JPH05148042A - Monolithic refractory for casting - Google Patents

Monolithic refractory for casting

Info

Publication number
JPH05148042A
JPH05148042A JP3335452A JP33545291A JPH05148042A JP H05148042 A JPH05148042 A JP H05148042A JP 3335452 A JP3335452 A JP 3335452A JP 33545291 A JP33545291 A JP 33545291A JP H05148042 A JPH05148042 A JP H05148042A
Authority
JP
Japan
Prior art keywords
alumina
zirconium oxide
corrosion resistance
refractory
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3335452A
Other languages
Japanese (ja)
Inventor
Shiro Sukenari
史郎 祐成
Seiji Hanagiri
誠司 花桐
Kiyohiro Hosokawa
清弘 細川
Hitoshi Nishiwaki
均 西脇
Koichi Nishi
浩一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP3335452A priority Critical patent/JPH05148042A/en
Priority to US07/977,247 priority patent/US5283215A/en
Priority to GB9224925A priority patent/GB2262522B/en
Priority to KR1019920022484A priority patent/KR930009958A/en
Publication of JPH05148042A publication Critical patent/JPH05148042A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a refractory having excellent life time in a refractory for casting used in a ladle, vacuum degassing device, etc. CONSTITUTION:In a blend composition using an alumina based raw material and an alumina spinal based raw material as main materials, 0.3-5wt.% (by outer percentage) zirconium oxide having <=150mum average grain diameter and 1-10wt.% (by outer percentage) magnesia binder are together added to the composition. Thereby zirconium oxide is made to react with the magnesia binder and the refractory structure becomes compact to improve hot strength and corrosion resistance of the refractory.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、取鍋、真空脱ガス装
置、タンディッシュなどに使用される耐火物として好適
な流し込み用不定形耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a castable refractory material suitable as a refractory material used for ladle, vacuum degassing device, tundish and the like.

【0002】[0002]

【従来の技術】従来の流し込み施工用不定形耐火物(以
下、流し込み材)の材質は、シャモット質、高アルミナ
質、マグネシア質、アルミナ−マグネシア質などが一般
的である。最近では、例えば特開昭64−87577号
公報、特開平3−23275号公報に見られるように、
アルミナ−スピネル質も提案されている。アルミナ−ス
ピネル質は、アルミナがもつ耐食性および容積安定性と
スピネルの耐スラグ浸透性の相乗効果によって、優れた
耐用性を示す。
2. Description of the Related Art Conventional castable refractory for casting (hereinafter referred to as casting material) is generally made of chamotte, high alumina, magnesia, alumina-magnesia. Recently, as seen, for example, in Japanese Patent Laid-Open Nos. 64-87577 and 3-23275,
Alumina-spinel materials have also been proposed. Alumina-spinel material exhibits excellent durability due to the synergistic effect of the corrosion resistance and volume stability of alumina and the slag penetration resistance of spinel.

【0003】[0003]

【発明が解決しようとする課題】近年、高級鋼種が精錬
されるようになり、これに伴って溶鋼の処理温度の上
昇、容器内での滞留時間の延長などの使用条件の過酷化
から、従来材質の流し込み材では十分に対応できなくな
ってきている。アルミナ−スピネル質も含め、従来の流
し込み材に使用される結合剤は、アルミナセメントが主
流である。アルミナセメントは施工体の強度付与に優れ
る反面、その成分中のCaOが骨材成分あるいはスラグ
と反応し、低融物を生成して耐食性、耐スラグ浸透性の
低下、過焼結による構造的スポーリングなどを招く。本
発明は上記材質の欠点を解決した流し込み材を提供する
ことを目的とする。
In recent years, high-grade steel grades have been refined, and along with this, due to the severer operating conditions such as an increase in the processing temperature of molten steel and an extension of the residence time in the container, It is becoming difficult to use the pouring material. Alumina cement is the predominant binder used in conventional casting materials, including alumina-spinel materials. Alumina cement is excellent in imparting strength to the construction work, but CaO in the component reacts with the aggregate component or slag to form a low melt, which results in corrosion resistance, deterioration of slag penetration resistance, and structural sintering due to oversintering. Invite polls. It is an object of the present invention to provide a casting material that solves the above-mentioned drawbacks of the materials.

