JPH02130985A - Semiconductor laser module - Google Patents

Semiconductor laser module

Info

Publication number
JPH02130985A
JPH02130985A JP28396888A JP28396888A JPH02130985A JP H02130985 A JPH02130985 A JP H02130985A JP 28396888 A JP28396888 A JP 28396888A JP 28396888 A JP28396888 A JP 28396888A JP H02130985 A JPH02130985 A JP H02130985A
Authority
JP
Japan
Prior art keywords
pellet
lens
optical
optical axis
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28396888A
Other languages
Japanese (ja)
Other versions
JPH0515316B2 (en
Inventor
Shigeta Ishikawa
石川 重太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28396888A priority Critical patent/JPH02130985A/en
Publication of JPH02130985A publication Critical patent/JPH02130985A/en
Publication of JPH0515316B2 publication Critical patent/JPH0515316B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the optical axis adjustment for cutting down cost by a method wherein a transparent sheet comprising the central part and the peripheral part in different optical thickness is inserted between a semiconductor laser and a lens system. CONSTITUTION:Within a coupling system wherein radiation from a laser diode(LD) pellet 1 is focussed by a lens 2 to be entered into an optical fiber 3, a transparent sheet 4 is inserted between the pellet 1 and the lens 2. The transparent sheet 4 comprising the central and the peripheral part in different thickness, the image forming positions of the beams passing through the central part and those passing through the peripheral part are slipped from each other in the axial direction. Through these procedures, the couple loss is leveled off despite the changes in the intervals between the pellet 1 and the lens 2 so that the LD modules for short interval subjected to the least variability regardless of no adjustment of the LD pellet 1 in the direction of optical axis may be manufactured. Consequently, the adjustment of optical axis as well as the components can be facilitated thereby cutting down cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信用光源に関し、特に半導体レーザ(LD
)と光ファイバとを効率良く結合させ、−体化したLD
モジュールに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light source for optical communication, and in particular to a semiconductor laser (LD).
) and an optical fiber are efficiently combined to create an LD.
Regarding modules.

〔従来の技術〕[Conventional technology]

光通信用の光ファイバとしては、幹線系における大量需
要による低価格化、将来の大容量化に対する自由度が大
等の理由により、支線系、加入者系においても多モード
ファイバよシ単=モードファイバが主に用いられつつあ
る。
As optical fibers for optical communications, multi-mode fibers are preferred over single-mode fibers for branch lines and subscriber lines due to lower prices due to mass demand in trunk lines and greater flexibility for future capacity increases. Fibers are increasingly being used.

ところで、支線系、加入者系においては幹線系とは異な
シ9通常中継が行われず、しかもネットワークの末端に
位置するため、伝送距離が比較的短い上にその偏差が大
である。また9回線の多重度が低いため、低価格の要求
が大である。そのため、支線系、加入者系伝送方式は長
区間、短区間の2方式に分離してコスト的に最適設計さ
れる。
By the way, in the branch line system and the subscriber line, unlike the main line system, normal relaying is not performed, and since they are located at the end of the network, the transmission distance is relatively short and the deviation is large. Furthermore, since the multiplicity of the nine lines is low, there is a strong demand for a low price. Therefore, the branch line system and subscriber system transmission systems are separated into two systems, long-range and short-range, and designed to be optimal in terms of cost.

短区間方式用光源としては、高速で、単一モードファイ
バへの結合特性が良く、将来的に低コストが予測される
LDが主流となシつつある。
As light sources for short-range systems, LDs are becoming mainstream because they are high-speed, have good coupling characteristics to single-mode fibers, and are expected to be low-cost in the future.

短区間方式用LDモジュールの光出力は長区間用に比べ
て* 10 dB以上低くても良く、そのため。
The optical output of the LD module for the short-range method may be lower by *10 dB or more than that for the long-range method.

