JPH05144850A - Vapor epitaxial growth device and method of growing - Google Patents

Vapor epitaxial growth device and method of growing

Info

Publication number
JPH05144850A
JPH05144850A JP30459291A JP30459291A JPH05144850A JP H05144850 A JPH05144850 A JP H05144850A JP 30459291 A JP30459291 A JP 30459291A JP 30459291 A JP30459291 A JP 30459291A JP H05144850 A JPH05144850 A JP H05144850A
Authority
JP
Japan
Prior art keywords
substrate
gas
epitaxial growth
heating
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30459291A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishino
弘師 西野
Tetsuo Saito
哲男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30459291A priority Critical patent/JPH05144850A/en
Publication of JPH05144850A publication Critical patent/JPH05144850A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form easily the epitaxial crystal of an Hg1-XCdXTe with a stabilized composition or a superlattice structure having steep boundary surfaces by a method wherein the title device is provided with a reaction tube, a substrate heating stage, a preheating plate and a heating means, which are respectively specified, and the like. CONSTITUTION:A vapor epitaxial growth device is provided with a reaction tube 1 for housing a substrate 3 for epitaxial use, a substrate heating stage 2, which is installed in the tube 1 and heats the substrate 3 to be placed thereon, a preheating plate 12, which is provided in the vicinity of the stage 2, is provided with a heating region 11 and a non-heating region 47 and is provided with a moving means for removing selectively the region 11 only, and a heating means (a high-frequency induction coil) 5 for heating the stage 2 and the region 11 of the plate 12. Gases for epitaxial growth use, whose decomposition temperatures are different from each other, are made to flow in the tube 1 in synchronization with the movement of the region 11 of the plate 12 to the position on the gas inflow side of the substrate 3 or a position other than the position on the gas inflow side and the gases for epitaxial growth use are made to pass through over the region 11 or are fed on the substrate 3 in a state of non-passage. The device is constituted in such a way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水銀・カドミウム・テル
ル(Hg1-x Cd x Te) 等の水銀を含む2−6族の化合物半
導体の気相エピタキシャル成長装置、および成長方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase epitaxial growth apparatus and a growth method for a compound semiconductor of a group 2-6 containing mercury such as mercury cadmium tellurium (Hg 1-x Cd x Te).

【0002】このようなHg1-x Cdx Te等の化合物半導体
は、通常、ガリウム砒素(GaAs)等のエピタキシャル成
長用基板上にエピタキシャル層として形成されており、
この材料を用いて赤外線検知素子のような半導体デバイ
スを形成する際、基板上に形成されたエピタキシャル層
内の面内に於いてHg1-x Cdx Te結晶を構成する原子の組
成が均一な材料が要望される。
Such a compound semiconductor such as Hg 1-x Cd x Te is usually formed as an epitaxial layer on a substrate for epitaxial growth such as gallium arsenide (GaAs).
When forming a semiconductor device such as an infrared detector using this material, the composition of the atoms that make up the Hg 1-x Cd x Te crystal is uniform in the plane within the epitaxial layer formed on the substrate. Materials are required.

【0003】特にHg1-x Cdx Teのx値が異なると、応答
する赤外線の波長がx値により異なるので、検知すべき
赤外線の波長に対応して高感度を有するx値を有し、か
つx値がエピタキシャル成長用基板の全領域に於いて均
一な値を有するHg1-x Cdx Te結晶が望まれる。
Particularly, when the x value of Hg 1-x Cd x Te is different, the wavelength of the infrared ray which responds is different depending on the x value. A Hg 1-x Cd x Te crystal having a uniform x value over the entire area of the epitaxial growth substrate is desired.

【0004】[0004]

【従来の技術】従来、このようなHg1-x Cdx Te結晶をエ
ピタキシャル成長する場合、例えば図7(a)に示すよう
に、反応管1に設置した基板加熱台2上にGaAs等のエピ
タキシャル成長用基板3を載置し、この反応管1内を排
気する。
2. Description of the Related Art Conventionally, when epitaxially growing such an Hg 1-x Cd x Te crystal, for example, as shown in FIG. 7 (a), epitaxial growth of GaAs or the like is performed on a substrate heating table 2 installed in a reaction tube 1. The substrate 3 is placed and the inside of the reaction tube 1 is evacuated.

