JPH0515363A - Sugar-free culture method by liquid culture medium - Google Patents

Sugar-free culture method by liquid culture medium

Info

Publication number
JPH0515363A
JPH0515363A JP19857591A JP19857591A JPH0515363A JP H0515363 A JPH0515363 A JP H0515363A JP 19857591 A JP19857591 A JP 19857591A JP 19857591 A JP19857591 A JP 19857591A JP H0515363 A JPH0515363 A JP H0515363A
Authority
JP
Japan
Prior art keywords
culture
way valve
tank
carbon dioxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19857591A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Seo
光広 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Agricultural Machinery Co Ltd
Original Assignee
Mitsubishi Agricultural Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Agricultural Machinery Co Ltd filed Critical Mitsubishi Agricultural Machinery Co Ltd
Priority to JP19857591A priority Critical patent/JPH0515363A/en
Publication of JPH0515363A publication Critical patent/JPH0515363A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/06Photobioreactors combined with devices or plants for gas production different from a bioreactor of fermenter

Abstract

PURPOSE:To promote photosynthesis of a plant body by raising concentration of carbonic acid gas in light period and simultaneously carry out culture in suppressed contamination by using a liquid culture medium containing no saccharide in culture medium composition and feeding a carbonic acid gas having high concentration to the liquid culture medium under intense light. CONSTITUTION:A liquid culture medium containing no saccharide is packed in a culture tank 1 and a carbonic acid gas having high concentration is controlled to prescribed concentration by a box 3 for controlling concentration of carbonic acid and mixed with air and the mixed gas is fed under pressure and intense light from an aeration apparatus 10 equipped on the bottom of a culture tank 1 through a discharge outlet to a liquid culture medium to culture a plant body in the culture tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体培地による無糖培
養法に係り、詳しくは、液体培地で植物体を培養するに
あたり、植物体成長の主たる炭素源となるショ糖を含ま
ない液体培地を施用し、かつ強光下で液体培地に高濃度
の炭酸ガスを供給することにより、明期の炭酸ガス濃度
を上昇させて植物体の光合成を促進させるとともに、コ
ンタミネーション(培養タンク内に雑菌が繁殖する状
態)を抑制して雑菌汚染の危険のない植物体を増殖する
ことができる液体培地による無糖培養法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sugar-free culturing method in a liquid medium, and more specifically, in culturing a plant in a liquid medium, the liquid medium does not contain sucrose as a main carbon source for plant growth. And by supplying a high concentration of carbon dioxide to the liquid medium under strong light, the concentration of carbon dioxide in the light period is increased to promote photosynthesis of the plant, and contamination (miscellaneous bacteria in the culture tank The present invention relates to a sugar-free culturing method using a liquid medium capable of suppressing the growth of plants and proliferating plants without the risk of contamination by various bacteria.

【0002】[0002]

【従来の技術】従来の組織培養法は、いわゆる従属栄養
培養法といわれているように、基本培地としてのMS培
地に植物体成長の主たる炭素源となるショ糖を2%程度
含んだ培地で培養していた。
2. Description of the Related Art The conventional tissue culture method is a so-called heterotrophic culture method in which MS medium as a basic medium contains about 2% of sucrose which is a main carbon source for plant growth. It was in culture.

【0003】しかし、上記のような培地組織のものを使
用すると、培地中のショ糖がコンタミネーションを誘起
し、雑菌が培地中に浸入して植物体を汚染したり、ある
いは培養不能となる惧れがあった。そこで、従来の組織
培養法では、雑菌による汚染を回避するために培地を完
全滅菌することが必要不可欠であるうえ、コンタミネー
ションによる植物体の損失を抑制するため密閉度が高
く、しかも、容量の小さい培養タンクを使用しなければ
ならなかった。
However, when the above-mentioned medium tissue is used, sucrose in the medium induces contamination, and various bacteria infiltrate into the medium to contaminate the plant body or make it impossible to culture. There was Therefore, in the conventional tissue culture method, complete sterilization of the medium is indispensable in order to avoid contamination by miscellaneous bacteria, and in order to suppress the loss of the plant body due to contamination, the degree of sealing is high, and the volume is high. A small culture tank had to be used.