【0004】[0004]

【課題を解決するための手段】本発明は、アルミナおよ
び/またはMgO・Al23系スピネルを主材とした配
合組成物に、平均粒径が150μm以下の酸化ジルコニ
ウムを外掛け0.3〜5重量%およびマグネシア結合剤
を外掛け1〜10重量%添加したことを特徴とする流し
込み用不定形耐火物である。
According to the present invention, zirconium oxide having an average particle size of 150 μm or less is externally applied to a compounded composition containing alumina and / or MgO.Al 2 O 3 type spinel as a main material. It is an amorphous refractory for pouring, characterized in that .about.5% by weight and 1 to 10% by weight of a magnesia binder are added to the outside.

【0005】アルミナ−スピネル質の流し込み材におい
てマグネシア結合剤を使用することは前記した特開平3
−23275号公報で既に公知である。マグネシア結合
剤は耐食性低下の原因となるCaOを殆ど含んでいない
ために、アルミナセメントを使用した材質に比べて耐食
性に優れている。しかし、近年の使用条件の過酷化は、
それでもなお十分なものではなく、さらに耐食性に優れ
た材質が強く望まれている。
The use of a magnesia binder in an alumina-spinel cast material is described in the above-mentioned JP-A-3.
It is already known from Japanese Patent No. 23275. Since the magnesia binder contains almost no CaO, which causes a decrease in corrosion resistance, it is superior in corrosion resistance to a material using alumina cement. However, the severer usage conditions in recent years are
Still, it is not enough, and a material having excellent corrosion resistance is strongly desired.

【0006】そこで本発明者らは検討を重ねた結果、マ
グネシア結合剤と共に、酸化ジルコニウムを特定の粒度
と割合で配合すると耐食性向上に顕著な効果が得られる
ことを知り、本願発明を完成するに至ったものである。
本発明で使用する酸化ジルコニウム(ZrO2)は、天
然、人工のいずれでもよい。不純物が少なく、しかもY
23、MgO、CaOなどを添加して安定化させたタイ
プのものが好ましい。ZrO2純度は例えば80重量%
以上、好ましくは90重量%以上のものを使用する。平
均粒径は100μm以下とする。
As a result of extensive studies, the present inventors have found that the addition of zirconium oxide together with a magnesia binder in a specific particle size and ratio has a remarkable effect on the improvement of corrosion resistance. It has come.
The zirconium oxide (ZrO 2 ) used in the present invention may be natural or artificial. Fewer impurities, yet Y
A type in which 2 O 3 , MgO, CaO or the like is added and stabilized is preferable. ZrO 2 purity is, for example, 80% by weight
Above, preferably 90% by weight or more is used. The average particle size is 100 μm or less.

【0007】図1は、アルミナ質流し込み材において、
平均粒径14μmの酸化ジルコニウムの添加割合と耐食
性の関係をグラフ化したものである。グラフ中、Aはア
ルミナセメントを外掛け5重量%添加したアルミナ質流
し込み材、Bはマグネシア結合剤を外掛け3.5重量%
添加したアルミナ質流し込み材である。
FIG. 1 shows an alumina cast material,
2 is a graph showing the relationship between the addition ratio of zirconium oxide having an average particle size of 14 μm and corrosion resistance. In the graph, A is an alumina-based casting material to which 5% by weight of alumina cement is added, and B is 3.5% by weight of a magnesia binder.
It is the added alumina-based casting material.

