JPH05150146A - Semiconductor laser module - Google Patents

Semiconductor laser module

Info

Publication number
JPH05150146A
JPH05150146A JP3339526A JP33952691A JPH05150146A JP H05150146 A JPH05150146 A JP H05150146A JP 3339526 A JP3339526 A JP 3339526A JP 33952691 A JP33952691 A JP 33952691A JP H05150146 A JPH05150146 A JP H05150146A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor laser
optical
optical axis
electronic cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3339526A
Other languages
Japanese (ja)
Other versions
JP3132868B2 (en
Inventor
Jun Ono
小野  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18328317&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05150146(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP03339526A priority Critical patent/JP3132868B2/en
Publication of JPH05150146A publication Critical patent/JPH05150146A/en
Application granted granted Critical
Publication of JP3132868B2 publication Critical patent/JP3132868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the optical axis deviation of optical components which constitute an optical coupling system, to facilitate wiring operation, and to reduce the overall size. CONSTITUTION:The projection light of a semiconductor laser 2 is made incident on an optical fiber 4 thorugh a lens body 3 and this projection state is monitored by a photodetecting element 5. Those semiconductor laser 2, lens body 3, photodetecting element 3, etc., are arranged and fixed on a substrate 6. Those parts 6a and 6b are formed on the substrate 6 on both side parts which are parallel to an optical axis and the deformation of the substrate due to the heat radiation of the semiconductor laser 2 is reducible in the direction of the optical axis. The substrate 6 is cooled by a lower electronic cooling element 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信および光計測に
使用される半導体レーザモジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser module used for optical communication and optical measurement.

【0002】[0002]

【従来の技術】図5(a),(b)には、光通信等で用
いられる半導体レーザモジュール(以下LDモジュール
と略称する)の側断面図、および平断面図を示す。筐体
31内には、発光素子としてのLD(半導体レーザ)3
2が設けられ、このLD32からの出射光はレンズ体3
3を介して光ファイバ34の端部に入射される。光ファ
イバ34の端部にはフェルール34aが設けられてい
る。LD32の背部には、モニタ用の受光素子35(以
下PDと略称する)が設けられ、これらLD32,レン
ズ体33,光ファイバ34,受光素子35で構成される
光学結合系は、気密された筐体31内に内蔵されてい
る。そして、光ファイバ34を除く光学結合系は、図示
の如く単一の基板36上に搭載されており、実装の容易
化及び各光学部品を固定した後、経時的安定性が得られ
るようになっている。
2. Description of the Related Art FIGS. 5A and 5B are a side sectional view and a plan sectional view of a semiconductor laser module (hereinafter abbreviated as LD module) used in optical communication and the like. An LD (semiconductor laser) 3 as a light emitting element is provided in the housing 31.
2 is provided, and the light emitted from this LD 32 is the lens body 3.
It is incident on the end portion of the optical fiber 34 via the light source 3. A ferrule 34a is provided at the end of the optical fiber 34. A light receiving element 35 for monitoring (hereinafter abbreviated as PD) is provided on the back of the LD 32, and an optical coupling system including the LD 32, the lens body 33, the optical fiber 34, and the light receiving element 35 is an airtight casing. It is built into the body 31. The optical coupling system excluding the optical fiber 34 is mounted on a single substrate 36 as shown in the figure, so that the mounting can be facilitated and stability over time can be obtained after fixing each optical component. ing.

【0003】ところで、LD32は、赤外発光と同時に
発熱を生じるため、十分な放熱が必要とされる。したが
って、LD32を冷却する電子冷却素子37や不図示の
放熱ブロックを介して筐体31に保持固定されるように
なっている。ここで、LD32の放熱が十分でない場合
には、LD32の発振波長がシフトしたり、出力の劣化
や寿命の短縮を招く。
By the way, since the LD 32 generates heat at the same time as infrared light emission, sufficient heat radiation is required. Therefore, the LD 32 is held and fixed to the housing 31 via the electronic cooling element 37 for cooling the LD 32 and a heat radiation block (not shown). Here, when the heat radiation of the LD 32 is not sufficient, the oscillation wavelength of the LD 32 shifts, the output deteriorates, and the life is shortened.

【0004】また、基板36には、光学部品のうちLD
32、PD35の中継ターミナル38が設けられ、各光
学部品はこの中継ターミナル38、金ワイヤ39を介し
てリード端子40に接続され、所定の電気回路を構成す
る。また、電子冷却素子37は、中継ターミナル38,
金ワイヤ39を介さずに直接リード端子40へ配線され
る。
On the substrate 36, the LD among the optical components is used.
32, a relay terminal 38 of the PD 35 is provided, and each optical component is connected to the lead terminal 40 via the relay terminal 38 and the gold wire 39 to form a predetermined electric circuit. Further, the electronic cooling element 37 includes a relay terminal 38,
It is wired directly to the lead terminal 40 without passing through the gold wire 39.

【0005】[0005]

【発明が解決しようとする課題】LDモジュールの信頼
性上の問題点として、光出力を著しく低下させる光軸ず
れがある。光軸ずれの要因としては、前記光学結合系を
構成する各光学部品、基板の線膨張係数等の材料定数の
不一致と、温度変化で生じる熱応力による各光学部品、
基板およびこれらの接合部の変形がある。よって光学結
合系を構成する各光学部品、基板等の選択には、放熱
性、接合性および加工性等を考慮する一方、材料定数の
差をなるべく小さくして熱応力を抑制する必要がある。
なお、基板36上の温度分布の不均一や材料定数の微妙
な差による変形を完全に取り除くことは不可能である。
A problem with the reliability of the LD module is the misalignment of the optical axis, which significantly reduces the optical output. As a factor of the optical axis shift, each optical component constituting the optical coupling system, the mismatch of material constants such as the linear expansion coefficient of the substrate, and each optical component due to thermal stress caused by temperature change,
There is a deformation of the substrate and their joints. Therefore, in selecting each optical component, substrate, etc. constituting the optical coupling system, it is necessary to suppress the thermal stress by considering the heat radiation property, the bonding property, the workability, etc., while minimizing the difference in the material constants.
In addition, it is impossible to completely remove the deformation due to the uneven temperature distribution on the substrate 36 and the subtle difference in the material constants.