【0004】ところが、容量の小さい培養タンクを使用
すると、タンク内の相対湿度、暗期の炭酸ガス濃度が高
くなり、明期の炭酸ガス濃度が低くなるという培養タン
ク内の異常環境が発生して、植物体の成長が抑制される
許りでなく、環境調節と増殖作業の自動化が困難となる
不具合があった。
However, when a small-capacity culture tank is used, an abnormal environment in the culture tank occurs in which relative humidity and carbon dioxide concentration in the dark period increase and carbon dioxide concentration decreases in the light period. However, there is a problem that the growth of plants is not allowed to be suppressed and it is difficult to control the environment and automate the multiplication work.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記のような
実状に鑑み、従来の組織培養の不具合を一掃すべく、全
く新しい構想に基づいて創案されたものであって、特に
培地組成中にショ糖を含まない液体培地を使用し、かつ
強光下で液体培地に高濃度の炭酸ガスを供給することに
より、明期の炭酸ガス濃度を上昇させて植物体の光合成
を促進させるとともに、コンタミネーションを抑制し
て、植物体への雑菌汚染の惧れをなくし、培地の滅菌操
作を不要にしてプロセスを単純化し、容量の大きい培養
タンクの使用を可能にして、増殖の自動化を図ることが
できる液体培地による無糖培養法を提供することを課題
とする課題とするものである。
In view of the above situation, the present invention was devised based on a completely new concept in order to eliminate the problems of conventional tissue culture, and particularly in the medium composition. By using a liquid medium that does not contain sucrose and supplying a high concentration of carbon dioxide to the liquid medium under strong light, the concentration of carbon dioxide in the light period is increased to promote photosynthesis of the plant body and to prevent contamination. It is possible to suppress the nation, eliminate the risk of contamination of plants with various bacteria, simplify the process by eliminating the need to sterilize the medium, enable the use of large-capacity culture tanks, and promote automation of growth. It is an object of the present invention to provide a sugar-free culture method using a liquid medium that can be used.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明が採用した技術手段は、エアレーション方式
の液体培養装置を施用して植物体を培養するにあたり、
ショ糖を含まない液体培地を培養タンクに充填し、該液
体培地に強光下で高濃度の炭酸ガスを供給することによ
って、培養タンク内の植物体を培養することを特徴とす
るものである。
In order to solve the above-mentioned problems, the technical means adopted by the present invention is to apply a liquid culture apparatus of aeration type to cultivate plants.
A culture medium is filled with a liquid medium containing no sucrose, and the plant medium in the culture tank is cultured by supplying a high concentration of carbon dioxide gas to the liquid medium under strong light. .

【0007】[0007]

【作用】したがって本発明によれば、強光下で高濃度の
炭酸ガスが液体培地に供給されるので、明期の炭酸ガス
濃度が上昇され、強度の光照射と相俟って光合成が促進
され、植物体の成長に適した環境で培養することができ
る。そのうえ、液体培地には、ショ糖が含まれていない
ので、培養中コンタミネーションが抑制され、雑菌汚染
による植物体の損失も防止される。
According to the present invention, therefore, since a high concentration of carbon dioxide is supplied to the liquid medium under strong light, the concentration of carbon dioxide in the light period is increased, and photosynthesis is promoted in combination with intense light irradiation. And can be cultured in an environment suitable for plant growth. Moreover, since the liquid medium does not contain sucrose, contamination during the culture is suppressed, and loss of plants due to contamination with various bacteria is also prevented.

【0008】[0008]

【実施例】本発明の実施例を添付図面を参照して詳細に
説明する。図1は培養タンクに充填された液体培地に強
光下で高濃度の炭酸ガスを供給する構成図を示し、Aは
エアレーション方式の培養装置、Bは炭酸ガス供給装置
であって、培養タンク1は支持枠1aによって定置され
ており、その内部には従来基本培地として使用されてい
るMS培地にショ糖を含まない液体培地2が充填されて
いる。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram for supplying a high concentration of carbon dioxide gas to a liquid medium filled in a culture tank under strong light. A is an aeration-type culture device, and B is a carbon dioxide gas supply device. Are fixed by a support frame 1a, and the inside thereof is filled with a liquid medium 2 containing no sucrose in an MS medium conventionally used as a basic medium.

