JPH0515316B2 - - Google Patents
Info
- Publication number
- JPH0515316B2 JPH0515316B2 JP28396888A JP28396888A JPH0515316B2 JP H0515316 B2 JPH0515316 B2 JP H0515316B2 JP 28396888 A JP28396888 A JP 28396888A JP 28396888 A JP28396888 A JP 28396888A JP H0515316 B2 JPH0515316 B2 JP H0515316B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- transparent plate
- pellet
- lens
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 25
- 239000013307 optical fiber Substances 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000008188 pellet Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信用光源に関し、特に半導体レー
ザ(LD)と光フアイバとを効率良く結合させ、
一体化したLDモジユールに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light source for optical communication, and in particular to a light source for efficiently coupling a semiconductor laser (LD) and an optical fiber.
Regarding the integrated LD module.
光通信用の光フアイバとしては、幹線系におけ
る大量需要による低価格化、将来の大容量化に対
する自由度が大等の理由により、支線系、加入者
系においても多モードフアイバより単一モードフ
アイバが主に用いられつつある。
As optical fibers for optical communications, single mode fibers are preferred over multimode fibers for branch lines and subscriber lines due to lower prices due to mass demand in trunk lines and greater flexibility for future increases in capacity. is becoming mainly used.
ところで、支線系、加入者系においては幹線系
とは異なり、通常中継が行われず、しかもネツト
ワークの末端に位置するため、伝送距離が比較的
短い上にその偏差が大である。また、回線の多重
度が低いため、低価格の要求が大である。そのた
め、支線系、加入者系伝送方式は長区間、短区間
の2方式に分離してコスト的に最適設計される。
短区間方式用光源としては、高速で、単一モード
フアイバへの結合特性が良く、将来的に低コスト
が予測されるLDが主流となりつつある。 By the way, unlike the trunk line, branch lines and subscriber lines do not normally carry out relaying and are located at the end of the network, so the transmission distance is relatively short and the deviation is large. In addition, since the multiplicity of the line is low, there is a strong demand for a low price. Therefore, the branch line system and subscriber system transmission systems are separated into two systems, long-range and short-range, and designed to be optimal in terms of cost.
LDs are becoming mainstream as light sources for short-range systems because they are fast, have good coupling characteristics to single-mode fibers, and are expected to be low-cost in the future.
短区間方式用LDモジユールの光出力は長区間
用に比べて、10dB以上低くても良く、そのため、
将来この種のLDモジユールでは、第4図に示す
ように高い結合効率は得られないが低価格な球レ
ンズ5がLDペレツト1と光フアイバ3との結合
用に用いられている。 The optical output of the LD module for the short-range method may be 10 dB or more lower than that for the long-range method, and therefore,
In the future, in this type of LD module, a ball lens 5, which does not provide high coupling efficiency but is inexpensive, will be used to couple the LD pellet 1 and the optical fiber 3, as shown in FIG.
ところで、LDペレツトは通常気密封止された
カンケースの中に実装されるが、現状ではその実
装位置誤差はxyz方向(x,yは光軸に垂直、z
は光軸方向)で±100μm程度であり、球レンズ
および光フアイバの実装位置誤差と比べて1桁大
きい。このため、長区間用高結合LDモジユール
ではLDペレツトと光フアイバの両方についてx,
y,z計6軸方向の光軸調整が必要である。一
方、長区間用に比べて10dB程結合効率が低くて
良い短区間用低結合LDモジユールでも、LDペレ
ツト及び光フアイバのいずれか一方についてx,
y,zの3軸方向の光軸調整が必要である。
By the way, LD pellets are usually mounted in a hermetically sealed can case, but currently the mounting position error is in the x, y, and z directions (x, y are perpendicular to the optical axis, z
is approximately ±100 μm (in the optical axis direction), which is an order of magnitude larger than the mounting position error of the ball lens and optical fiber. For this reason, in a long-distance high-coupling LD module, x,
Optical axis adjustment is required in a total of six y- and z-axis directions. On the other hand, even with a short-range low-coupling LD module, which has a coupling efficiency about 10 dB lower than that of a long-range model, x,
It is necessary to adjust the optical axis in three axes, y and z.
短区間用LDモジユールに対しては高出力の要
求に対して低価格の要求が厳しい。ところが、上
述したように従来の構成では光軸調整が簡略化で
きず、充分な低価格化が図れないという問題点が
ある。 For short-range LD modules, there are strict requirements for low cost and high output. However, as described above, the conventional configuration has the problem that the optical axis adjustment cannot be simplified and the cost cannot be sufficiently reduced.