従来この種のLDモジュールでは、第4図に示すように
高い結合効率は得られないが低価格な球しンズ5がLD
ペレット1と光ファイバ3との結合用に用いられている
Conventionally, with this type of LD module, as shown in Fig. 4, high coupling efficiency cannot be obtained, but the low-cost ball rays 5 are used in the LD.
It is used for coupling the pellet 1 and the optical fiber 3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、LDペレットは通常気密封止されたカンケー
スの中に実装されるが、現状ではその実装位置誤差はx
yz方向(xtyは光軸に垂直、2は光軸方向)で±1
00μm程度であ99球レンズおよび光ファイバの実装
位置誤差と比べて1桁大きい。このため、長区間用高結
合LDモジュールではLDベレットと光ファイバの両方
についてX。
By the way, LD pellets are usually mounted in a hermetically sealed can case, but currently the mounting position error is x
±1 in the yz direction (xty is perpendicular to the optical axis, 2 is the optical axis direction)
It is approximately 0.00 μm, which is one order of magnitude larger than the mounting position error of a 99-ball lens and an optical fiber. Therefore, in a long-distance high-coupling LD module, X is applied to both the LD pellet and the optical fiber.

y、z計6軸方向の光軸調整が必要である。一方。Optical axis adjustment is required in a total of six axes, y and z. on the other hand.

長区間用に比べてl OdB程結合効率が低くて良い短
区間用低結合LDモジュールでも、LDペレット及び光
ファイバのいずれか一方についてX y yr2の3軸
方向の光軸調整が必要である。
Even in the case of a low-coupling LD module for short distances, which may have a coupling efficiency 1 OdB lower than that for long distances, it is necessary to adjust the optical axis in the three axes of X y yr2 for either the LD pellet or the optical fiber.

短区間用LDモジュールに対しては高出力の要求に対し
て低価格の要求が厳しい。ところが、上述したように従
来の構成では光軸調整が簡略化できず、充分な低価格化
が図れないという問題点がある。
For short-distance LD modules, there are strict requirements for low cost as well as high output requirements. However, as described above, the conventional configuration has the problem that the optical axis adjustment cannot be simplified and the cost cannot be sufficiently reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のLDモジュールはLDとレンズ系との間に中心
部と周辺部で屈折率及び厚さが異なる透明板をその中心
軸が光軸と一致するように挿入したことを特徴としてい
る。
The LD module of the present invention is characterized in that a transparent plate having a different refractive index and thickness at the center and periphery is inserted between the LD and the lens system so that its central axis coincides with the optical axis.

〔実施例〕〔Example〕

まず9本発明の原理について説明する。 First, the principle of the present invention will be explained.

第1図を参照して、LDベレット1からの放射光がレン
ズ2によシ集束され元ファイバ3に結合する結合系にお
いて、LDベレット1とレンズ20間に透明板4が挿入
されている。この透明板4は図示のようにその中心部と
周辺部とで光学的厚さが異なっている。つまり、この例
では、透明板4の中心部の光学的厚さは周辺部の光学的
厚さよシも厚くなりている。従って、透明板4の中心部
を通過した光と周辺部を通過した光とではレンズ2によ
る結像位置が軸方向にずれる。
Referring to FIG. 1, a transparent plate 4 is inserted between the LD pellet 1 and a lens 20 in a coupling system in which emitted light from an LD pellet 1 is focused by a lens 2 and coupled to a source fiber 3. As shown in the figure, the optical thickness of the transparent plate 4 is different between the central part and the peripheral part. That is, in this example, the optical thickness of the central portion of the transparent plate 4 is thicker than the optical thickness of the peripheral portion. Therefore, the imaging position of the lens 2 is shifted in the axial direction between the light that has passed through the center of the transparent plate 4 and the light that has passed through the periphery.

第2図に透明板を詳細に示す。FIG. 2 shows the transparent plate in detail.