【0008】図1のとおり、Aのアルミナセメントを結
合剤とした材質は酸化ジルコニウムの添加で耐食性の向
上は認められるが、顕著なものではない。これに対し、
Bのマグネシア結合剤を使用した材質は、酸化ジルコニ
ウムの添加で耐食性が著しく向上することが確認され
る。酸化ジルコニウムの割合は、0.3重量%未満では
耐食性が従来材質と大差がない。5重量%を超えると耐
食性では問題ないが、過焼結となって耐スポ−リング性
が低下する。さらに好ましい割合は、0.5〜3重量%
である。
As shown in FIG. 1, the material having the alumina cement of A as the binder shows improved corrosion resistance by the addition of zirconium oxide, but this is not remarkable. In contrast,
It is confirmed that the material using the B magnesia binder has a significantly improved corrosion resistance when zirconium oxide is added. If the proportion of zirconium oxide is less than 0.3% by weight, the corrosion resistance is not so different from that of conventional materials. If it exceeds 5% by weight, there is no problem in corrosion resistance, but oversintering causes deterioration of sponging resistance. A more desirable ratio is 0.5 to 3% by weight.
Is.

【0009】本発明の流し込み材は、マグネシア結合剤
と酸化ジルコニウムの併用添加によって初めて耐食性お
よび熱間強度に優れた結果が得られる。これは、酸化ジ
ルコニウムは骨材のアルミナとは固溶しないのに対し、
マグネシア結合剤とは反応性が高く、焼結し、耐火物組
織を緻密化するためと考えられる。
The casting material of the present invention can be excellent in corrosion resistance and hot strength only when the magnesia binder and zirconium oxide are added in combination. This is because zirconium oxide does not form a solid solution with aggregate alumina.
It is considered that it is highly reactive with the magnesia binder and sinters to densify the refractory structure.

【0010】図2は、アルミナ骨材に酸化ジルコニウム
を外掛け3重量%およびマグネシア結合剤を外掛け5重
量%添加した流し込み材において、耐食性と酸化ジルコ
ニウムの平均粒径との関係をグラフ化したものである。
酸化ジルコニウムは平均粒径が大きいとマグネシア結合
剤との反応性に劣るためか、平均粒径が150μmを超
えると流し込み材の耐食性が不十分である。平均粒径の
下限は特に限定されるものではないが、極微粉は製造コ
ストが高いので、経済面からして平均粒径が1μm未満
の使用は好ましくない。
FIG. 2 is a graph showing the relationship between the corrosion resistance and the average particle size of zirconium oxide in a cast material obtained by adding 3% by weight of zirconium oxide to an alumina aggregate and 5% by weight of a magnesia binder. It is a thing.
If the average particle size of zirconium oxide exceeds 150 μm, the corrosion resistance of the casting material is insufficient, because the reactivity of the zirconium oxide with the magnesia binder is poor when the average particle size is large. Although the lower limit of the average particle size is not particularly limited, it is not preferable to use the ultrafine powder having an average particle size of less than 1 μm from the economical point of view because the production cost is high.

【0011】骨材としてのアルミナは、焼結品、電融品
のいずれでもよい。その一部に仮焼アルミナを使用して
もよい。純度はAl23含有量97重量%以上のものが
好ましい。骨材は、前記のアルミナの他、MgO・Al
23系スピネル(以下、単にスピネルと称する)使用し
てもよい。スピネルは耐食性、耐スラグ浸透性に優れ効
果をもつ。スピネルは骨材として使用した場合、アルミ
ナと同様、酸化ジルコニウムとほとんど固溶しない。
Alumina as the aggregate may be either a sintered product or an electromelted product. Calcination alumina may be used for a part thereof. The purity of Al 2 O 3 is preferably 97% by weight or more. Aggregates are MgO / Al in addition to the above-mentioned alumina
2 O 3 -based spinel (hereinafter, simply referred to as spinel) may be used. Spinel has excellent effects on corrosion resistance and slag penetration resistance. When used as an aggregate, spinel, like alumina, hardly forms a solid solution with zirconium oxide.