本発明のLDモジユールはLDとレンズ系との間
に中心部と周辺部で屈折率及び厚さが異なる透明
板をその中心軸が光軸と一致するように挿入した
ことを特徴としている。
The LD module of the present invention is characterized in that a transparent plate having a different refractive index and thickness at the center and periphery is inserted between the LD and the lens system so that its central axis coincides with the optical axis.
まず、本発明の原理について説明する。 First, the principle of the present invention will be explained.
第1図を参照して、LDペレツト1からの放射
光がレンズ2により集束され光フアイバ3に結合
する結合系において、LDペレツト1とレンズ2
の間に透明板4が挿入されている。この透明板4
は図示のようにその中心部と周辺部とで光学的厚
さが異なつている。つまり、この例では、透明板
4の中心部の光学的厚さは周辺部の光学的厚さよ
りも厚くなつている。従つて、透明板4の中心部
を通過した光と周辺部を通過した光とではレンズ
2による結像位置が軸方向にずれる。 Referring to FIG. 1, in a coupling system in which emitted light from LD pellet 1 is focused by lens 2 and coupled to optical fiber 3, LD pellet 1 and lens 2
A transparent plate 4 is inserted between them. This transparent plate 4
As shown in the figure, the optical thickness is different between the center and the periphery. That is, in this example, the optical thickness of the central portion of the transparent plate 4 is thicker than the optical thickness of the peripheral portion. Therefore, the imaging position of the lens 2 is shifted in the axial direction between the light that has passed through the center of the transparent plate 4 and the light that has passed through the periphery.
第2図に透明板を詳細に示す。 FIG. 2 shows the transparent plate in detail.
第2図も参照して、透明板4の中心部を通過し
た光と周辺部を通過した光とによつて生じるLD
ペレツト1とレンズ2間の光学長のずれΔaは次
式で表わせる。 Referring also to Fig. 2, the LD caused by the light passing through the center of the transparent plate 4 and the light passing through the peripheral part.
The optical length deviation Δa between the pellet 1 and the lens 2 can be expressed by the following equation.
Δa=d1−d1/n1−(d2−d2/n2)
ここで、
d1:中心部の厚さ、d2:周辺部の厚さ
n1:中心部の屈折率、n2:周辺部の屈折率
第1図における透明板4の中心部を通過した光
と周辺部を通過した光とによつて生じる結像位置
のずれはこのLDペレツト1とレンズ2間の光学
長のずれΔaに対応する。 Δa= d1 − d1 / n1− ( d2 − d2 / n2 ) where, d1 : Thickness at the center, d2 : Thickness at the periphery, n1 : Refractive index at the center, n 2 : Refractive index of the peripheral area The deviation in the imaging position caused by the light passing through the center of the transparent plate 4 and the light passing through the peripheral area in FIG. Corresponds to the length deviation Δa.
第3図はLDペレツト1とレンズ2の間隔Zに
対するLDペレツト1と光フアイバ3の結合損失
Lの関係を示す。 FIG. 3 shows the relationship between the coupling loss L between the LD pellet 1 and the optical fiber 3 and the distance Z between the LD pellet 1 and the lens 2.
L1は透明板4を挿入しない場合のL曲線で、
L2は透明板4を挿入した場合のL曲線である。
結合損失が最低値からΔL増加するまでのZ方向
の許容範囲ΔZは透明板を挿入した方が大きく
(ΔZ2>ΔZ1)なる。つまり、透明板の中心部を
通過する光と周辺部を通過する光とで生ずるLD
ペレツト1とレンズ2間の光学長のずれΔaに応
じてL曲線が曲線L21,L22の様にずれるため、こ
れら曲線L21,L22を相加すると第3図に示すよう
に最低値は大きくなるが、底が平坦な曲線とな
る。従つて、ΔZ2>ΔZ1となる。 L 1 is the L curve when the transparent plate 4 is not inserted,
L 2 is the L curve when the transparent plate 4 is inserted.
The tolerance range ΔZ in the Z direction until the coupling loss increases by ΔL from the minimum value becomes larger (ΔZ 2 >ΔZ 1 ) when a transparent plate is inserted. In other words, the LD generated by the light passing through the center of the transparent plate and the light passing through the periphery.
The L curve shifts as shown in the curves L 21 and L 22 according to the optical length shift Δa between the pellet 1 and the lens 2, so when these curves L 21 and L 22 are added, the minimum value is reached as shown in Fig. 3. becomes large, but the curve has a flat bottom. Therefore, ΔZ 2 >ΔZ 1 .
