JPH05152402A - Size measuring method for resist pattern - Google Patents

Size measuring method for resist pattern

Info

Publication number
JPH05152402A
JPH05152402A JP31722391A JP31722391A JPH05152402A JP H05152402 A JPH05152402 A JP H05152402A JP 31722391 A JP31722391 A JP 31722391A JP 31722391 A JP31722391 A JP 31722391A JP H05152402 A JPH05152402 A JP H05152402A
Authority
JP
Japan
Prior art keywords
resist pattern
light
fluorescence
pattern
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31722391A
Other languages
Japanese (ja)
Inventor
Isao Seki
勲 関
Ichiro Aoki
一郎 青木
Goro Shoji
五郎 小路
Masataka Takemoto
正孝 武元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31722391A priority Critical patent/JPH05152402A/en
Publication of JPH05152402A publication Critical patent/JPH05152402A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the accuracy of a measured size by a method wherein a resist pattern is irradiated with a beam of excitation light by using an incident fluorescence system and the edge of the pattern is grasped clearly by means of a beam of emitted fluorescent light. CONSTITUTION:A resist pattern 2 with which a substrate 1 has been coated and which has been developed is irradiated, by means of an incident fluorescence system, with a beam of excitation light 3 which has extracted only a beam of light at a wavelength emitting beam of fluorescent light most efficiently by using an excitation filter from a light source such as a mercury lamp or the like. An image 4, by the beam of fluorescent light, including an inclined part at a width of 0.3mum or lower at the edge of the resist pattern 2 is measured. Thereby, the region of the resist pattern 2 can be grasped accurately, and the width of a fine stripe pattern can be measured without any error. As a result, the measuring time of the resist pattern can be shortened, an irregularity in the measured value of the resist pattern is reduced and the measuring accuracy of the resist pattern can be enhanced. The entitled method can contribute toward enhancing the quality of a semiconductor device which has been made fine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,レジストパターンの寸
法測定方法に関する。最近の半導体デバイスの高集積
化, 超微細化にともない, 半導体基板上に描画されるレ
ジストパターンの寸法もますます微細化し, その寸法測
定精度の向上が要求され, それに相応した測定技術の開
発が必要となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resist pattern dimension measuring method. With the recent increase in integration and ultra-miniaturization of semiconductor devices, the dimensions of resist patterns drawn on semiconductor substrates are becoming smaller and smaller, and it is required to improve the dimensional measurement accuracy. Will be needed.

【0002】[0002]

【従来の技術】図5は従来例の説明図である。図におい
て,9は基板,10はレジストパターン,11は反射光であ
る。
2. Description of the Related Art FIG. 5 is an explanatory view of a conventional example. In the figure, 9 is a substrate, 10 is a resist pattern, and 11 is reflected light.

【0003】従来, 白色光によるレジストパターンの寸
法測定が,通常, 落射照明顕微鏡等で行われていたが,
基板9上にレジスト膜を塗布現像して形成されたレジス
トパターン10が半透明で, しかも, 図5に示すように,
レジストパターン10のエッジ部分は微視的にはゆるやか
な傾斜をしており, 非常に薄いものなので, 反射光11も
殆どなく, レジストパターン10の厚い部分の反射光11の
輝度が高く, レジストパターンのエッジ領域の判別が困
難で, レジストパターンの寸法形状を正確に把握するこ
とが難しかった。
Conventionally, the dimension measurement of a resist pattern by white light has been usually performed by an epi-illumination microscope or the like.
The resist pattern 10 formed by applying and developing a resist film on the substrate 9 is semitransparent, and as shown in FIG.
Microscopically, the edge of the resist pattern 10 has a gentle slope and is very thin.Therefore, there is almost no reflected light 11, and the brightness of the reflected light 11 at the thick part of the resist pattern 10 is high. It was difficult to discriminate the edge area of the resist pattern, and it was difficult to accurately grasp the dimension and shape of the resist pattern.

【0004】[0004]

【発明が解決しようとする課題】以上のような状況か
ら, 従来の測定方法でレジスト膜のエッジを鮮明に読み
取り, 確認することが困難であり,寸法測定に誤差を生
じ易く, ばらつきも大きく, また測定時間も長くなって
いた。
Under the above circumstances, it is difficult to clearly read and confirm the edge of the resist film by the conventional measuring method, and it is easy to cause an error in the dimension measurement, and the variation is large. Also, the measurement time was long.

【0005】本発明では,以上の点を鑑み,レジストパ
ターンのエッジを正確に把握する測定方法を開発するこ
とを目的とする。
In view of the above points, an object of the present invention is to develop a measuring method for accurately grasping the edge of a resist pattern.