【0005】次いでガス導入管4より、水銀(Hg)、ジ
イソプロピルTe、ジメチルCdを担持した水素ガスの混合
ガスを、エピタキシャル成長用ガスとして反応管1内に
導入する。
Next, a mixed gas of hydrogen gas carrying mercury (Hg), diisopropyl Te and dimethyl Cd is introduced into the reaction tube 1 as a gas for epitaxial growth through the gas introduction tube 4.

【0006】そしてエピタキシャル成長用の基板3を反
応管の周囲に設けた高周波誘導コイル5にて加熱するこ
とで、基板3上に到達したエピタキシャル成長用ガスを
熱分解してHg1-x Cdx Te結晶をエピタキシャル成長して
いる。
Then, the substrate 3 for epitaxial growth is heated by the high frequency induction coil 5 provided around the reaction tube, so that the gas for epitaxial growth reaching the substrate 3 is thermally decomposed and the Hg 1-x Cd x Te crystal is produced. Is epitaxially grown.

【0007】ところで、上記した水銀は原子の状態であ
り、またジメチルCdの分解温度は230 ℃で、ジイソプロ
ピルTeの分解温度の300 ℃に対して分解温度が低い。ま
たジメチルCdが分解して生成されたCd原子とジイソプロ
ピルTeが分解して生成されたTe原子が反応して形成され
るCdTe結晶の生成エネルギーは、21Kcal/mol( 生成エン
タルピーは、−24.6Kcal/mol) でこの値は、Te原子とHg
原子が反応して生成されるHgTe結晶の生成エネルギーの
30Kcal/mol( 生成エンタルピーは−8.1Kcal/mol)の値に
比して低い。
By the way, the above mercury is in an atomic state, and the decomposition temperature of dimethyl Cd is 230 ° C., which is lower than the decomposition temperature of diisopropyl Te of 300 ° C. The energy of formation of a CdTe crystal formed by the reaction of the Cd atom generated by decomposition of dimethyl Cd and the Te atom generated by decomposition of diisopropyl Te is 21 Kcal / mol (enthalpy of formation is −24.6 Kcal / mol) is the value of Te atom and Hg
Of the formation energy of HgTe crystals formed by the reaction of atoms
It is lower than the value of 30 Kcal / mol (enthalpy of formation is -8.1 Kcal / mol).

【0008】そして上記したHg1-x Cdx Te結晶は、CdTe
結晶とHgTe結晶の混晶であり、この両者の結晶の混合割
合が異なると、Hg1-x Cdx Teのx値も変動し、組成変動
が起こるとされている。
The above-mentioned Hg 1-x Cd x Te crystal is CdTe
It is said that it is a mixed crystal of crystals and HgTe crystals, and if the mixing ratio of these crystals is different, the x value of Hg 1-x Cd x Te will also change, and composition change will occur.

【0009】従来のようにエピタキシャル成長用ガスを
総て混合してエピタキシャル成長用基板3上に供給した
場合、図7(b)に示すように、エピタキシャル成長用基板
3上に生成エネルギーの大きいHgTe結晶を均一に成長し
ようとすると、ガス流入側で生成エネルギーの小さいCd
Te結晶の生成速度が速く、HgTeよりもCdTeが先に生成す
る傾向がある。
When all the epitaxial growth gases are mixed and supplied onto the epitaxial growth substrate 3 as in the conventional case, as shown in FIG. 7 (b), HgTe crystals having a large generation energy are uniformly formed on the epitaxial growth substrate 3. Cd, which has a small generation energy on the gas inflow side,
The formation rate of Te crystals is high, and CdTe tends to form earlier than HgTe.

【0010】このため、エピタキシャル成長用基板のガ
ス流入側で、CdTe生成用のエピタキシャル成長用ガス
(ジメチルCd)が消費されるので、曲線aに示すように
生成量の分布が起こる。
Therefore, since the epitaxial growth gas (dimethyl Cd) for CdTe generation is consumed on the gas inflow side of the epitaxial growth substrate, a distribution of the generated amount occurs as shown by the curve a.

【0011】このガス消費を抑えるために、該ガスの流
速を増加させるとエピタキシャル成長用ガスの加熱が不
充分となり、生成エネルギーの大きいHgTe結晶の生成が
起こり難く成る傾向が生じる。
If the flow velocity of the gas is increased in order to suppress the gas consumption, the heating of the epitaxial growth gas becomes insufficient, and it tends to be difficult to generate HgTe crystals having a large generation energy.