上述した特性は、高出力を必要とせず低価格の
要求の厳しい短区間用LDモジユールの結合系と
して適している。即ちZ方向の感度が緩和される
ため、xy方向だけの光軸調整となり、調整が簡
略化され、その結果、構成部品も簡素化される。
従つて格段の低価格化が可能となる。 The above-mentioned characteristics are suitable as a coupling system for short-range LD modules that do not require high output and have strict requirements for low cost. That is, since the sensitivity in the Z direction is relaxed, the optical axis can be adjusted only in the x and y directions, which simplifies the adjustment and, as a result, also simplifies the components.
Therefore, it is possible to significantly reduce the price.
ここで第5図を参照して、本発明の一実施例に
ついて具体的に説明する。 Here, one embodiment of the present invention will be specifically described with reference to FIG.
透明板4は例えば、ガラス円板の中心部に円形
の穴を開け、これによつて中心部の光学的厚さと
周辺部の光学的厚さを異ならせている。LDペレ
ツト1はLDパツケージ6の中に気密封止されて
おり、光フアイバ芯線7をフエルール8内に挿入
して接着・研磨することによつて、光フアイバの
端面はフエルール8の端面に位置している。フエ
ルール8はネジ10によりホルダ9の貫通穴に機
械的に固定され、透明板4及び球レンズ5はホル
ダ内に半田・圧入等により無調整で固定されてい
る。 The transparent plate 4 is, for example, a glass disk with a circular hole formed in the center, thereby making the optical thickness of the center portion different from the optical thickness of the peripheral portion. The LD pellet 1 is hermetically sealed in the LD package 6, and by inserting the optical fiber core wire 7 into the ferrule 8 and bonding and polishing it, the end face of the optical fiber is positioned on the end face of the ferrule 8. ing. The ferrule 8 is mechanically fixed in the through hole of the holder 9 with a screw 10, and the transparent plate 4 and the ball lens 5 are fixed in the holder without adjustment by soldering, press fitting, or the like.
光軸調整を行う際には、LDパツケージ6のツ
バをホルダ9の端面に突当てた後、xy方向にの
み光軸調整を行う。そして、LDパツケージ6の
ツバをホルダ9の端面にYAGレーザ・スポツト
溶接等で固定して組立が完了する。 When adjusting the optical axis, the collar of the LD package 6 is brought into contact with the end face of the holder 9, and then the optical axis is adjusted only in the x and y directions. Then, the collar of the LD package 6 is fixed to the end face of the holder 9 by YAG laser spot welding, etc., and the assembly is completed.
尚、波長1.31μmのLDとコア径10μmの単一モ
ードフアイバで実験した結果、10個のサンプルで
最低結合損失が19dBでその誤差幅が3dBと短区
間LDモジユールとしては充分な特性であること
が確認された。 In addition, as a result of experiments using an LD with a wavelength of 1.31 μm and a single mode fiber with a core diameter of 10 μm, the minimum coupling loss for 10 samples was 19 dB and the error margin was 3 dB, which is sufficient for a short-range LD module. was confirmed.
また、上述の実施例では一つの球レンズ5で
LDペレツト1と光フアイバとを光学的に結合す
る場合について説明したが、複数のレンズを用い
てLDペレツト1と光フアイバとを光学的に結合
する場合にも同様に適用できる。 In addition, in the above embodiment, one ball lens 5 is used.
Although the case where the LD pellet 1 and the optical fiber are optically coupled has been described, the present invention can be similarly applied to the case where the LD pellet 1 and the optical fiber are optically coupled using a plurality of lenses.
以上説明したように本発明のLDモジユールで
は、LDとレンズの間に中心部と周辺部で光学的
厚さが異なる透明板を挿入したから、LDペレツ
トの光軸方向の調整を無調整化しても製造ばらつ
きの少ないLDモジユールが実現できる。従つて、
光軸調整が簡略化されると共に、構成部品が簡素
化されるため、従来に比べて格段の低コスト化の
効果がある。この結果、本発明を高出力が不要で
低価格の要求の厳しい支線、加入者系の短区間用
LDモジユールに適用すれば、その低価格化が実
現され、LDモジユールひいては光通信装置の大
量需要を生むという効果もある。
As explained above, in the LD module of the present invention, since a transparent plate with different optical thicknesses at the center and periphery is inserted between the LD and the lens, adjustment of the optical axis direction of the LD pellet can be eliminated. It is also possible to create LD modules with less manufacturing variation. Therefore,
Since the optical axis adjustment is simplified and the components are simplified, there is an effect of significantly lower costs than in the past. As a result, the present invention can be used for short sections of branch lines and subscriber lines that do not require high output and have low cost requirements.