【0009】3は炭酸ガス濃度調整ボックスであって、
該ボックス3内には外部に配置された炭酸ガスボンベ4
と連通接続されたガス供給口5が配設されており、該ガ
ス供給口5には電磁バルブ6が装備されて、炭酸ガス濃
度計7と連通接続されている。8はエアポンプまたはエ
アコンプレッサーであって、該エアポンプ(エアコンプ
レッサー)8の吐出口9と培養タンク1の底部に装備さ
れたエアレーション装置10との間には可撓性管体11
を介して連通接続されている。12は上記炭酸ガス濃度
調整ボックス3に形成された外気吸入口、13は培養タ
ンク1の密閉蓋体1bに開設されたガス排出口であっ
て、該ガス排出口13と炭酸ガス濃度調整ボックス3と
の間には、仮想線で示すような可撓性管体14からなる
炭酸ガス循環経路Cを形成して、炭酸ガスの浪費を防ぐ
ようにしてもよい。
3 is a carbon dioxide concentration control box,
A carbon dioxide gas cylinder 4 arranged outside in the box 3
A gas supply port 5 connected to the carbon dioxide concentration meter 7 is provided. The gas supply port 5 is equipped with an electromagnetic valve 6 and is connected to a carbon dioxide concentration meter 7. Reference numeral 8 denotes an air pump or an air compressor, and a flexible tube body 11 is provided between a discharge port 9 of the air pump (air compressor) 8 and an aeration device 10 provided at the bottom of the culture tank 1.
Connected via Reference numeral 12 denotes an outside air inlet formed in the carbon dioxide concentration adjusting box 3, and 13 denotes a gas outlet formed in the closed lid 1b of the culture tank 1. The gas outlet 13 and the carbon dioxide concentration adjusting box 3 are provided. A carbon dioxide gas circulation path C composed of the flexible pipe body 14 may be formed between and, to prevent waste of carbon dioxide gas.

【0010】上記のような構成において、いま、強光下
で培養タンク1に充填された液体培地2に高濃度の炭酸
ガスを供給するには、先ず炭酸ガス濃度計7で所定のガ
ス濃度(1,000〜2,000ppm)を設定する
が、炭酸ガス濃度調整ボックス3内のガス濃度が設定濃
度に満たない場合は、電磁バルブ6が自動的に開いて炭
酸ガスボンベ4より炭酸ガスがガス供給口5を介して上
記ボックス3に供給される。そして、上記ボックス3内
の炭酸ガスが設定濃度を満たすと、炭酸ガス濃度計7の
指示により電磁バルブ6が自動的に閉じられ、炭酸ガス
の供給が停止される。
In the above structure, in order to supply a high concentration of carbon dioxide gas to the liquid medium 2 filled in the culture tank 1 under strong light, first, a carbon dioxide concentration meter 7 is used to supply a predetermined gas concentration ( (1,000 to 2,000 ppm) is set, but when the gas concentration in the carbon dioxide concentration adjusting box 3 is less than the set concentration, the electromagnetic valve 6 automatically opens and carbon dioxide gas is supplied from the carbon dioxide cylinder 4. It is supplied to the box 3 via the mouth 5. When the carbon dioxide gas in the box 3 satisfies the set concentration, the electromagnetic valve 6 is automatically closed according to the instruction of the carbon dioxide concentration meter 7, and the supply of carbon dioxide gas is stopped.

【0011】そこで、空気と混合された設定濃度の炭酸
ガスをエアポンプ(エアコンプレッサー)8により吐出
口9を介して培養タンク1の底部に装備したエアレーシ
ョン装置10から液体培地2に圧送すると、空気は微細
な泡状を呈しながら液体培地2に溶け込んで溶存酸素が
増大するとともに、液体培地2には明期の炭酸ガス濃度
が上昇し、強度の光照射と相俟って光合成は促進され、
培養植物体の成長速度が従来の組織培養法(従来栄養培
養法)による培養に比し、それと同等以上となった。
Then, when carbon dioxide gas having a set concentration mixed with air is pressure-fed to the liquid medium 2 from the aeration device 10 provided at the bottom of the culture tank 1 through the discharge port 9 by the air pump (air compressor) 8, the air is discharged. While being dissolved in the liquid medium 2 in the form of fine bubbles to increase dissolved oxygen, the concentration of carbon dioxide gas in the light period increases in the liquid medium 2, and photosynthesis is promoted in combination with intense light irradiation.
The growth rate of the cultured plant was equal to or higher than that of the conventional tissue culture method (conventional nutrient culture method).