【0006】[0006]

【課題を解決するための手段】図1は本発明に用いた落
射型蛍光顕微鏡の光路図, 図2は蛍光顕微鏡の原理図で
ある。
FIG. 1 is an optical path diagram of an epi-illumination type fluorescence microscope used in the present invention, and FIG. 2 is a principle diagram of a fluorescence microscope.

【0007】図において,1は基板,2はレジストパタ
ーン,3は励起光,4は蛍光の像,5は対物レンズ,6
はダイクロイックミラー,7は吸収フィルター,8は測
長器である。
In the figure, 1 is a substrate, 2 is a resist pattern, 3 is excitation light, 4 is an image of fluorescence, 5 is an objective lens, 6
Is a dichroic mirror, 7 is an absorption filter, and 8 is a length measuring device.

【0008】上記の問題点を解決するためには, 落射蛍
光方式を用いて, 励起光をレジストパターンに照射し,
発した蛍光によりレジストパターンのエッジを鮮明に把
握し, 測定寸法精度を向上させる。
In order to solve the above problems, the epifluorescence method is used to irradiate the resist pattern with excitation light,
The edge of the resist pattern is clearly grasped by the emitted fluorescence, and the measurement dimension accuracy is improved.

【0009】理由としては,感光性樹脂膜からなるフオ
トレジスト膜は有機物の合成樹脂膜であるから, 蛍光を
発光することを利用する。一般に, 有機物に紫外線や短
波長の光を照射すると, 有機物が照射光を吸収して, 吸
収した光の波長より長い光を蛍光として再発光する。
The reason is that since the photoresist film made of a photosensitive resin film is a synthetic resin film made of an organic substance, it emits fluorescence. In general, when an organic substance is irradiated with ultraviolet rays or light with a short wavelength, the organic substance absorbs the irradiation light and re-emits light longer than the wavelength of the absorbed light as fluorescence.

【0010】蛍光顕微鏡で観察される像はウエハ上のレ
ジストやダスト類を含めて, すべて有機物による蛍光で
ある。そこで, 図2の蛍光顕微鏡の原理図に示すよう
に,水銀灯等の光源から励起フィルタを用いて,蛍光を
最も効率良く発光させる波長の光のみを抽出し,励起光
として,有機物であるレジストパターンに照射する。
The images observed by the fluorescence microscope are all fluorescence due to organic substances including the resist and dusts on the wafer. Therefore, as shown in the principle diagram of the fluorescence microscope in FIG. 2, an excitation filter is used from a light source such as a mercury lamp to extract only the light of a wavelength that causes the fluorescent light to be emitted most efficiently, and the excitation light is a resist pattern that is an organic substance. To irradiate.

【0011】すると,レジストパターンから蛍光を発す
るのでこの中から観察に必要な蛍光のみを吸収フィルタ
を用いて抽出し,これによる像を観察し,或いは測長器
を利用して,レジストパターンの寸法測定を行う。
Then, since fluorescence is emitted from the resist pattern, only the fluorescence necessary for observation is extracted from the resist pattern using an absorption filter, and the resulting image is observed, or the dimension of the resist pattern is measured using a length measuring device. Take a measurement.

【0012】即ち,本発明の目的は,図1に示すよう
に,基板1上に塗布・現像されたレジストパターン2に
励起光3を落射蛍光方式で照射し, 該レジストパターン
2から発する蛍光の像4の寸法を測定することにより達
成される。
That is, as shown in FIG. 1, the object of the present invention is to irradiate a resist pattern 2 coated / developed on a substrate 1 with excitation light 3 by an epi-fluorescence method so as to emit fluorescence from the resist pattern 2. This is accomplished by measuring the dimensions of image 4.

【0013】[0013]

【作用】本発明によれば,蛍光の落射照明により,レジ
ストパターンのエッジ部分が鮮明に把握でき,レジスト
パターンと周囲とを明瞭に識別出来, 高精度の寸法測定
ができるので,微細パターンも正確に測定できる。
According to the present invention, the edge portion of the resist pattern can be clearly grasped by the epi-illumination of fluorescent light, the resist pattern and the surroundings can be clearly discriminated, and highly accurate dimension measurement can be performed. Can be measured.

【0014】[0014]

【実施例】図1は本発明に用いた落射型蛍光顕微鏡の光
路図,図3はダイクロイックミラーの波長特性,図4は
本発明の一実施例の測定パターンである。
1 is an optical path diagram of an epi-illumination type fluorescence microscope used in the present invention, FIG. 3 is a wavelength characteristic of a dichroic mirror, and FIG. 4 is a measurement pattern of an embodiment of the present invention.