第2図も参照して、透明板4の中心部を通過した光と周
辺部を通過した光とKよって生じるLDベレット1とレ
ンズ2間の光学長のずれΔaは次式%式% ここで、dl:中心部の厚さ、d2:周辺部の厚さnl
:中心部の屈折率、n2 :周辺部の屈折率第1図にお
ける透明板4の中心部を通過した光と周辺部を通過した
光とによって生じる結像位置のずれはこのLDベレッ)
Iとレンズ2間の光学長のずれΔaに対応する。
Referring also to FIG. 2, the optical length deviation Δa between the LD pellet 1 and the lens 2 caused by the light passing through the central part of the transparent plate 4, the light passing through the peripheral part, and K is calculated by the following formula % formula % where: , dl: thickness at the center, d2: thickness nl at the periphery
: refractive index of the central part, n2 : refractive index of the peripheral part The deviation of the imaging position caused by the light passing through the center of the transparent plate 4 and the light passing through the peripheral part in FIG.
This corresponds to the optical length deviation Δa between I and lens 2.

第3図はLDペレット1とレンズ2の間隔2に対するL
Dペレット1と元ファイバ3の結合損失りの関係を示す
Figure 3 shows L for the distance 2 between the LD pellet 1 and the lens 2.
The relationship between the coupling loss between the D pellet 1 and the original fiber 3 is shown.

Llは透明板4を挿入しない場合のLfttllで+ 
L 2は透明板4を挿入した場合の5曲線である。結合
損失が最低値からΔL増加するまでのZ方向の許容範囲
Δ2は透明板を挿入した方が大きく(Δz2〉Δz1)
なる。つまシ、透明板の中心部を通過する光と周辺部を
通過する光とで生ずるLDペレット1とレンズ2間の光
学長のずれΔaに応じて5曲線が曲線L21 r L2
2の様にずれるため、これら曲線L21 t L22を
相加すると第3図に示すように最低値は大きくなるが、
底が平担な曲線となる。従って、Δz2>Δz1となる
Ll is Lfttll when transparent plate 4 is not inserted +
L2 is the 5 curve when the transparent plate 4 is inserted. The tolerance range Δ2 in the Z direction until the coupling loss increases by ΔL from the minimum value is larger when a transparent plate is inserted (Δz2>Δz1)
Become. 5 curves are curves L21 r L2 according to the optical length deviation Δa between the LD pellet 1 and the lens 2 caused by the light passing through the center of the transparent plate and the light passing through the periphery.
2, so when these curves L21 t L22 are added, the minimum value increases as shown in Figure 3, but
It becomes a curve with a flat bottom. Therefore, Δz2>Δz1.

上述した特性は、高出方を必要とせず低価格の要求の厳
しい短区間用LDモジュールの結合系として適している
。即ち2方向の感度が緩和されるため、xy力方向けの
光軸調整となシ、調整が簡略化され、その結果、構成部
品も簡素化される。
The above-mentioned characteristics are suitable as a coupling system for a short-range LD module that does not require high output power and has strict requirements for low cost. That is, since the sensitivity in two directions is relaxed, the optical axis adjustment in the x and y force directions is simplified, and as a result, the components are also simplified.

従って格段の低価格化が可能となる。Therefore, it is possible to significantly reduce the price.

ここで第5図を参照して9本発明の一実施例について具
体的に説明する。
Here, one embodiment of the present invention will be specifically described with reference to FIG.

透明板4は例えば、ガラス円板の中心部に円形の穴を開
け、これによって中心部の光学的厚さと周辺部の光学的
厚さを異ならせている。LDペレyト1ttLDzwy
ケージ6の中に気密封止されておシ、光ファイバ芯+y
J7を7エルール8内に挿入して接着・研磨することに
よって、光ファイバの端面はフェルール8の端面に位置
している。フェルール8はネジ1oにょシホルダ9の貫
通穴に機械的に固定され、透明板4及び球レンズ5はホ
ルダ内に半田・圧入等によシ無調整で固定されている。
The transparent plate 4 is, for example, a glass disk with a circular hole in the center, thereby making the optical thickness at the center different from the optical thickness at the periphery. LD pereyt 1ttLDzwy
The optical fiber core +y is hermetically sealed in the cage 6.
By inserting J7 into the ferrule 8 and bonding and polishing it, the end face of the optical fiber is located at the end face of the ferrule 8. The ferrule 8 is mechanically fixed in the through hole of the holder 9 by screws 10, and the transparent plate 4 and the ball lens 5 are fixed in the holder by soldering, press fitting, etc. without adjustment.