【0012】そのうえ、液体培地2に炭酸ガスを供給す
ると、上記のように明期の炭酸ガス濃度の上昇、光合成
の促進だけでなく、培養タンク1内の空気流動の促進、
相対湿度の低下がもたらされるので、これらの現象を適
切に制御すると、蒸散促進、養分吸収促進のほかビトリ
フィケーション(茎葉が水浸状になって水ストレスに弱
くなる状態)も抑制できることが確認された。しかも、
液体培地2にはショ糖が含まれていないので、培養中コ
ンタミネーションが抑制され、雑菌汚染による植物体の
損失の防止できた。培養は1日を明期と暗期とに分けて
行なうが、炭酸ガスの供給は明期のみに限定して行な
い、この場合の光照射照度は、従来の組織培養法におけ
る光照射照度(5klx)の2〜3倍程度、すなわち1
0klx以上とした。
Moreover, when carbon dioxide gas is supplied to the liquid medium 2, not only the concentration of carbon dioxide gas in the light period and the promotion of photosynthesis but also the air flow in the culture tank 1 are promoted as described above.
Since relative humidity is reduced, it is confirmed that proper control of these phenomena can suppress transpiration, nutrient absorption, and vitrification (a condition in which foliage becomes water-immersive and vulnerable to water stress). Was done. Moreover,
Since sucrose was not contained in the liquid medium 2, contamination during the culture was suppressed, and the loss of plants due to contamination with various bacteria could be prevented. The culture is performed by dividing the day into a light period and a dark period, but the carbon dioxide gas is supplied only during the light period. In this case, the light irradiation illuminance is the light irradiation illuminance (5 klx) in the conventional tissue culture method. ) About 2 to 3 times, that is, 1
It was set to 0 klx or more.

【0013】上記の方法によって培養された植物体は、
分割されて馴化の工程へ移されるが、本発明において
は、馴化の工程に移す前に植物体を無菌状態で分割し、
オーキシン系の植物ホルモンを適量含んだ培地で1〜2
週間程度補助培養して、分割時の傷の治癒、ストレスの
除去および発根促進処理を行なってから馴化へ移した。
その結果、従来の方法のように、培養した植物体を分割
して発根用培地に移植し、発根後に馴化へ移したり、あ
るいは発根処理を行なわずに、分割した植物体を直ちに
馴化へ移したものに比し、馴化時の発根がスムーズに行
なわれ、活着率を向上させることができた。
Plants cultured by the above method are
Although divided and transferred to the acclimation step, in the present invention, the plant is divided in an aseptic state before transferring to the acclimation step,
1-2 in a medium containing an appropriate amount of auxin plant hormones
After supplementing the culture for about a week, the wounds were healed at the time of division, stress was removed, and root-promoting treatment was performed.
As a result, as in the conventional method, the cultured plants were divided and transplanted to a rooting medium, and the rooted plants were transferred to acclimation or, after rooting, the divided plants were immediately acclimated. Rooting during habituation was carried out more smoothly and the survival rate could be improved compared to the one transferred to.

【0014】図2は培養タンク1および液体培地2の除
殺菌装置Dの構成図を示すものであって、該装置Dは培
養タンク1の除殺菌処理時以外は、培養タンク1から離
脱可能となっていて除殺菌作業の効率化を図るように構
成されているとともに、装置自体の除殺菌も可能とした
点に特徴を有するものである。
FIG. 2 shows a configuration diagram of the culture tank 1 and the liquid culture medium 2 disinfection device D, which can be detached from the culture tank 1 except during the disinfection process of the culture tank 1. In addition to being configured to improve the efficiency of the sterilization work, the sterilization of the device itself is also possible.

