 1974-08-14 | 1976-04-09 | Basf Ag | Seiseishokubaino seiho |
JPS55165145A (en) * | 1979-06-07 | 1980-12-23 | Filtrol Corp | Hydrogenating desulfurizing catalyst and its preparation |
-
1984
- 1984-03-26 JP JP5624284A patent/JPS60202738A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5142095A (en) * | 1974-08-14 | 1976-04-09 | Basf Ag | Seiseishokubaino seiho |
JPS55165145A (en) * | 1979-06-07 | 1980-12-23 | Filtrol Corp | Hydrogenating desulfurizing catalyst and its preparation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100836510B1 (en) | 2007-03-08 | 2008-06-09 | 재단법인서울대학교산학협력재단 | Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0515502B2 (en) | 1993-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7591942B2 (en) | Bulk bi-metallic catalysts made from precursors containing an organic agent | |
US5399259A (en) | Hydroconversion process employing catalyst with specified pore size distribution | |
JPH10180106A (en) | Catalyst containing boron and silicon and its application in hydrogenation of hydrocarbon feedstock | |
CN100422295C (en) | Method for producing food grade white oil by hydrogenating tail oil | |
JPH05237391A (en) | Hydrogenation catalyst and process | |
US4048115A (en) | Hydrodesulfurization catalyst and method of preparation | |
EP0543157A1 (en) | Catalyst composition, method of preparing same and process for hydrodesulfurizing sulfur-containing hydrocarbons by using the catalyst composition | |
EP0193566A1 (en) | Composite catalyst of ruthenium on zeolite and a group vi and/or group viii metal on refractory | |
US4186080A (en) | Use of catalyst comprising titania and zirconia in hydrotreating | |
GB1071467A (en) | Hydrocracking process | |
JPH0631164A (en) | Alumina-containing carrier and catalyst for hydrogen treating of hydrocarbon oil | |
JPS60202738A (en) | Catalyst for denitrifying hydrocarbonic oil by hydrogenation | |
JPS61108692A (en) | Hydrotreating and dewaxing method of petroleum charged material | |
US3383306A (en) | Hydrodenitrification with vanadiaalumina catalyst support | |
JPH0661464B2 (en) | Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils | |
JP3106761B2 (en) | Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same | |
JP2567291B2 (en) | Hydroprocessing method for hydrocarbon oil | |
JPS58210993A (en) | Method for treating heavy hydrocarbon oil | |
JP2794320B2 (en) | Method for producing hydrotreating catalyst composition for hydrocarbon oil | |
US3617490A (en) | Hydrocracking catalyst comprising a layered clay-type crystalline aluminosilicate component, a group viii component, and a chromium or tungsten component, and process using said catalyst | |
US3227661A (en) | Method of preparing a catalyst composition by coprecipitation at a constant ph | |
JPH07155603A (en) | Hydrodesulfurizing/hydrodenitrifying catalyst and production thereof | |
US4447555A (en) | Hydrocracking catalysts | |
US3567654A (en) | Process and catalyst for hydrocracking hydrocarbon oil | |
JP2001300325A (en) | Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method |