【0006】したがって、従来のLDモジュールでは、
基板36の厚さを厚くして変形に対する剛性を高める構
造とし、光軸ずれを低減させていたが、基板36が厚い
と各光学部品の上端位置が高くなった。また、PD35
の端子に対する金ワイヤ39の配線が筐体31の上部空
間において行われるものであるため、図示の如く筐体3
1の蓋31aに金ワイヤ39が触れてショートしないよ
うに所定の隙間Sを設けなければならなかった。この隙
間Sも筐体31の高さが増加する原因となっている。し
たがって、従来のLDモジュールは、筐体31の高さが
高く容積が大型化した。
Therefore, in the conventional LD module,
The thickness of the substrate 36 is increased to increase the rigidity against deformation to reduce the optical axis shift, but when the substrate 36 is thick, the upper end position of each optical component becomes high. In addition, PD35
Since the wiring of the gold wire 39 to the terminals of the housing 3 is performed in the upper space of the housing 31, as shown in the drawing, the housing 3
A predetermined gap S had to be provided so that the gold wire 39 did not come into contact with the lid 31a of No. 1 to cause a short circuit. This gap S also causes the height of the housing 31 to increase. Therefore, the conventional LD module has a high housing 31 and a large volume.

【0007】ところで、最近のLDモジュールの実装環
境は、大型コンピュータ搭載基板のような幾重にも並ぶ
プリント板列への高密度実装や航空機・自動車等の輸送
機器への搭載があり、省スペース化への対応が迫られて
おりLDモジュールの小型化が必須条件となりつつあ
る。この点において従来のLDモジュールは、大型であ
って対応することができず、LDモジュールを各種装置
基板等に搭載できなくなる。
By the way, the recent environment for mounting LD modules is high-density mounting on an array of printed boards such as a board for mounting a large computer and mounting on transportation equipment such as aircraft and automobiles, thus saving space. In order to meet this requirement, downsizing of LD modules is becoming an essential condition. In this respect, the conventional LD module is large in size and cannot be accommodated, and the LD module cannot be mounted on various device substrates or the like.

【0008】このように、搭載部品の熱容量や筐体31
の容積が大きくなると、熱設計上からも外部環境温度の
変化に応じた温度制御を行うべく電子冷却素子37の能
力を向上させねばならない。このため、電子冷却素子3
7を構成するペルチェ素子数を増加させれば良いが、電
子冷却素子37の大型化及び動作用電力が増大する不都
合が生じる。
Thus, the heat capacity of the mounted parts and the housing 31
When the volume of the electronic cooling element 37 becomes large, the capacity of the electronic cooling element 37 must be improved in order to control the temperature according to the change of the external environment temperature from the viewpoint of thermal design. Therefore, the electronic cooling element 3
Although it is sufficient to increase the number of Peltier elements that configure 7, the electronic cooling element 37 becomes larger and the operating power increases.

【0009】本発明は、上記問題点に鑑みて成されたも
のであり、光学結合系を構成する各光学部品、基板等の
強度劣化による光軸ずれや、配線作業の制約を生じるこ
となく、小型化が可能であり、かつ、放熱し易く放熱設
計上も有利な半導体レーザモジュールを提供することを
目的としている。
The present invention has been made in view of the above problems, and does not cause an optical axis shift due to strength deterioration of each optical component, a substrate or the like which constitutes an optical coupling system or a restriction of wiring work. It is an object of the present invention to provide a semiconductor laser module that can be downsized and that is easy to radiate heat and advantageous in terms of heat radiation design.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体レーザモジュールは、請求項1で
は、光の出射に伴って発熱する半導体レーザ2と、該半
導体レーザ2の出射光を伝送するための光ファイバ4
と、前記半導体レーザ2及び光ファイバ4の光軸間に設
けられて該光を集光するレンズ体3と、前記半導体レー
ザ2からの出射光の光出力をモニタするための受光素子
5と、前記半導体レーザ2、レンズ体3及び受光素子5
が搭載されるとともに、前記光軸に対して平行な両側部
にそれぞれ、所定厚さの厚肉部6a,6bを有する基板
6と、前記基板上部に搭載され、該電子冷却素子の冷却
を制御するためのサーミスタ21と、これらの構成部品
を収容する筐体1を具備することを特徴としている。
In order to achieve the above object, the semiconductor laser module of the present invention is characterized in that, in claim 1, the semiconductor laser 2 that generates heat with the emission of light and the emitted light of the semiconductor laser 2 are provided. Optical fiber 4 for transmission
A lens body 3 provided between the optical axes of the semiconductor laser 2 and the optical fiber 4 for condensing the light, and a light receiving element 5 for monitoring the optical output of the emitted light from the semiconductor laser 2. The semiconductor laser 2, the lens body 3, and the light receiving element 5
And a substrate 6 having thick portions 6a and 6b each having a predetermined thickness on both sides parallel to the optical axis, and mounted on the substrate to control cooling of the electronic cooling element. It is characterized by including a thermistor 21 for doing so and a casing 1 for accommodating these components.

【0011】また、請求項2のように、前記基板6上部
に積載され、所定の配線パターン16が形成される、少
なくとも前記受光素子5が配置される配線基板15を備
えて構成しても良い。
Further, as in claim 2, a wiring board 15 may be provided, which is stacked on the substrate 6 and has a predetermined wiring pattern 16 formed thereon, and on which at least the light receiving element 5 is arranged. ..