【0015】すなわち、その配管系は2個の殺菌タンク
15、16が三方バルブ21を介して連通接続され、該
三方バルブ21は三方バルブ22、23、26を介して
培養タンク1に連通接続され、該培養タンク1は三方バ
ルブ25を介して殺菌タンク16に連通接続されている
とともに、上記三方バルブ25に連通接続された三方バ
ルブ24を介して殺菌タンク15に連通接続されてい
る。上記三方バルブ24と23との間にはポンプ17お
よびイゼクタ18が連通状に介装され、イゼクタ18に
はオゾンガス発生機19が連通接続され、また三方バル
ブ22と26との間にはフィルター部材F、Fを並列に
連通接続した除菌用フィルター20が連通状に介装され
ている。27、28は培養タンク1に除殺菌処理装置D
を着脱するためのジョイント部材である。
That is, in the piping system, two sterilization tanks 15 and 16 are communicatively connected via a three-way valve 21, and the three-way valve 21 is communicatively connected to the culture tank 1 via three-way valves 22, 23 and 26. The culture tank 1 is connected to a sterilization tank 16 via a three-way valve 25 and is connected to the sterilization tank 15 via a three-way valve 24 connected to the three-way valve 25. A pump 17 and an ejector 18 are provided in communication between the three-way valves 24 and 23, an ozone gas generator 19 is connected to the ejector 18, and a filter member is provided between the three-way valves 22 and 26. A sterilizing filter 20 in which F and F are connected in parallel is connected in a communicating manner. 27 and 28 are sterilization treatment devices D in the culture tank 1.
It is a joint member for attaching and detaching.

【0016】ところで、上記のように構成された除殺菌
処理装置Dを用いて培養タンク1および液体培地2の除
殺菌処理を行なうには、次の順序によって行なう。 (1) 培養タンク1内の液体培地を殺菌タンク15に
移す。その流路は、培養タンク1→ジョイント27→三
方バルブ25→三方バルブ24→ポンプ17→イゼクタ
18→三方バルブ23→三方バルブ22→三方バルブ2
1を経て殺菌タンク15に移す。 (2) 殺菌タンク16に充填した殺菌液を培養タンク
1に移す。その流路は、殺菌タンク16→三方バルブ2
5→三方バルブ24→ポンプ17→イゼクタ18→三方
バルブ23→三方バルブ26→ジョイント28を経て培
養タンク1に移す。 (3) 培養タンク1内の殺菌液を殺菌タンク16に戻
す。その流路は、培養タンク1→ジョイント27→三方
バルブ25→三方バルブ24→ポンプ17→イゼクタ1
8→三方バルブ23→三方バルブ22→三方バルブ21
を経て殺菌タンク16に戻す。 (4) 殺菌タンク15内の液体培地2を培養タンク1
に戻す。その流路は、殺菌タンク15→三方バルブ24
→ポンプ17→イゼクタ18→三方バルブ23→三方バ
ルブ22→フィルター20→三方バルブ26→ジョイン
ト28を経て培養タンク1に戻す。
By the way, in order to perform the sterilization treatment of the culture tank 1 and the liquid medium 2 by using the sterilization treatment apparatus D configured as described above, the following steps are performed. (1) The liquid medium in the culture tank 1 is transferred to the sterilization tank 15. The flow path is as follows: culture tank 1 → joint 27 → three-way valve 25 → three-way valve 24 → pump 17 → ejector 18 → three-way valve 23 → three-way valve 22 → three-way valve 2.
Transfer via 1 to sterilization tank 15. (2) The sterilizing solution filled in the sterilization tank 16 is transferred to the culture tank 1. The flow path is sterilization tank 16 → three-way valve 2
5 → Three-way valve 24 → Pump 17 → Ejector 18 → Three-way valve 23 → Three-way valve 26 → Transfer to culture tank 1 via joint 28. (3) The sterilizing liquid in the culture tank 1 is returned to the sterilizing tank 16. The flow path is culture tank 1 → joint 27 → three-way valve 25 → three-way valve 24 → pump 17 → ejector 1
8-> 3-way valve 23-> 3-way valve 22-> 3-way valve 21
And return to the sterilization tank 16. (4) The liquid culture medium 2 in the sterilization tank 15 is added to the culture tank 1
Return to. The flow path is a sterilization tank 15 → a three-way valve 24.
→ Pump 17 → Ejector 18 → Three-way valve 23 → Three-way valve 22 → Filter 20 → Three-way valve 26 → Return to the culture tank 1 via the joint 28.