光軸調整を行う際には、LDパッケージ6のツバをホル
ダ9の端面に突当てた後、xy力方向のみ光軸調整を行
う。そして、LDパッケージ6のツハヲホルダ9の端面
にYAGレーザ・スポット溶接等で固定して組立が完了
する。
When adjusting the optical axis, the collar of the LD package 6 is brought into contact with the end surface of the holder 9, and then the optical axis is adjusted only in the x and y force directions. Then, the LD package 6 is fixed to the end face of the holder 9 by YAG laser spot welding, etc., and the assembly is completed.

尚、波長1.31μmのLDとコア径10μmの単一モ
ードファイバで実験した結果、10個のサンプルで最低
結合損失が19 dBでその誤差幅が3 dBと短区間
LDモゾユールとしては充分な特性であることが確認さ
れた。
In addition, as a result of experiments using an LD with a wavelength of 1.31 μm and a single mode fiber with a core diameter of 10 μm, the minimum coupling loss was 19 dB for 10 samples, and the error margin was 3 dB, which is sufficient for a short-range LD mosoule. It was confirmed that

また、上述の実施例では一つの球レンズ5でWペレット
lと光ファイバとを光学的に結合する場合について説明
したが、複数のレンズを用いてLDペレット1と光ファ
イバとを光学的に結合する場合にも同様に適用できる。
Furthermore, in the above embodiment, a case was explained in which the W pellet 1 and the optical fiber were optically coupled using one ball lens 5, but the LD pellet 1 and the optical fiber were optically coupled using a plurality of lenses. The same applies to cases where

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のLDモジュールでは、LD
とレンズの間に中心部と周辺部で光学的厚さが異なる透
明板を挿入したから、LDベレットの光軸方向の調整を
無調整化しても製造ばらつきの少ないLDモノニールが
実現できる。従って。
As explained above, in the LD module of the present invention, the LD
Since a transparent plate having different optical thicknesses at the center and periphery is inserted between the lens and the lens, it is possible to realize an LD monolayer with little manufacturing variation even if no adjustment is made in the optical axis direction of the LD pellet. Therefore.

光軸調整が簡略化されると共に、構成部品が簡素化され
るため、従来に比べて格段の低コスト化の効果がある。
Since the optical axis adjustment is simplified and the components are simplified, there is an effect of significantly lower costs than in the past.

この結果9本発明を高出力が不要で低価格の要求の厳し
い支線、加入者系の短区間用LDモジュールに適用すれ
ば、その低価格化が実現され、LDモジュールひいては
光通信装置の大量需要を生むという効果もある。
As a result9, if the present invention is applied to short-range LD modules for branch lines and subscriber lines that do not require high output and have a strict requirement for low cost, the cost can be reduced, and the mass demand for LD modules and optical communication equipment can be realized. It also has the effect of producing

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図は本発明の詳細な説明
するための図、第3図はLDペレットとレンズとの間隔
2に対する結合損失りの関係を示す図、第4図は従来例
の構成図、第5図は本発明の一実施例の基本構成図であ
る。 1・・・LDペレット、2・・・レンズ、3・・・光フ
ァイバ、4・・・透明板、s・・・球レンズ、6・・・
L D /#ッケ一ノ、7・・・光フアイバ芯線、8・
・・フェルール、9・・・ホルダ、10・・・ネジ。 7LDIXXレット 第3図 乙Z2
FIG. 1 is a block diagram of the present invention, FIG. 2 is a diagram for explaining the invention in detail, FIG. 3 is a diagram showing the relationship of coupling loss with respect to the distance 2 between the LD pellet and the lens, and FIG. 4 5 is a configuration diagram of a conventional example, and FIG. 5 is a basic configuration diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... LD pellet, 2... Lens, 3... Optical fiber, 4... Transparent plate, s... Ball lens, 6...
L D / #kkeichino, 7... Optical fiber core wire, 8.
...Ferrule, 9...Holder, 10...Screw. 7LDIXX Let Figure 3 Otsu Z2