【0012】さらに、請求項3の如く、前記各構成部品
を収容する筐体1の底部に所定深さL1の溝部1bを形
成し、その溝部1bに前記電子冷却素子7の一部を緩嵌
する構造としても良い。
Further, as described in claim 3, a groove portion 1b having a predetermined depth L1 is formed in the bottom portion of the housing 1 for accommodating the respective components, and a part of the electronic cooling element 7 is loosely fitted in the groove portion 1b. It may be a structure that does.

【0013】[0013]

【作用】半導体レーザ2からの出射光はレンズ体3を介
して光ファイバ4に入射される。この半導体レーザ2は
光の出射とともに基板6に対し放熱するが、基板6に
は、光軸に対し平行な両側部にそれぞれ、所定厚さの厚
肉部6a,6bが設けられているから剛性が高くなり、
この基板6が光軸方向に対して変形することなく、光軸
ずれを低減できる。また、配線基板15を用いることに
より、光学結合系を構成する構成部品のうち能動体であ
る受光素子5は、その配線の一部をプリントパターン1
6で行え、配線の引回しを不要にでき、それ故に配線の
引回しによる空間を必要とせず高さを低くできる。さら
に、筐体1の底部に溝部1bを形成し、この溝部1bに
電子冷却素子7の一部を緩嵌することにより、該電子冷
却素子7上に搭載された各構成部品の高さを該溝部1b
の深さだけ低くでき、装置全体を小型化できる。また、
筐体1の底部に形成された溝部に電子冷却素子の一部を
緩嵌することにより、主として光軸方向の光軸調整を行
うだけで良くなり、作業性の向上が図られる。
The emitted light from the semiconductor laser 2 enters the optical fiber 4 through the lens body 3. The semiconductor laser 2 emits light and radiates heat to the substrate 6, but the substrate 6 is provided with thick portions 6a and 6b of a predetermined thickness on both sides parallel to the optical axis. Becomes higher,
The optical axis shift can be reduced without the substrate 6 being deformed in the optical axis direction. Further, by using the wiring board 15, the light receiving element 5 which is an active body among the components forming the optical coupling system has a part of its wiring printed on the printed pattern 1.
6, the wiring can be eliminated, and therefore the height can be reduced without requiring the space for wiring. Further, a groove 1b is formed on the bottom of the housing 1, and a part of the electronic cooling element 7 is loosely fitted in the groove 1b, so that the height of each component mounted on the electronic cooling element 7 can be reduced. Groove 1b
The depth can be lowered, and the entire device can be downsized. Also,
By loosely fitting a part of the electronic cooling element in the groove formed in the bottom of the housing 1, it is only necessary to mainly adjust the optical axis in the optical axis direction, and workability is improved.

【0014】[0014]

【実施例】図1(a),(b)は、おのおの、本発明の
半導体レーザモジュールの側断面図、平断面図を示し、
図1(c)は、同図(b)のA−A線における断面図で
ある。筐体1は、上部が開口され、この開口部には蓋体
1aが着脱自在に設けられている。この筐体1の一端部
には、フェルール4aを有する光ファイバ4の端部が固
定される。具体的にはホルダ4bで光ファイバ4を固定
するが、コネクタを用い光ファイバ4を筐体1に対し着
脱自在に構成してもよい。また、筐体1内の下部には、
所定深さL1と、所定幅L2を有する溝部1bが光軸方
向に平行に形成されている。
1 (a) and 1 (b) are respectively a side sectional view and a plan sectional view of a semiconductor laser module of the present invention,
FIG. 1C is a sectional view taken along the line AA of FIG. An upper portion of the housing 1 is opened, and a lid 1a is detachably provided in this opening. The end of the optical fiber 4 having the ferrule 4a is fixed to one end of the housing 1. Specifically, the optical fiber 4 is fixed by the holder 4b, but the optical fiber 4 may be detachably attached to the housing 1 by using a connector. In addition, in the lower part of the housing 1,
A groove 1b having a predetermined depth L1 and a predetermined width L2 is formed parallel to the optical axis direction.

【0015】この筐体1の両側部にはそれぞれ、リード
端子20が設けられ、筐体1内に設けられている光学部
品を外部に対し電気的に接続する。そして、この筐体1
の内部には、窒素ガスや不活性ガスが封入され、気密を
保つ構造とされている。この溝部1bには、ペルチェ素
子で構成される電子冷却素子7の一部の放熱面7aが緩
嵌固定されている。この電子冷却素子7は、その一部の
吸熱面7bの熱を放熱面7aを介して筐体1側に放熱す
る。
Lead terminals 20 are provided on both sides of the housing 1 to electrically connect the optical components provided in the housing 1 to the outside. And this case 1
Nitrogen gas or an inert gas is enclosed in the inside of the to keep the airtightness. A part of the heat dissipation surface 7a of the electronic cooling element 7 composed of a Peltier element is loosely fitted and fixed in the groove portion 1b. The electronic cooling element 7 radiates the heat of a part of the heat absorbing surface 7b to the housing 1 side via the heat radiating surface 7a.

【0016】電子冷却素子7の吸熱面7b上には、所定
厚さで薄厚に形成された基板6が固着される。この基板
6は、一般に銅タングステン等、放熱効果の良好な材質
で形成されている。図2は、この基板6を示す図であ
り、(a)は平面図、(b)は裏面図、(c)は側面
図、(d)は同図(a)のB−B線における断面図、
(e)は同図(a)のC−C線における断面図、(f)
は同図D−D線における断面図である。図2(b),
(e)に示す如く、基板6の両側部下部には、それぞれ
所定の厚さを有して厚肉部6a,6bが形成されてい
る。この厚肉部6a,6bは、電子冷却素子7の吸熱面
7bの幅に対応して基板6の両側部に設けられるもので
あり、前記光軸方向に向いている。
On the heat absorbing surface 7b of the electronic cooling element 7, a substrate 6 formed to have a predetermined thickness and a thin thickness is fixed. The substrate 6 is generally formed of a material having a good heat dissipation effect such as copper tungsten. 2A and 2B are views showing the substrate 6, where FIG. 2A is a plan view, FIG. 2B is a rear view, FIG. 2C is a side view, and FIG. 2D is a cross section taken along line BB in FIG. Figure,
(E) is a cross-sectional view taken along the line CC of FIG.
FIG. 7 is a sectional view taken along line D-D in FIG. 2 (b),
As shown in (e), thick-walled portions 6a and 6b having a predetermined thickness are formed on the lower portions of both sides of the substrate 6, respectively. The thick portions 6a and 6b are provided on both sides of the substrate 6 corresponding to the width of the heat absorption surface 7b of the electronic cooling element 7, and are oriented in the optical axis direction.