【0017】次に除殺菌処理装置D自体の殺菌処理は、
次の順序で行なわれる。 (1) 培養タンク1を離脱して別途に、殺菌用のタン
ク(図示省略)をジョイント27、28を介して除殺菌
処理装置Dに接続する。 (2) 殺菌タンク16に充填した殺菌液を次の流路に
循環させて殺菌タンク16を殺菌する。すなわち、殺菌
タンク16→三方バルブ25→三方バルブ24→ポンプ
17→イゼクタ18→三方バルブ23→三方バルブ22
→三方バルブ21を循環させて殺菌タンク16を殺菌す
る。 (3) 殺菌タンク16内の殺菌液を次の流路に循環さ
せて殺菌タンク15を殺菌する。すなわち、殺菌タンク
16→三方バルブ25→三方バルブ24→ポンプ17→
イゼクタ18→三方バルブ23→三方バルブ22→三方
バルブ21→殺菌タンク15→三方バルブ24→ポンプ
17→イゼクタ18→三方バルブ23→三方バルブ22
→三方バルブ21を循環させて殺菌タンク15を殺菌す
る。 (4) 殺菌タンク15内の殺菌液を次の流路に循環さ
せて配管系を殺菌する。すなわち、殺菌タンク15→三
方バルブ24→ポンプ17→イゼクタ18→三方バルブ
23→三方バルブ26→ジョイント28→殺菌用タンク
→ジョイント27→三方バルブ25→殺菌タンク16→
三方バルブ24→ポンプ17→イゼクタ18→三方バル
ブ23→三方バルブ26→ジョイント28→殺菌用タン
ク→ジョイント27→三方バルブ25→殺菌タンク16
を循環させて配管系を殺菌する。 (5) 殺菌タンク16内の殺菌液で除菌用フィルター
20を逆流洗浄する。その流路は、殺菌タンク16→三
方バルブ25→三方バルブ24→ポンプ17→イゼクタ
18→三方バルブ23→三方バルブ26→フィルター部
材F、Fを経てドレン抜きする。 なお、上記のような順序で行なわれる培養タンク1およ
び液体培地2の除殺菌処理および除殺菌処理装置D自体
の殺菌処理に使用される殺菌液は、薬剤、オゾン水のど
ちらでもよい。
Next, the sterilization treatment of the decontamination treatment device D itself is as follows.
The order is as follows. (1) The culture tank 1 is detached and a sterilization tank (not shown) is separately connected to the disinfection processing apparatus D via the joints 27 and 28. (2) The sterilization liquid filled in the sterilization tank 16 is circulated in the next flow path to sterilize the sterilization tank 16. That is, the sterilization tank 16 → three-way valve 25 → three-way valve 24 → pump 17 → ejector 18 → three-way valve 23 → three-way valve 22.
→ The three-way valve 21 is circulated to sterilize the sterilization tank 16. (3) The sterilization liquid in the sterilization tank 16 is circulated to the next flow path to sterilize the sterilization tank 15. That is, the sterilization tank 16 → three-way valve 25 → three-way valve 24 → pump 17 →
Ejector 18-> 3-way valve 23-> 3-way valve 22-> 3-way valve 21-> Sterilization tank 15-> 3-way valve 24-> Pump 17-> Ejector 18-> 3-way valve 23-> 3-way valve 22
→ The three-way valve 21 is circulated to sterilize the sterilization tank 15. (4) The sterilizing liquid in the sterilization tank 15 is circulated to the next flow path to sterilize the piping system. That is, sterilization tank 15 → three-way valve 24 → pump 17 → ejector 18 → three-way valve 23 → three-way valve 26 → joint 28 → sterilization tank → joint 27 → three-way valve 25 → sterilization tank 16 →
Three-way valve 24 → pump 17 → ejector 18 → three-way valve 23 → three-way valve 26 → joint 28 → sterilization tank → joint 27 → three-way valve 25 → sterilization tank 16
To sterilize the piping system. (5) The sterilizing solution in the sterilization tank 16 is used to backwash the sterilizing filter 20. The flow path is drained through the sterilization tank 16, the three-way valve 25, the three-way valve 24, the pump 17, the ejector 18, the three-way valve 23, the three-way valve 26, and the filter members F and F. The sterilizing liquid used for the sterilization treatment of the culture tank 1 and the liquid medium 2 and the sterilization treatment of the decontamination treatment device D itself performed in the above-described order may be either chemicals or ozone water.