【0012】スピネルについても焼結品、電融品、仮焼
品のいずれを使用してもよい。スピネルを構成するMg
O・Al23の各成分の比は、必ずしも理論組成のもの
でなくてもよい。例えばモル比でMgO・Al23
0.4〜1.1:1.1〜0.4の範囲であればよい。骨材
粒度は従来の流し込み材と特に変わりなく、施工時の流
動性および充填性などを考慮して、粗粒・中粒・微粒に
調整される。骨材のアルミナおよび/またはスピネルに
対し、その一部をマグネシア、アルミナ−シリカ、ムラ
イト、ジルコン、炭素、炭化物、窒化物で置き換えるこ
ともできる。
As the spinel, any of a sintered product, an electromelted product and a calcined product may be used. Mg that constitutes spinel
The ratio of each component of O.Al 2 O 3 does not necessarily have to be the theoretical composition. For example, the molar ratio of MgO.Al 2 O 3 may be 0.4 to 1.1: 1.1 to 0.4. The particle size of aggregate is not particularly different from that of conventional pouring materials, and is adjusted to coarse particles, medium particles, and fine particles in consideration of fluidity and filling property during construction. For the aggregate alumina and / or spinel, some of them may be replaced with magnesia, alumina-silica, mullite, zircon, carbon, carbide, nitride.

【0013】マグネシア結合剤は従来材質と同様に、平
均粒径40〜300μmの活性なものを使用する。その
割合は、外掛けで0.1重量%未満では施工体強度に劣
る。10重量%を超えると高温下での異常膨張で施工体
組織をぜい弱化させる。施工時の流動性を付与する分散
剤の添加は従来材質と同様である。添加量は外掛け0.
01〜5wt%が好ましい。具体的材質は、例えばヘキ
サメタりん酸ソーダ、トリポリりん酸ソーダ、ポリアク
リル酸ソーダなどである。また、流し込み材の添加物と
して従来公知のファイバー類、金属粉、発泡剤、シリカ
フラワ−、粘土などを適量添加してもよいことはもちろ
んである。
As the magnesia binder, an active one having an average particle diameter of 40 to 300 μm is used as in the conventional material. If the ratio is less than 0.1% by weight on the outside, the strength of the construction body is poor. If it exceeds 10% by weight, the structure of the construction body is weakened due to abnormal expansion at high temperature. The addition of a dispersant that imparts fluidity during construction is the same as in conventional materials. The amount added is 0.
01-5 wt% is preferable. Specific materials are, for example, sodium hexametaphosphate, sodium tripolyphosphate, sodium polyacrylate and the like. It is needless to say that conventionally known fibers, metal powder, foaming agent, silica flour, clay, etc. may be added in appropriate amounts as additives for the casting material.

【0014】マグネシア結合剤を添加する本発明の材質
に、さらにアルミナセメントを添加することは好ましく
ない。微量添加では問題ないが、アルミナセメントの併
用添加は、施工後の加熱乾燥時にマグネシア結合剤中の
結晶水とアルミナセメント中の結晶水の蒸発温度が異な
るためか、水蒸気圧によって施工体組織の一部が崩壊す
る。
It is not preferable to further add alumina cement to the material of the present invention to which the magnesia binder is added. Although it is not a problem to add a small amount, the combined use of alumina cement does not depend on the water vapor pressure because of the difference in the evaporation temperature of the crystallization water in the magnesia binder and the crystallization water in the alumina cement during heating and drying after construction. The department collapses.