【0015】図において,1は基板,2はレジストパタ
ーン,3は励起光,4は蛍光の像,5は対物レンズ,6
はダイクロイックミラー,7は吸収フィルター,8は測
長器である。
In the figure, 1 is a substrate, 2 is a resist pattern, 3 is excitation light, 4 is an image of fluorescence, 5 is an objective lens, 6
Is a dichroic mirror, 7 is an absorption filter, and 8 is a length measuring device.

【0016】図により,本発明の一実施例について説明
する。蛍光にはさまざまな特性があるが, 本発明の一実
施例は, この特性を利用した落射型蛍光顕微鏡を用いて
行った。
An embodiment of the present invention will be described with reference to the drawings. Although fluorescence has various characteristics, one embodiment of the present invention was carried out using an epi-illumination fluorescence microscope that utilizes this characteristic.

【0017】蛍光の特性としては, まず, レジスト等の
有機物から蛍光を発するための励起光が必要となる。一
般に, 蛍光波長は励起波長より長い波長となる。光のエ
ネルギは長い波長程ひくくなり, 蛍光は吸収した光より
エネルギが低くなり, 蛍光の強度も極めて弱い。
As the characteristic of fluorescence, first, excitation light for emitting fluorescence from an organic substance such as a resist is required. Generally, the fluorescence wavelength is longer than the excitation wavelength. The energy of light becomes lower as the wavelength becomes longer, the energy of fluorescence becomes lower than that of absorbed light, and the intensity of fluorescence becomes extremely weak.

【0018】蛍光強度Fは,励起光の強度I,レジスト
の厚さD,蛍光効率κに比例する。F∝IDκ測定には
図1のようなダイクロイックミラーを備えた落射蛍光顕
微鏡を用いた。ダイクロイックミラーは図3に示すよう
な波長特性を有しており,励起光波長域の短波長は反射
するが,蛍光波長域の光のみを透過する。
The fluorescence intensity F is proportional to the intensity I of the excitation light, the resist thickness D, and the fluorescence efficiency κ. For the F∝IDκ measurement, an epi-fluorescence microscope equipped with a dichroic mirror as shown in FIG. 1 was used. The dichroic mirror has wavelength characteristics as shown in FIG. 3, and reflects short wavelengths in the excitation light wavelength range but transmits only light in the fluorescence wavelength range.

【0019】そこで,励起光3の中から,蛍光を最も効
率良く発光させる波長の光のみを抽出して,レジストパ
ターン2に照射する。そして,レジストパターンから発
光した蛍光の中から,観察に必要な蛍光のみを抽出して
結像させ,この蛍光の像4の寸法を測定した。
Therefore, from the excitation light 3, only the light of the wavelength that causes the fluorescence to be most efficiently emitted is extracted and applied to the resist pattern 2. Then, from the fluorescence emitted from the resist pattern, only the fluorescence necessary for observation was extracted and formed into an image, and the size of this fluorescence image 4 was measured.

【0020】この結果,レジストパターンのエッジの
0.3μm以下の幅の傾斜部分も含めた蛍光の像4を測定
することにより, 正確にレジストパターンの領域が把握
ができ, 微細なストライプパターンのパターン幅の誤差
のない測定が可能となった。
As a result, the edge of the resist pattern
By measuring the fluorescent image 4 including the sloped portion with a width of 0.3 μm or less, the region of the resist pattern can be accurately grasped, and the measurement of the pattern width of the fine stripe pattern can be performed without error.

【0021】[0021]

【発明の効果】以上説明したように, 本発明によれば,
蛍光の落射照明により,レジストパターンのエッジ部分
が鮮明に把握でき,高精度の寸法測定ができるので,微
細パターンも正確に測定できる。
As described above, according to the present invention,
Since the edge part of the resist pattern can be clearly grasped by fluorescent epi-illumination and the dimension measurement can be performed with high precision, even a fine pattern can be accurately measured.

【0022】このため,測定時間の短縮が可能となり,
測定値のばらつきが少なくなり,測定精度の向上が図れ
る。よって微細化された半導体デバイスの品質向上に寄
与するところが大きい。
Therefore, the measurement time can be shortened,
Variations in measured values are reduced and measurement accuracy can be improved. Therefore, it greatly contributes to the quality improvement of the miniaturized semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に用いた落射型蛍光顕微鏡の光路図FIG. 1 is an optical path diagram of an epi-illumination fluorescence microscope used in the present invention.