【0017】また、図2(a),(f)に示す如く、基
板6の両側部上部にも、それぞれ所定の厚さの厚肉部6
aa,6baが設けられる。さらに、図2(a),
(c),(d),(e),(f)に示す如く、基板6の
端部には、厚肉部6aa,6baと同一高さの固定部6
cが設けられている。この固定部6c上には、後述する
配線基板15を介してPD5が載置される。したがっ
て、図1(c)に示す如く、電子冷却素子7の吸熱面7
b上には、基板6が載置され、光軸と平行な両側部に
は、それぞれ、厚肉部6a,6b,6aa,6baが設
けられている。なお、基板6には、下部にのみ厚肉部6
a,6bを設ける構成とし、上部は厚肉部6aa,6b
a、及び固定部6cが除かれた平面状であっても良い。
Further, as shown in FIGS. 2 (a) and 2 (f), the thick portions 6 having a predetermined thickness are formed on the upper portions of both sides of the substrate 6, respectively.
aa and 6ba are provided. Furthermore, as shown in FIG.
As shown in (c), (d), (e) and (f), the fixing portion 6 having the same height as the thick portions 6aa and 6ba is provided at the end of the substrate 6.
c is provided. The PD 5 is placed on the fixing portion 6c via a wiring board 15 described later. Therefore, as shown in FIG. 1C, the heat absorption surface 7 of the electronic cooling element 7 is
A substrate 6 is placed on the surface b, and thick portions 6a, 6b, 6aa, 6ba are provided on both sides parallel to the optical axis. In addition, the thick portion 6 is provided only on the lower portion of the substrate 6.
a and 6b are provided, and the thick parts 6aa and 6b are provided on the upper part.
It may be a flat surface excluding a and the fixing portion 6c.

【0018】この基板6上には、アルミナセラミックス
等、熱抵抗の小さな材質で形成された配線基板15が固
着される。図3は、配線基板15を示す平面図である。
図示の如く配線基板15は、平面略コ字型に形成される
ものであり、前記基板6の厚肉部6aa,6ba及び固
定部6c上部位置において連続する突出部15a,15
bを有して中央部が開口された形状となっている。そし
て、表面15c上には、配線パターン16a,16bが
形成され、裏面全面には基板6とのはんだ付けができる
ようにメタライズ処理がなされている。
On this substrate 6, a wiring substrate 15 made of a material having a small thermal resistance such as alumina ceramics is fixed. FIG. 3 is a plan view showing the wiring board 15.
As shown in the figure, the wiring board 15 is formed in a substantially U-shape in plan view, and the protruding portions 15a, 15 that are continuous at the upper positions of the thick portions 6aa, 6ba and the fixed portion 6c of the substrate 6 are formed.
It has a shape having an opening b at the center. Then, the wiring patterns 16a and 16b are formed on the front surface 15c, and the entire back surface is subjected to a metallizing treatment so that it can be soldered to the substrate 6.

【0019】そして、図1に示す如く、基板6上部に
は、配線基板15が設けられ、この配線基板15の裏面
は基板6上で半田付け固定される。基板6上には、中央
部に発光素子としてLD2が配置される。このLD2
は、チップキャリア2a上に固定される。また、LD2
及び光ファイバ4の端部間にはレンズ体3が設けられ、
光学結合系が形成されている。このLD2の出射光はレ
ンズ体3を介して光ファイバ4の端部に入射される。
As shown in FIG. 1, a wiring board 15 is provided on the board 6, and the back surface of the wiring board 15 is soldered and fixed on the board 6. On the substrate 6, the LD 2 is arranged in the central portion as a light emitting element. This LD2
Are fixed on the chip carrier 2a. Also, LD2
And a lens body 3 is provided between the ends of the optical fiber 4,
An optical coupling system is formed. The emitted light of the LD 2 is incident on the end portion of the optical fiber 4 via the lens body 3.

【0020】レンズ体3は、基板6上に予め設けられる
突き当てブロック3a、およびこの突き当てブロック3
aに突き当てて位置決めされるレンズホルダ3bで構成
される。突き当てブロック3aは、図1に示す如く2本
の柱体が基板6上に固定されて成る。レンズホルダ3b
は、円筒形で内部にレンズ3cを保持し、かつ両側に突
き当て部3dが形成される。このレンズ3cとしては、
球レンズ、セルフォックレンズ等を用いる。このレンズ
ホルダ3bの突き当て部3dを突き当てブロック3aに
突き当てることにより、レンズ3cの光軸方向の位置が
自動的に位置決めされる。この後、光軸に対して直交す
る上下、左右方向を治具等で微調整し、突き当てブロッ
ク3aにレンズホルダ3bを固定する。
The lens body 3 includes an abutting block 3a provided in advance on the substrate 6, and the abutting block 3a.
It is composed of a lens holder 3b which is positioned by abutting on a. As shown in FIG. 1, the butting block 3a is formed by fixing two pillars on the substrate 6. Lens holder 3b
Has a cylindrical shape, holds the lens 3c therein, and has abutting portions 3d formed on both sides. For this lens 3c,
A spherical lens, a Selfoc lens, etc. are used. By abutting the abutting portion 3d of the lens holder 3b against the abutting block 3a, the position of the lens 3c in the optical axis direction is automatically positioned. After that, the lens holder 3b is fixed to the butting block 3a by finely adjusting the vertical and horizontal directions orthogonal to the optical axis with a jig or the like.