【0018】更に上記除殺菌処理装置Dにおいては、配
管ラインの中途部にフィルター20を設け、該フィルタ
ー20により液体培地2に混入したゴミ、細菌等を除去
するようにしているが、フィルター20の濾過能力には
限界があり、経時的に目詰りや劣化等を招くことに鑑
み、上記フィルター20に代えて図3に示すように、配
管29の中途部に中空円盤状の部材30を所要数個連接
になる分離管31の円心部32を配管29に連通して設
け、該分離管31をモータ33に歯車伝動機構34を介
して連動連結して回転させるようにしてもよい。この場
合、液体培地2に混入しているゴミ、細菌等は遠心力に
より分離管31の円周部に蓄積され、清浄な液体培地2
は円心部32を通過することになる。
Further, in the above-mentioned decontamination processing device D, a filter 20 is provided in the middle of the piping line to remove dust, bacteria and the like mixed in the liquid medium 2 by the filter 20, In view of the fact that there is a limit to the filtration capacity and it causes clogging and deterioration over time, a required number of hollow disk-shaped members 30 are provided in the middle of the pipe 29 as shown in FIG. The circular center portion 32 of the separation pipe 31 which is connected to each other may be provided in communication with the pipe 29, and the separation pipe 31 may be coupled to the motor 33 via the gear transmission mechanism 34 and rotated. In this case, dust, bacteria and the like mixed in the liquid medium 2 are accumulated in the circumferential portion of the separation tube 31 by the centrifugal force, so that the clean liquid medium 2 can be obtained.
Will pass through the central portion 32.

【0019】[0019]

【発明の効果】これを要するに本発明は、エアレーショ
ン方式の液体培養装置を旋用して植物体を培養する方法
であって、ショ糖を含まない液体培地を培養するタンク
に充填し、該液体培養地に強光下で高濃度の炭酸ガスを
供給することにより、培養タンク内の植物体を培養する
ようにしたから、従来の組織培養法(従属栄養培養法)
による培養に比し、次のような格別顕著な効果を奏す
る。 (1) 明期の炭酸ガス濃度が上昇され、強度の光照射
と相侯って光合成が促進されるので、植物体の成長に適
した環境下で培養することができる。 (2) 明期の炭酸ガス濃度の上昇、光合成の促進に付
随して培養タンク内の空気流動が促進され、相対湿度が
低下するので、これらの現象を適切に制御することによ
り、蒸散促進、養分吸収促進のほか、ビトリフィケーシ
ョンも抑制され、植物体の成長が均一化される。 (3) 液体培養地にショ糖が含まれていないので、培
養中コンタミネーションが抑制され、雑菌汚染による植
物体の損失を防止することができる。
In summary, the present invention is a method for cultivating a plant body by utilizing a liquid culture device of aeration system, which is filled in a tank for culturing a sucrose-free liquid medium, The plant tissue in the culture tank was cultivated by supplying a high concentration of carbon dioxide gas to the culture site under strong light. Therefore, the conventional tissue culture method (heterotrophic culture method) was used.
The following remarkable effects are obtained as compared with the culture by. (1) Since the carbon dioxide concentration in the light period is increased and photosynthesis is promoted in combination with intense light irradiation, the plant can be cultured in an environment suitable for growth. (2) Since the air flow in the culture tank is promoted and the relative humidity is reduced in association with the increase of carbon dioxide concentration in the light period and the promotion of photosynthesis, the transpiration is promoted by appropriately controlling these phenomena. In addition to promoting nutrient absorption, vitrification is suppressed and plant growth is homogenized. (3) Since sucrose is not contained in the liquid culture medium, contamination during culture can be suppressed and loss of plants due to contamination with various bacteria can be prevented.

【0020】[0020]

【図面の簡単な説明】[Brief description of drawings]

【図1】培養タンク内の液体培養地に強光下で高濃度の
炭酸ガスを供給する構成図。
FIG. 1 is a configuration diagram for supplying a high concentration of carbon dioxide gas to a liquid culture medium in a culture tank under strong light.

【図2】培養タンクおよび液体培地の除殺菌装置の構成
図。
FIG. 2 is a configuration diagram of a culture tank and a liquid culture medium disinfection device.

【図3】分離管の正面図。FIG. 3 is a front view of a separation tube.