Claims (1)

【特許請求の範囲】[Claims] 1、半導体レーザ及び光ファイバを有し、該半導体レー
ザと前記光ファイバとを結合させるレンズ系を備える半
導体レーザモジュールにおいて、前記半導体レーザと前
記レンズ系との間にその中心軸が光軸と一致するように
挿入された透明板を備え、該透明板はその中心部と周辺
部とで光学的厚さが異なつていることを特徴とする半導
体レーザモジュール。
1. In a semiconductor laser module having a semiconductor laser and an optical fiber, and including a lens system for coupling the semiconductor laser and the optical fiber, a central axis between the semiconductor laser and the lens system is aligned with the optical axis. 1. A semiconductor laser module comprising a transparent plate inserted in such a manner that the transparent plate has different optical thicknesses at its center and at its periphery.
JP28396888A 1988-11-11 1988-11-11 Semiconductor laser module Granted JPH02130985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28396888A JPH02130985A (en) 1988-11-11 1988-11-11 Semiconductor laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28396888A JPH02130985A (en) 1988-11-11 1988-11-11 Semiconductor laser module

Publications (2)

Publication Number Publication Date
JPH02130985A true JPH02130985A (en) 1990-05-18
JPH0515316B2 JPH0515316B2 (en) 1993-03-01

Family

ID=17672564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28396888A Granted JPH02130985A (en) 1988-11-11 1988-11-11 Semiconductor laser module

Country Status (1)

Country Link
JP (1) JPH02130985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486711A (en) * 1990-07-31 1992-03-19 Nec Corp Semiconductor laser module
JPH0595167A (en) * 1991-10-01 1993-04-16 Nippon Telegr & Teleph Corp <Ntt> Microgap measuring device
JP2009258154A (en) * 2008-04-11 2009-11-05 Sumitomo Electric Ind Ltd Optical transmission module and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486711A (en) * 1990-07-31 1992-03-19 Nec Corp Semiconductor laser module
JPH0595167A (en) * 1991-10-01 1993-04-16 Nippon Telegr & Teleph Corp <Ntt> Microgap measuring device
JP2009258154A (en) * 2008-04-11 2009-11-05 Sumitomo Electric Ind Ltd Optical transmission module and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0515316B2 (en) 1993-03-01

Similar Documents

Publication Publication Date Title
US5692083A (en) In-line unitary optical device mount and package therefor
US5278929A (en) Optical module, method for fabricating the same and optical module unit with the same
EP0872747B1 (en) Optical module
JPS61260207A (en) Bidirectional optoelectronics component part for forming optical couple
CA3117540A1 (en) A demountable connection of an optical connector and an optical bench based connector using an alignment coupler
JPH10173207A (en) Optical transmission-reception module
JP2007304267A (en) Optical parallel transmission module and optical parallel transmission system
JP2508219B2 (en) Semiconductor laser module
EP1369719A1 (en) Integrated optical module featuring three wavelengths and three optical fibers
JP2001021771A (en) Semiconductor light-transmitting module
JPH02130985A (en) Semiconductor laser module
JP2687859B2 (en) Optical path changing method
JPH0544643B2 (en)
JPH1010374A (en) Light emitting and receiving mechanism element and optical communication element and production therefor
JP3821576B2 (en) Optical module
JPH0667069A (en) Photosemiconductor device
JP2773501B2 (en) Fixed structure of waveguide and light receiving element
JPH0232307A (en) Optical semiconductor element module
JP2755274B2 (en) Waveguide type light receiving module
JPH0843690A (en) Semiconductor optical module
JPS60205406A (en) Optical module for bidirectional transmission
JPH0486711A (en) Semiconductor laser module
JPS63300206A (en) Optical coupling structure between optical fiber and light receiving element
US20050123237A1 (en) Optoelectric subassembly
KR970011147B1 (en) Method of manufacturing high speed light receiving module