【0021】また、前記配線基板15の表面15cに
は、LD2モニタ用のPD5が配置固定される。このP
D5は端子が下向きとされ、この固定位置である配線パ
ターン16aの一端部16aaで半田付けされ電気的に
接続固定される。前記基板6には、LD2の中継ターミ
ナル8が設けられ、LD2はこの中継ターミナル8、金
ワイヤ9を介してリード端子20に接続され、また、電
子冷却素子7およびサーミスタ21は、直接リード端子
20に接続されて所定の電気回路を構成する。さらに、
前記配線基板15の配線パターン16の他端部16ab
も金ワイヤ9を介してリード端子20に接続される。そ
して、筐体1内は窒素ガスや不活性ガスが封入された状
態で前記蓋体1aとをシーム溶接により接合せしめ気密
される。
On the surface 15c of the wiring board 15, a PD 5 for monitoring the LD2 is arranged and fixed. This P
The terminal of D5 is directed downward, and is soldered and electrically connected and fixed at one end portion 16aa of the wiring pattern 16a at this fixing position. A relay terminal 8 for the LD 2 is provided on the substrate 6, and the LD 2 is connected to the lead terminal 20 via the relay terminal 8 and the gold wire 9. Further, the electronic cooling element 7 and the thermistor 21 are directly connected to the lead terminal 20. And a predetermined electric circuit is configured. further,
The other end 16ab of the wiring pattern 16 of the wiring board 15
Is also connected to the lead terminal 20 via the gold wire 9. Then, the inside of the housing 1 is hermetically sealed by joining the lid 1a with seam welding in a state where nitrogen gas or an inert gas is enclosed.

【0022】次に、上記構成による作用を説明する。上
記各構成部を組み立てた状態において、電子冷却素子7
の一部(放熱面7a)が所定の深さL1分だけ、筐体1
の溝部1b内に緩嵌される。溝部1bは、電子冷却素子
7の幅とほぼ同一径(L2)で形成されているため、こ
の電子冷却素子7を底部とする前記光学結合系全ては、
溝部1b内にて光軸方向と直交する方向のクリアランス
が少ないため容易に調整可能となり、また光軸方向に
は、例えば光アイソトープやフィルタなどを配置収容す
る時にもスライド調整が可能になっている。このよう
に、溝部1bに電子冷却素子7の一部が緩嵌されている
とともに、基板6が薄厚で形成されることにより、全体
の高さを低くすることができる。また、PD5の端子
は、金ワイヤを用いることなく配線基板15上の配線パ
ターン16に直接接合された構成であるため、PD5の
電気的接続に要する空間高さを取らず、このPD5部分
の高さを低くできる。これにより、全体の高さを低くで
き、筐体1の高さを低く、小型化することができる。
Next, the operation of the above configuration will be described. In the state where the above-mentioned components are assembled, the electronic cooling element 7
A part (heat dissipation surface 7a) of the housing 1 has a predetermined depth L1.
It is loosely fitted in the groove portion 1b. Since the groove portion 1b is formed with a diameter (L2) substantially the same as the width of the electronic cooling element 7, all the optical coupling systems having the electronic cooling element 7 at the bottom are
Since the clearance in the direction orthogonal to the optical axis direction is small in the groove portion 1b, the adjustment can be easily performed, and also the slide adjustment can be performed in the optical axis direction when, for example, an optical isotope, a filter, etc. are arranged and housed. .. As described above, since the electronic cooling element 7 is loosely fitted in the groove 1b and the substrate 6 is formed thin, the overall height can be reduced. In addition, since the terminals of the PD 5 are directly joined to the wiring pattern 16 on the wiring board 15 without using gold wires, the height of the PD 5 portion can be increased without taking the space height required for electrical connection of the PD 5. Can be lowered. As a result, the overall height can be reduced, the height of the housing 1 can be reduced, and the size can be reduced.

【0023】ところで、LD2からの出射光はレンズ体
3を介して光ファイバ4の端部に入射される。また、L
D2からの出射光の光出力はPD5によりモニタされ
る。LD2の出射光に伴う発熱によりこのLD2は基板
6に放熱する。基板6は、薄厚に形成されており、基板
6を変形させる。しかしながら、この基板6には、その
両側部にそれぞれ所定厚さの厚肉部6a,6bが形成さ
れ、かつこの厚肉部6a,6bは、光軸方向に平行に形
成されているため、光軸方向に対する熱応力による変形
を低減できる。したがって、この基板6は、薄厚でも光
軸方向に対して所定の剛性を得ることができる。なお、
この基板6の熱は、電子冷却素子7によって吸熱される
ことにより、同時に変形が防止できる。
The light emitted from the LD 2 is incident on the end of the optical fiber 4 via the lens body 3. Also, L
The optical output of the emitted light from D2 is monitored by PD5. The LD2 radiates heat to the substrate 6 due to the heat generated by the light emitted from the LD2. The substrate 6 is formed thin and deforms the substrate 6. However, since the substrate 6 has thick portions 6a and 6b each having a predetermined thickness on both sides thereof, and the thick portions 6a and 6b are formed parallel to the optical axis direction, Deformation due to thermal stress in the axial direction can be reduced. Therefore, even if the substrate 6 is thin, a predetermined rigidity can be obtained in the optical axis direction. In addition,
The heat of the substrate 6 is absorbed by the electronic cooling element 7, so that the deformation can be prevented at the same time.