【図2】 蛍光顕微鏡の原理図[Fig. 2] Principle of fluorescence microscope

【図3】 ダイクロイックミラーの波長特性[Figure 3] Wavelength characteristics of dichroic mirror

【図4】 本発明の一実施例の測定パターンFIG. 4 is a measurement pattern according to an embodiment of the present invention.

【図5】 従来例の説明図FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 基板 2 レジストパターン 3 励起光 4 蛍光の像 5 対物レンズ 6 ダイクロイックミラー 7 吸収フィルター 8 測長器 1 substrate 2 resist pattern 3 excitation light 4 fluorescence image 5 objective lens 6 dichroic mirror 7 absorption filter 8 length measuring instrument

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武元 正孝 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masataka Takemoto 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Fujitsu Limited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板(1) 上に塗布・現像されたレジスト
パターン(2) に励起光(3) を落射方式で照射し, 該レジ
ストパターン(2) から発する蛍光の像(4) の寸法を測定
することを特徴とするレジストパターン寸法測定方法。
1. The size of the fluorescence image (4) emitted from the resist pattern (2) by irradiating the resist pattern (2) coated and developed on the substrate (1) with excitation light (3) by epi-illumination method. A method for measuring a resist pattern dimension, which comprises:
JP31722391A 1991-12-02 1991-12-02 Size measuring method for resist pattern Withdrawn JPH05152402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31722391A JPH05152402A (en) 1991-12-02 1991-12-02 Size measuring method for resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31722391A JPH05152402A (en) 1991-12-02 1991-12-02 Size measuring method for resist pattern

Publications (1)

Publication Number Publication Date
JPH05152402A true JPH05152402A (en) 1993-06-18

Family

ID=18085854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31722391A Withdrawn JPH05152402A (en) 1991-12-02 1991-12-02 Size measuring method for resist pattern

Country Status (1)

Country Link
JP (1) JPH05152402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948908A (en) * 2019-05-15 2020-11-17 全祥求 System and method for measuring patterns on a substrate
WO2023162194A1 (en) * 2022-02-28 2023-08-31 株式会社レゾナック Pattern inspection method, resist pattern manufacturing method, method for selecting semiconductor package substrate, and method for manufacturing semiconductor package substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948908A (en) * 2019-05-15 2020-11-17 全祥求 System and method for measuring patterns on a substrate
TWI761832B (en) * 2019-05-15 2022-04-21 祥求 全 Systems and methods for measuring patterns on a substrate
WO2023162194A1 (en) * 2022-02-28 2023-08-31 株式会社レゾナック Pattern inspection method, resist pattern manufacturing method, method for selecting semiconductor package substrate, and method for manufacturing semiconductor package substrate

Similar Documents

Publication Publication Date Title
JP6077649B2 (en) Photon source, measurement apparatus, lithography system, and device manufacturing method
US5607800A (en) Method and arrangement for characterizing micro-size patterns
TWI431439B (en) Level sensor arrangement for lithographic apparatus and device manufacturing method
CN105814662B (en) Radiation source, measurement equipment, lithography system and device making method
KR100623260B1 (en) Lithographic apparatus and device manufacturing method
US4419013A (en) Phase contrast alignment system for a semiconductor manufacturing apparatus
JP2003506828A (en) Electron beam column using high numerical aperture illumination of photocathode
JPH07270119A (en) Method and apparatus for reticle to wafer direct alignment through use of fluorescence for integrated circuit lithography
JPH06204113A (en) Projection aligner and manufacture of semiconductor device using same
US6356616B1 (en) Apparatus and methods for detecting position of an object along an axis
JPH05152402A (en) Size measuring method for resist pattern
US7190441B1 (en) Methods and systems for preparing a sample for thin film analysis
WO2002014842A1 (en) Liquid-containing substance analyzing device and liquid-containing substance analyzing method
US5778042A (en) Method of soft x-ray imaging
JP4066083B2 (en) Optical element light cleaning method and projection exposure apparatus
KR101710570B1 (en) Nano-hole array substrate for an extraordinary optical transmission and super resolution imaging system using of the same
JPS6131907A (en) Film thickness measuring instrument
US20100055584A1 (en) Exposure device and exposure method
JPS6216526A (en) Projection exposure apparatus
JPS6093903A (en) Shape confirming/dimension measuring apparatus for photoresist film
JPH0312542A (en) Mask surface inspection device
JPH06325994A (en) Pattern forming method, pattern forming device and mask
JPH0332016A (en) Apparatus for controlling amount of projected light
KR890011009A (en) Method for manufacturing semiconductor integrated circuit device and exposure apparatus used therein
JPH03269405A (en) Fluorescent microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311