【0015】施工は常法どおり、流し込み材全体に対す
るに外掛けで4〜10wt%程度の水分を添加し、型枠
を用いて鋳込み成形される。鋳込みの際に充填性を向上
させるため、一般には型枠にバイブレーターを取付ける
か、あるいは流し込み材中に棒状バイブレーターを挿入
する。施工対象は、例えば取鍋・真空脱ガス装置・タン
ディッシュなどの内張り、真空脱ガス装置浸漬管・溶鋼
浸漬型ガス吹き込み用ランス・溶鋼浸漬型フリーボード
などの耐火物被覆などである。
The construction is carried out in the usual manner by adding about 4 to 10 wt% of water to the entire casting material by external casting, and casting is performed using a mold. In order to improve the filling property at the time of casting, a vibrator is generally attached to the mold, or a rod-shaped vibrator is inserted in the casting material. The construction target is, for example, a lining of a ladle, a vacuum degassing device, a tundish, a vacuum degassing device dip tube, a molten steel dipping type gas injection lance, a refractory coating such as a molten steel dipping freeboard.

【0016】[0016]

【実施例】以下に、本発明の実施例とその比較例を示
す。表1は、各例で使用したマグネシア微粉と酸化ジル
コニウムの化学分析値および平均粒径である。表2は、
各例の配合組成と試験結果である。各例はいずれも施工
性に見合った適量の水分を添加し、型枠内に振動鋳込み
成形した。成形後は48時間養生させ、さらに200℃
×16時間加熱乾燥したものを試験片とした。
EXAMPLES Examples of the present invention and comparative examples are shown below. Table 1 shows the chemical analysis values and the average particle size of the magnesia fine powder and zirconium oxide used in each example. Table 2 shows
It is a compounding composition and a test result of each example. In each case, an appropriate amount of water suitable for workability was added, and vibration casting was performed in the mold. After molding, cure for 48 hours and then 200 ℃
The test piece was heat dried for 16 hours.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2A】 [Table 2A]

【0019】[0019]

【表2B】 [Table 2B]

【0020】試験方法は以下のとおり 曲げ強度;JIS−R2553に準じる。 気孔率;JIS−R2205に準じる。 耐スポーリング性;55×55×230mmの試験片
を、加熱(1400℃)←→空冷をくり返し、そのキレ
ツ発生状況から耐スポーリング性について大、中、小の
三段階に評価した。 回転侵食;鋼片:転炉スラグ=60:40(重量比)を
溶剤とし、1700℃×3hr回転侵食し、溶損寸法と
スラグ浸透寸法を測定した。 実機試験;真空脱ガス装置の内張りに使用し、耐用チャ
ージ数を求めた。空欄の箇所は試験しなかったものであ
る。
The test method is as follows: Flexural strength; conforms to JIS-R2553. Porosity: According to JIS-R2205. Resistance to spalling: A test piece of 55 × 55 × 230 mm was repeatedly heated (1400 ° C.) ← → air cooling, and the spalling resistance was evaluated in three grades from large, medium, and small from the state of crevice generation. Rotational erosion: Steel slab: converter slag = 60:40 (weight ratio) was used as a solvent, and rotational erosion was performed at 1700 ° C for 3 hours, and a melt loss dimension and a slag infiltration dimension were measured. Actual machine test: Used for lining a vacuum degassing device, and determined the number of durable charges. The blank areas are not tested.

【0021】表2の結果から、本発明の実施例はいずれ
も耐食性に優れた結果を示し、施工強度にも問題がな
い。比較例1はマグネシア結合剤を使用しているが、本
発明のように酸化ジルコニウムを併用していないために
耐食性に劣る。比較例2はアルミナセメントを結合剤と
した従来最も一般的な材質であり、本発明実施例に比べ
て耐食性に劣る。
From the results shown in Table 2, all the examples of the present invention have excellent corrosion resistance, and there is no problem in working strength. Comparative Example 1 uses a magnesia binder, but has poor corrosion resistance because it does not use zirconium oxide as in the present invention. Comparative Example 2 is the most general conventional material using alumina cement as a binder, and is inferior in corrosion resistance to the inventive examples.