【0024】また、配線基板15には、所定の配線パタ
ーン16が形成されているため、PD5の電気的接続、
すなわちPD5とリード端子20間の配線において、こ
のリード端子20近傍まで配線パターン16が延出され
た構成であるから、金ワイヤ9を極力短くして配線で
き、筐体1内部の配線の引回しを少なくすることができ
る。この配線基板15の配線パターン16は、ユーザが
要求するリード端子20に対応するパターンで形成され
るもので、容易に変更自在である。
Further, since a predetermined wiring pattern 16 is formed on the wiring board 15, the PD 5 is electrically connected,
That is, in the wiring between the PD 5 and the lead terminal 20, the wiring pattern 16 is extended to the vicinity of the lead terminal 20, so that the gold wire 9 can be made as short as possible, and the wiring inside the housing 1 can be routed. Can be reduced. The wiring pattern 16 of the wiring board 15 is formed in a pattern corresponding to the lead terminals 20 required by the user, and can be easily changed.

【0025】なお、上記実施例におけるレンズ体3は、
図4の斜視図に示す如く基板6上に予め固定される突き
当てブロック3aが内部に円筒形の嵌合部3aaを有す
る矩形状に形成し、レンズホルダ3bはこの嵌合部3a
aに対応する径の円筒部3baを有して形成されたもの
で構成しても良く、このレンズホルダ3bを突き当てブ
ロック3aに突き当てるのみで、光軸方向に対するレン
ズ3cの位置決めを自動的に行うことができる。
The lens body 3 in the above embodiment is
As shown in the perspective view of FIG. 4, an abutment block 3a fixed in advance on the substrate 6 is formed in a rectangular shape having a cylindrical fitting portion 3aa therein, and the lens holder 3b is formed in the fitting portion 3a.
It may be configured by having a cylindrical portion 3ba having a diameter corresponding to a, and the lens 3c is automatically positioned in the optical axis direction only by abutting the lens holder 3b on the abutting block 3a. Can be done.

【0026】さらに、上記溝部1bには、電子冷却素子
7の一部のみが緩嵌する構造としたが、この溝部1bに
は、電子冷却素子7と平行に他の構成部、例えば、光ア
イソレータやフィルタ等を同時に配置収容することがで
きる。
Further, the groove 1b has a structure in which only a part of the electronic cooling element 7 is loosely fitted. However, in the groove 1b, another component parallel to the electronic cooling element 7 such as an optical isolator. It is possible to arrange and house a filter and the like at the same time.

【0027】上述した実施例における半導体レーザモジ
ュールでは、LD2による発光を光ファイバ4に入射さ
せる発光源を例に説明したが、発光素子としてLDに代
わりLEDを用いても良い他、LDの配置箇所にPDが
配置された受光モジュールに上記構成を適用してもよ
く、この場合においてもモジュール全体の高さを小型化
できるものであり、勿論、上記実施例と同様の作用効果
が得られる。
In the semiconductor laser module according to the above-mentioned embodiment, the light emitting source for making the light emitted from the LD 2 incident on the optical fiber 4 is described as an example. However, an LED may be used in place of the LD as a light emitting element, and an arrangement location of the LD The above configuration may be applied to the light receiving module in which the PD is arranged, and in this case as well, the height of the entire module can be reduced, and, of course, the same effect as the above embodiment can be obtained.

【0028】[0028]

【発明の効果】請求項1によれば、基板の両側部におい
て光軸方向と平行に厚肉部が設けられた構成であるか
ら、光軸方向の曲げ応力が従来基板と同等で基板肉厚を
薄くすることができ、変形に強く高さを取らない。同時
に、基板の熱容量が低減するので電子冷却素子の冷却に
要する消費電力を低減できた。
According to the first aspect of the invention, since the thick portions are provided on both sides of the substrate in parallel with the optical axis direction, the bending stress in the optical axis direction is the same as that of the conventional substrate and the substrate thickness is Can be made thin and is strong against deformation and does not take height. At the same time, since the heat capacity of the substrate is reduced, the power consumption required for cooling the electronic cooling element can be reduced.

【0029】請求項2によれば、所定の配線パターンが
形成された配線基板により、光学結合系中、電気配線を
必要とする能動体のワイヤ配線を配線パターンの端部で
行うことができ、配線作業を容易化できるとともに、金
ワイヤ等剥き出し状態のワイヤを配線作業中における配
線ショートに対する考慮が不要となり、作業性の向上と
組み立て時間の短縮化を図ることができた。さらに、薄
厚に形成された基板上にこの配線基板が設けられる構成
であるため、基板を補強することができ、前記変形を防
止することができた。
According to the second aspect, the wiring board on which the predetermined wiring pattern is formed allows the wire wiring of the active body requiring the electric wiring in the end portion of the wiring pattern in the optical coupling system. The wiring work can be facilitated, and it is not necessary to consider a wiring short-circuit during the wiring work of a bare wire such as a gold wire, so that workability can be improved and assembly time can be shortened. Further, since the wiring substrate is provided on the thin substrate, the substrate can be reinforced and the deformation can be prevented.

【0030】請求項3によれば、筐体の底部に溝部が設
けられた構成であるため、この溝部上に設けられる電子
冷却素子および光学結合系を構成する各構成部の総和の
高さを低くでき、モジュール全体を小型化でき、本モジ
ュールはプリント基板等に対し省スペースで設置するこ
とができた。また、該溝部と該電子冷却素子は緩嵌され
ているので、光軸方向の調整を主として行えばよく、組
立作業性の向上が図られた。
According to the third aspect of the invention, since the groove is provided in the bottom of the housing, the total height of the components forming the electronic cooling element and the optical coupling system provided on the groove can be calculated as follows. The module can be made low, the module as a whole can be made compact, and this module can be installed on a printed circuit board in a space-saving manner. Further, since the groove portion and the electronic cooling element are loosely fitted, the adjustment in the optical axis direction may be mainly performed, and the assembling workability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の半導体レーザモジュールを
示す側断面図。(b)は、同モジュールの平断面図。
(c)は、同図(b)のA−A線断面図。
FIG. 1A is a side sectional view showing a semiconductor laser module of the present invention. (B) is a plane sectional view of the module.
(C) is the sectional view on the AA line of the same figure (b).