【符号の説明】[Explanation of symbols]

1 培養タンク 2 液体培養地 3 炭酸ガス濃度調整ボックス 5 炭酸ガスボンベ 8 エアポンプ 9 ガス吐出口 10 エアレーション装置 1 Culture Tank 2 Liquid Culture Area 3 Carbon Dioxide Concentration Adjustment Box 5 Carbon Dioxide Cylinder 8 Air Pump 9 Gas Discharge Port 10 Aeration Device

Claims (1)

【特許請求の範囲】 【請求項1】 エアレーション方式の液体培養装置を施
用して植物体を培養する方法であって、ショ糖を含まな
い液体培地を培養タンクに充填し、該液体培地に強光下
で高濃度の炭酸ガスを供給することにより、培養タンク
内の植物体を培養するようにしたことを特徴とする液体
培地による無糖培養法。
Claim: What is claimed is: 1. A method of culturing a plant by applying an aeration type liquid culture device, comprising filling a culture tank with a sucrose-free liquid medium, and adding a strong medium to the liquid medium. A sugar-free culture method using a liquid medium, which comprises culturing a plant in a culture tank by supplying a high concentration of carbon dioxide under light.
JP19857591A 1991-07-12 1991-07-12 Sugar-free culture method by liquid culture medium Pending JPH0515363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19857591A JPH0515363A (en) 1991-07-12 1991-07-12 Sugar-free culture method by liquid culture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19857591A JPH0515363A (en) 1991-07-12 1991-07-12 Sugar-free culture method by liquid culture medium

Publications (1)

Publication Number Publication Date
JPH0515363A true JPH0515363A (en) 1993-01-26

Family

ID=16393460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19857591A Pending JPH0515363A (en) 1991-07-12 1991-07-12 Sugar-free culture method by liquid culture medium

Country Status (1)

Country Link
JP (1) JPH0515363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160360A2 (en) 2011-05-20 2012-11-29 Naturally Scientific Technologies Limited Photosynthetic process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160360A2 (en) 2011-05-20 2012-11-29 Naturally Scientific Technologies Limited Photosynthetic process
WO2012160360A3 (en) * 2011-05-20 2013-02-28 Naturally Scientific Technologies Limited Photosynthetic process
EP2710135A2 (en) * 2011-05-20 2014-03-26 Naturally Scientific Technologies Limited Photosynthetic process
US9562244B2 (en) 2011-05-20 2017-02-07 Naturally Scientific Technologies Limited Method of producing plant suspension cells in a growth medium enriched with carbonic acid

Similar Documents

Publication Publication Date Title
US5525505A (en) Plant propagation system and method
JP2001502526A (en) Apparatus and method for culturing cells / tissue
Teisson et al. Simple apparatus to perform plant tissue culture by temporary immersion
WO1989007389A1 (en) Solution culture apparatus
JPH0763354B2 (en) Cell growth reactor with compartment formed by hydrophilic diaphragm and hydrophobic diaphragm
CN102177861A (en) Simple and high-efficiency circulating water hatching system
CN104221834B (en) Cultivation system with aeration cultivation device
JPH0515363A (en) Sugar-free culture method by liquid culture medium
JPH08242842A (en) Microorganism culturing system
CN217367522U (en) Water purification device for soilless culture of blackberries
CN211048025U (en) Pleurotus eryngii edible mushroom incubator
CN114051919A (en) Aerial fog type plant sugar-free culture device, control method thereof and plant culture method
JPH03108423A (en) Control system for water culture
JPH04126020A (en) Sterilization of culture liquid, etc., for hydroponic culture and hydroponic culture apparatus
JPS6344813A (en) Hydroponic culture apparatus
JP2961107B1 (en) Pneumatic pressure differential brewing bioreactor
JP2001128570A (en) Apparatus for hydroponics
JPH11299377A (en) Nutriculture apparatus of individual water feed and noncircular type
JP2000224933A (en) Device for water culture
JP2001299116A (en) Method for hydroponic
JP2803336B2 (en) Plant tissue culture method
KR102615762B1 (en) Odor reduction system
JP4245448B2 (en) Microbial culture system
CN220342801U (en) Temperature-adjustable rice breeding is with device that sprouts that disinfects
CN212232548U (en) Be used for soilless culture device