If applied to LD modules, the cost will be reduced, and this will have the effect of creating mass demand for LD modules and, by extension, optical communication equipment.
第1図は本発明の構成図、第2図は本発明の原
理を説明するための図、第3図はLDペレツトと
レンズとの間隔Zに対する結合損失Lの関係を示
す図、第4図は従来例の構成図、第5図は本発明
の一実施例の基本構成図である。
1……LDペレツト、2……レンズ、3……光
フアイバ、4……透明板、5……球レンズ、6…
…LDパツケージ、7……光フアイバ芯線、8…
…フエルール、9……ホルダ、10……ネジ。
Figure 1 is a block diagram of the present invention, Figure 2 is a diagram for explaining the principle of the invention, Figure 3 is a diagram showing the relationship of coupling loss L with respect to the distance Z between the LD pellet and the lens, and Figure 4. 5 is a configuration diagram of a conventional example, and FIG. 5 is a basic configuration diagram of an embodiment of the present invention. 1...LD pellet, 2...lens, 3...optical fiber, 4...transparent plate, 5...ball lens, 6...
...LD package, 7...Optical fiber core wire, 8...
...Ferrule, 9...Holder, 10...Screw.
Claims (1)
体レーザと前記光フアイバとを結合させるレンズ
系を備える半導体レーザモジユールにおいて、前
記半導体レーザと前記レンズ系との間にその中心
軸が光軸と一致するように挿入された透明板を備
え、該透明板はその中心部と周辺部とで光学的厚
さが異なつていることを特徴とする半導体レーザ
モジユール。1. A semiconductor laser module including a semiconductor laser and an optical fiber, and a lens system for coupling the semiconductor laser and the optical fiber, wherein the central axis of the semiconductor laser and the lens system coincides with the optical axis. 1. A semiconductor laser module comprising a transparent plate inserted in such a manner that the transparent plate has different optical thicknesses at its center and at its periphery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28396888A JPH02130985A (en) | 1988-11-11 | 1988-11-11 | Semiconductor laser module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28396888A JPH02130985A (en) | 1988-11-11 | 1988-11-11 | Semiconductor laser module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02130985A JPH02130985A (en) | 1990-05-18 |
JPH0515316B2 true JPH0515316B2 (en) | 1993-03-01 |
Family
ID=17672564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28396888A Granted JPH02130985A (en) | 1988-11-11 | 1988-11-11 | Semiconductor laser module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02130985A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0486711A (en) * | 1990-07-31 | 1992-03-19 | Nec Corp | Semiconductor laser module |
JPH0595167A (en) * | 1991-10-01 | 1993-04-16 | Nippon Telegr & Teleph Corp <Ntt> | Microgap measuring device |
JP2009258154A (en) * | 2008-04-11 | 2009-11-05 | Sumitomo Electric Ind Ltd | Optical transmission module and manufacturing method therefor |
-
1988
- 1988-11-11 JP JP28396888A patent/JPH02130985A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02130985A (en) | 1990-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4750799A (en) | Hybrid optical integrated circuit | |
JPH04333808A (en) | Photosemiconductor module | |
US6628854B1 (en) | Connector-type optical transceiver using SOI optical waveguide | |
JP2002182073A (en) | Light source-optical fiber coupler | |
JPH06120609A (en) | Light emitter and light receiver and their manufacture | |
JP2508219B2 (en) | Semiconductor laser module | |
JP3125385B2 (en) | Optical coupling circuit | |
JPH0515316B2 (en) | ||
JPH11160569A (en) | Optical coupling circuit | |
JP2008197459A (en) | Optical transmission/reception module | |
JPH0544643B2 (en) | ||
JPH0239110A (en) | Optical fiber terminal for optical semiconductor element module | |
JPH1010374A (en) | Light emitting and receiving mechanism element and optical communication element and production therefor | |
JP2865789B2 (en) | Optical transmission module | |
JP2755274B2 (en) | Waveguide type light receiving module | |
JP3821576B2 (en) | Optical module | |
JPH0232307A (en) | Optical semiconductor element module | |
JPH0667069A (en) | Photosemiconductor device | |
JP2773501B2 (en) | Fixed structure of waveguide and light receiving element | |
JPS6160595B2 (en) | ||
JP3224203B2 (en) | Optical module | |
JPS63300206A (en) | Optical coupling structure between optical fiber and light receiving element | |
JPH03291608A (en) | Structure of receptacle type optical semiconductor coupler | |
JPS60205406A (en) | Optical module for bidirectional transmission | |
JPH04204403A (en) | Optical multiplexer module |