【図2】(a)は、基板を示す平面図。(b)は、同基
板の裏面図。(c)は、同側面図。(d)は、同図
(a)のB−B線断面図。(e)は、同C−C線断面
図。(f)は、同D−D線断面図。
FIG. 2A is a plan view showing a substrate. (B) is a rear view of the substrate. (C) is the same side view. (D) is the BB line sectional view of the same figure (a). (E) is the CC sectional view taken on the line. (F) is the DD sectional view taken on the line.

【図3】配線基板を示す平面図。FIG. 3 is a plan view showing a wiring board.

【図4】他の構成例によるレンズ体を示す斜視図。FIG. 4 is a perspective view showing a lens body according to another configuration example.

【図5】(a)は、半導体レーザモジュールを示す側断
面図。(b)は、同平断面図。
FIG. 5A is a side sectional view showing a semiconductor laser module. (B) is the same plane sectional view.

【符号の説明】[Explanation of symbols]

1…筐体、1b…溝部、2…半導体レーザ、3…レンズ
体、3a…突き当てブロック、3b…レンズホルダ、3
c…レンズ、4…光ファイバ、5…受光素子、6…基
板、6a,6b…厚肉部、7…電子冷却素子、8…中継
ターミナル、9…金ワイヤ、20…リード端子。
DESCRIPTION OF SYMBOLS 1 ... Housing | casing 1b ... Groove part, 2 ... Semiconductor laser, 3 ... Lens body, 3a ... Abutting block, 3b ... Lens holder, 3
c ... Lens, 4 ... Optical fiber, 5 ... Light receiving element, 6 ... Substrate, 6a, 6b ... Thick portion, 7 ... Electronic cooling element, 8 ... Relay terminal, 9 ... Gold wire, 20 ... Lead terminal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光の出射に伴って発熱する半導体レーザ
(2)と;該半導体レーザからの出射光を伝送するため
の光ファイバ(4)と;前記半導体レーザ及び光ファイ
バの光軸間に設けられ、該出射光を集光するレンズ体
(3)と;前記半導体レーザからの出射光の光出力をモ
ニタするための受光素子(5)と;その上部に前記半導
体レーザ、レンズ体及び受光素子が搭載され、かつ、前
記光軸に対して平行な両側部にそれぞれ、所定の厚さの
厚肉部(6a,6b)が形成された基板(6)と;該基
板下部に設けられ、前記発熱した半導体レーザを冷却す
るための電子冷却素子(7)と;前記基板上部に搭載さ
れ、該電子冷却素子の冷却を制御するためのサーミスタ
(21)と;これらの構成部品を収容する筐体(1)と
からなることを特徴とする半導体レーザモジュール。
1. A semiconductor laser (2) which generates heat as light is emitted; an optical fiber (4) for transmitting light emitted from the semiconductor laser; and an optical axis between the semiconductor laser and the optical fiber. A lens body (3) provided for condensing the emitted light; a light receiving element (5) for monitoring the light output of the emitted light from the semiconductor laser; and the semiconductor laser, the lens body and the light receiving element above the light receiving element. A substrate (6) on which an element is mounted, and thick portions (6a, 6b) having a predetermined thickness are formed on both sides parallel to the optical axis; and a substrate (6) provided below the substrate, An electronic cooling element (7) for cooling the heated semiconductor laser; a thermistor (21) mounted on the upper part of the substrate for controlling the cooling of the electronic cooling element; and a housing containing these components. Characterized by consisting of a body (1) Semiconductor laser module.
【請求項2】 前記基板(6)上部に積載され、所定の
配線パターン(16)が形成されており、該配線パター
ンの中には、少なくとも前記受光素子(5)が配置され
る配線基板(15)を備えた請求項1記載の半導体レー
ザモジュール。
2. A wiring board () on which a predetermined wiring pattern (16) is formed, which is stacked on the substrate (6) and in which at least the light receiving element (5) is arranged. 15. The semiconductor laser module according to claim 1, further comprising 15).
【請求項3】 前記筐体(1)の底部に所定深さ(L
1)の溝部(1b)を形成し、該溝部に前記電子冷却素
子(7)の一部を緩嵌する請求項1,2記載の半導体レ
ーザモジュール。
3. A predetermined depth (L) at the bottom of the housing (1).
The semiconductor laser module according to claim 1, wherein the groove portion (1b) of 1) is formed, and a part of the electronic cooling element (7) is loosely fitted in the groove portion.
JP03339526A 1991-11-29 1991-11-29 Semiconductor laser module Expired - Lifetime JP3132868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03339526A JP3132868B2 (en) 1991-11-29 1991-11-29 Semiconductor laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03339526A JP3132868B2 (en) 1991-11-29 1991-11-29 Semiconductor laser module

Publications (2)

Publication Number Publication Date
JPH05150146A true JPH05150146A (en) 1993-06-18
JP3132868B2 JP3132868B2 (en) 2001-02-05

Family

ID=18328317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03339526A Expired - Lifetime JP3132868B2 (en) 1991-11-29 1991-11-29 Semiconductor laser module

Country Status (1)