【0022】マグネシア結合剤、酸化ジルコニウムのそ
れぞれの添加量が多すぎる比較例5、比較例3はいずれ
も耐食性、耐スラグ浸透性に劣る。平均粒径の大きい酸
化ジルコニウムを使用した比較例4は、マグネシア結合
剤との反応性に劣るためか耐食性の効果がない。比較例
9は酸化ジルコニウムを添加しているが、結合剤がアル
ミナセメントであり、耐食性向上の効果が不十分であ
る。酸化ジルコニウム、マグネシア結合剤とアルミナセ
メントを併用した比較例7は、施工体強度および耐食性
に劣る。また、実機試験でも本発明実施例の材質は比較
例に比べていずれも好結果が得られている。
Comparative Examples 5 and 3 in which the amounts of the magnesia binder and zirconium oxide added are too large are inferior in corrosion resistance and slag penetration resistance. Comparative Example 4, which uses zirconium oxide having a large average particle size, does not have the effect of corrosion resistance, probably because the reactivity with the magnesia binder is poor. In Comparative Example 9, zirconium oxide is added, but the binder is alumina cement and the effect of improving corrosion resistance is insufficient. Comparative Example 7 in which zirconium oxide, a magnesia binder, and alumina cement were used in combination was inferior in strength and corrosion resistance of the construction body. Also, in the actual machine test, good results were obtained for the materials of the examples of the present invention as compared with the comparative examples.

【0023】[0023]

【発明の効果】本発明は以上の実施例の結果からも明ら
かなように、アルミナ質、スピネル質またはアルミナ−
スピネル質の流し込み材において、耐食性が格段に向上
し、しかも耐スポーリング性などについて従来材質と比
べて遜色がない。その結果、実機試験では従来材質に相
当する比較例1および比較例2に比べ 1.4倍以上の耐
用性を示す。近年の炉操業は苛酷化の一途をたどり、し
かも耐火物原単位の低減を強く求められる中で、耐食性
に優れた本発明の流し込み材質の工業的価値はきわめて
高い。
As is clear from the results of the above examples, the present invention is based on alumina, spinel or alumina.
Corrosion resistance of spinel cast material is remarkably improved, and spalling resistance is comparable to conventional materials. As a result, in the actual machine test, the durability is 1.4 times or more that of Comparative Examples 1 and 2 corresponding to the conventional material. In recent years, furnace operations have become more and more severe, and while it is strongly demanded to reduce the basic unit of refractory, the casting material of the present invention having excellent corrosion resistance has an extremely high industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミナ質流し込み材において、酸化ジルコニ
ウムの添加割合と耐食性の関係をグラフ化したものであ
る。
FIG. 1 is a graph showing the relationship between the addition ratio of zirconium oxide and corrosion resistance in an alumina casting material.

【図2】耐食性と酸化ジルコニウムの平均粒径との関係
をグラフ化したものである。
FIG. 2 is a graph showing the relationship between corrosion resistance and the average particle size of zirconium oxide.

フロントページの続き (72)発明者 細川 清弘 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミツク株式会社内 (72)発明者 西脇 均 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミツク株式会社内 (72)発明者 西 浩一 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミツク株式会社内Front Page Continuation (72) Inventor Kiyohiro Hosokawa 1-3-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture Harima Maseramic Co., Ltd. (72) Inventor Hitoshi Nishiwaki 1-3-1 Niihama, Arai-cho, Takasago, Hyogo Harima Maseramic Co., Ltd. (72) Inventor Koichi Nishi 1-3-1 Niihama, Arai-cho, Takasago-shi, Hyogo Harima Maseramic Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナおよび/またはMgO・Al2
3系スピネルを主材とした配合組成物に、平均粒径が
150μm以下の酸化ジルコニウムを外掛け0.3〜5
重量%およびマグネシア結合剤を外掛け1〜10重量%
添加したことを特徴とする流し込み用不定形耐火物。
1. Alumina and / or MgO.Al 2
Zirconium oxide having an average particle size of 150 μm or less is externally coated on a compounded composition containing O 3 -based spinel as a main component to 0.3 to 5
Wt% and magnesia binder applied 1-10 wt%
A castable amorphous refractory characterized by being added.
JP3335452A 1991-11-26 1991-11-26 Monolithic refractory for casting Withdrawn JPH05148042A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3335452A JPH05148042A (en) 1991-11-26 1991-11-26 Monolithic refractory for casting
US07/977,247 US5283215A (en) 1991-11-26 1992-11-16 Refractories for casting process
GB9224925A GB2262522B (en) 1991-11-26 1992-11-26 Refractories for use in casting processes
KR1019920022484A KR930009958A (en) 1991-11-26 1992-11-26 Injection Molding Refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335452A JPH05148042A (en) 1991-11-26 1991-11-26 Monolithic refractory for casting