Country Link
JP (1) JP3132868B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335966A (en) * 1994-06-06 1995-12-22 Nec Eng Ltd Semiconductor laser module
JPH09116224A (en) * 1995-10-19 1997-05-02 Nec Corp Flat type semiconductor laser module
EP0860914A2 (en) * 1997-02-13 1998-08-26 Nec Corporation Semiconductor laser module
US5974065A (en) * 1996-03-15 1999-10-26 Nec Corporation Semiconductor laser module
JP2001319984A (en) * 2000-05-11 2001-11-16 Furukawa Electric Co Ltd:The Package for photo semiconductor device and optical semiconductor device module using package
EP1220390A1 (en) * 2000-12-28 2002-07-03 Corning O.T.I. S.p.A. Low cost optical bench having high thermal conductivity
WO2002054118A2 (en) * 2000-12-28 2002-07-11 Corning O.T.I. S.P.A. Low cost optical bench having high thermal conductivity
US6720582B2 (en) 2000-05-31 2004-04-13 The Furukawa Electric Co., Ltd. Semiconductor laser diode module
US6821030B2 (en) 2002-03-12 2004-11-23 Opnext Japan, Inc. Optical coupling apparatus
JP2005167041A (en) * 2003-12-04 2005-06-23 Furukawa Electric Co Ltd:The Optical device having thermoregulator and laser module
US7144788B2 (en) 2004-02-19 2006-12-05 Sumitomo Electric Industries, Ltd. Method for manufacturing a transmitting optical sub-assembly with a thermo-electric cooler therein
JP2010140937A (en) * 2008-12-09 2010-06-24 Anritsu Corp Semiconductor laser package and semiconductor laser module
JP2010258354A (en) * 2009-04-28 2010-11-11 Fibest Ltd Laser module
JP2015119152A (en) * 2013-12-20 2015-06-25 セイコーエプソン株式会社 Light-emitting element module, quantum interference device, atomic oscillator, electronic apparatus and movable body

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335966A (en) * 1994-06-06 1995-12-22 Nec Eng Ltd Semiconductor laser module
JPH09116224A (en) * 1995-10-19 1997-05-02 Nec Corp Flat type semiconductor laser module
US5974065A (en) * 1996-03-15 1999-10-26 Nec Corporation Semiconductor laser module
EP0860914A2 (en) * 1997-02-13 1998-08-26 Nec Corporation Semiconductor laser module
EP0860914A3 (en) * 1997-02-13 1998-09-16 Nec Corporation Semiconductor laser module
US5963697A (en) * 1997-02-13 1999-10-05 Nec Corporation Semiconductor laser module
JP2001319984A (en) * 2000-05-11 2001-11-16 Furukawa Electric Co Ltd:The Package for photo semiconductor device and optical semiconductor device module using package
JP4494587B2 (en) * 2000-05-11 2010-06-30 古河電気工業株式会社 Optical semiconductor device package and optical semiconductor device module using the package
US6720582B2 (en) 2000-05-31 2004-04-13 The Furukawa Electric Co., Ltd. Semiconductor laser diode module
US6734517B2 (en) 2000-05-31 2004-05-11 The Furukawa Electric Co., Ltd. Semiconductor laser diode module
US7030422B2 (en) 2000-05-31 2006-04-18 The Furukawa Electric Co., Ltd. Semiconductor laser diode module
EP1220390A1 (en) * 2000-12-28 2002-07-03 Corning O.T.I. S.p.A. Low cost optical bench having high thermal conductivity
WO2002054118A2 (en) * 2000-12-28 2002-07-11 Corning O.T.I. S.P.A. Low cost optical bench having high thermal conductivity
WO2002054118A3 (en) * 2000-12-28 2003-08-28 Corning Oti Spa Low cost optical bench having high thermal conductivity
US6821030B2 (en) 2002-03-12 2004-11-23 Opnext Japan, Inc. Optical coupling apparatus
US7011457B2 (en) 2002-03-12 2006-03-14 Opnext Japan, Inc. Optical coupling apparatus
JP2005167041A (en) * 2003-12-04 2005-06-23 Furukawa Electric Co Ltd:The Optical device having thermoregulator and laser module
JP4690646B2 (en) * 2003-12-04 2011-06-01 古河電気工業株式会社 Optical apparatus and laser module having temperature controller
US7144788B2 (en) 2004-02-19 2006-12-05 Sumitomo Electric Industries, Ltd. Method for manufacturing a transmitting optical sub-assembly with a thermo-electric cooler therein
US7317742B2 (en) 2004-02-19 2008-01-08 Sumitomo Electric Industries, Ltd. Optical sub-assembly having a thermo-electric cooler and an optical transceiver using the optical sub-assembly
US7426225B2 (en) 2004-02-19 2008-09-16 Sumitomo Electric Industries, Ltd. Optical sub-assembly having a thermo-electric cooler and an optical transceiver using the optical sub-assembly
JP2010140937A (en) * 2008-12-09 2010-06-24 Anritsu Corp Semiconductor laser package and semiconductor laser module
JP2010258354A (en) * 2009-04-28 2010-11-11 Fibest Ltd Laser module
JP2015119152A (en) * 2013-12-20 2015-06-25 セイコーエプソン株式会社 Light-emitting element module, quantum interference device, atomic oscillator, electronic apparatus and movable body

Also Published As

Publication number Publication date
JP3132868B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US5436997A (en) Optical fiber-optical device coupling package and optical fiber-optical device module
US7367717B2 (en) Optical transmission module
JP3132868B2 (en) Semiconductor laser module
US20040208211A1 (en) Optical communication module
KR101465837B1 (en) Compact housing
US10431727B2 (en) Light emitting apparatus
US6786627B2 (en) Light generating module
JP3076246B2 (en) Semiconductor laser module with built-in Peltier cooler
JP2007012717A (en) Package type semiconductor device
JP2003198042A (en) Optical module and optical transmitting or receiving apparatus
EP1467359B1 (en) Integrated optical device
US6116792A (en) Semiconductor laser module
US7103284B2 (en) Light-emitting module
JPH0921933A (en) Semiconductor laser module
JPH11186668A (en) Optical semiconductor module
JP2007036046A (en) Optical transmitting device
JP6548849B1 (en) Optical module
US20230359024A1 (en) Optical device, subassembly of optical device, and method of manufacturing optical device
JP2002329920A (en) Optical module
JP2001028407A (en) Package for housing optical semiconductor device
JPH05218572A (en) Semiconductor laser module
JP2001156382A (en) Semiconductor laser module
JP3298532B2 (en) Semiconductor laser module
JP2003110182A (en) Semiconductor laser module
JP2003318419A (en) Optical communication module and connection structure therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12