Publications (1)

Publication Number Publication Date
JPH05148042A true JPH05148042A (en) 1993-06-15

Family

ID=18288718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335452A Withdrawn JPH05148042A (en) 1991-11-26 1991-11-26 Monolithic refractory for casting

Country Status (2)

Country Link
JP (1) JPH05148042A (en)
KR (1) KR930009958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107309410A (en) * 2017-06-07 2017-11-03 唐山钢铁集团有限责任公司 The continuous cast method of steel for resisting sulfuric acid dew point corrosion
CN113173780A (en) * 2021-04-26 2021-07-27 郑州大学 Magnesia-bonded refractory castable containing in-situ spinel and preparation method thereof
CN117362008A (en) * 2023-10-13 2024-01-09 郑州金河源耐火材料有限公司 Periclase-spinel and hollow sphere composite brick and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107309410A (en) * 2017-06-07 2017-11-03 唐山钢铁集团有限责任公司 The continuous cast method of steel for resisting sulfuric acid dew point corrosion
CN113173780A (en) * 2021-04-26 2021-07-27 郑州大学 Magnesia-bonded refractory castable containing in-situ spinel and preparation method thereof
CN117362008A (en) * 2023-10-13 2024-01-09 郑州金河源耐火材料有限公司 Periclase-spinel and hollow sphere composite brick and preparation method thereof
CN117362008B (en) * 2023-10-13 2024-04-26 郑州金河源耐火材料有限公司 Periclase-spinel and hollow sphere composite brick and preparation method thereof

Also Published As

Publication number Publication date
KR930009958A (en) 1993-06-21

Similar Documents

Publication Publication Date Title
JPH0737344B2 (en) Irregular refractory with basic properties
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
US20050255986A1 (en) Monothilic refractory composition
JP3514393B2 (en) Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JP2874831B2 (en) Refractory for pouring
JPH05148042A (en) Monolithic refractory for casting
JPH10291868A (en) Castable refractory material having specific matrix and its wet spray executing method
JP2000203953A (en) Castable refractory for trough of blast furnace
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP2562767B2 (en) Pouring refractories
JP2604310B2 (en) Pouring refractories
JPH06321628A (en) Alumina-chromia-zircon-based sintered refractory brick
JPH0633179B2 (en) Irregular refractory for pouring
JP2975849B2 (en) Refractories for steelmaking
JP3212856B2 (en) Irregular cast refractories and their moldings
JPH0952169A (en) Refractory for tuyere of molten steel container
JPH09183674A (en) Monolithic refractory for flowing-in working
JPH0725668A (en) Refractory for casting work
JPH07206511A (en) Magnesia clinker, monolithic refractory and ladle for steel making
JPH02141480A (en) Castable refractory
JP3014545B2 (en) Irregular refractories for casting
JPH09142943A (en) High durable mobile prepared unshaped refractory material for container for molten metal
JPH05238838A (en) Amorphous refractory for casting
JPH04193772A (en) Castable refractory for lining molten steel vessel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204