【0012】従ってガス流速を速くしても、或いは遅く
しても組成(x)値の不均一なHg1- x Cdx Te結晶が成長
する傾向がある。このような組成の不均一を防止するた
め、第1の方法として、例えばCdTe結晶が基板全面に均
一に生成されるようなガス流速、エピタキシャル成長温
度でCdTe結晶を形成する。またHgTeが基板全面に均一に
生成されるようなガス流速、エピタキシャル成長温度で
HgTeを形成する。そしてこのCdTe結晶とHgTe結晶を交互
に成長して積層し、両者の相互拡散によって基板上に均
一な組成のHg1-x Cdx Te結晶をエピタキシャル成長する
方法がある。
Therefore, even if the gas flow velocity is increased or decreased, Hg 1- x Cd x Te crystals having a nonuniform composition (x) value tend to grow. In order to prevent such nonuniformity of the composition, as a first method, for example, the CdTe crystal is formed at a gas flow rate and an epitaxial growth temperature at which the CdTe crystal is uniformly generated on the entire surface of the substrate. Also, at a gas flow rate and epitaxial growth temperature at which HgTe is uniformly generated on the entire surface of the substrate.
Form HgTe. Then, there is a method in which the CdTe crystal and the HgTe crystal are alternately grown and laminated, and the Hg 1-x Cd x Te crystal having a uniform composition is epitaxially grown on the substrate by mutual diffusion of the both.

【0013】また、第2の方法として、例えば、分解温
度の低いジイソプロピルTeを予め、加熱して分解を容易
にすることで、Te原子の生成速度を高め、これをHgガス
と反応させることで、CdTeに対して生成速度の遅いHgTe
の生成速度を高めて、基板上でCdTe結晶とHgTe結晶の生
成速度を等しく保つ方法がある。
As a second method, for example, by heating diisopropyl Te having a low decomposition temperature in advance to facilitate decomposition, the production rate of Te atoms is increased, and this is reacted with Hg gas. , HgTe, whose generation rate is slower than that of CdTe
There is a method of increasing the production rate of CdTe crystal and HgTe crystal on the substrate to increase the production rate of CdTe.

【0014】この第2の方法は、本出願人が以前に特願
平3-52339 号に於いて提案した方法である。
This second method is a method previously proposed by the applicant in Japanese Patent Application No. 3-52339.

【0015】[0015]

【発明が解決しようとする課題】ところで、従来の第1
の方法では、積層されるCdTe結晶とHgTe結晶の成長の度
にジメチルCdガス、或いはジイソプロピルTeガスの流量
や、圧力を変動させねばならず、このガス流量や、圧力
の調整時にガス流が不安定になる問題がある。
By the way, the conventional first
In this method, the flow rate and pressure of dimethyl Cd gas or diisopropyl Te gas must be changed each time the stacked CdTe crystal and HgTe crystal grow, and the gas flow rate and the gas flow must be adjusted when the pressure is adjusted. There is a problem of becoming stable.

【0016】上記した問題点によって、CdTe結晶とHgTe
結晶の組成が基板上に均一に形成されず、また超格子構
造の作成では、組成の異なる結晶の境界面に於いて、組
成が急激に変化しない問題がある。
Due to the above problems, CdTe crystal and HgTe
There is a problem that the composition of the crystal is not formed uniformly on the substrate, and in the formation of the superlattice structure, the composition does not abruptly change at the boundary surface of the crystals having different compositions.

【0017】また第2の方法では、エピタキシャル成長
用ガス流が、不安定となることは無いが、この方法では
HgTe結晶やCdTe結晶を交互に形成する場合に、予備加熱
部の温度を上昇、或いは降下させねば成らず、温度制御
に時間が掛り、成長が連続的に行い得ないといった問題
がある。
In the second method, the gas flow for epitaxial growth does not become unstable.
When HgTe crystals and CdTe crystals are alternately formed, there is a problem that the temperature of the preheating section must be raised or lowered, temperature control takes time, and growth cannot be continuously performed.

【0018】このため、組成の異なる結晶に切り換える
際に形成される結晶の表面が荒れたり、或いは急峻な境
界面を有する超格子構造が実現できない問題がある。本
発明は上記した問題点を解決し、基板の全領域に渡って
均一な組成のHg1-x Cdx Teのエピタキシャル結晶が得ら
れるようにした気相エピタキシャル成長装置、およびそ
の成長方法の提供を目的とする。
Therefore, there is a problem that the surface of the crystal formed when switching to a crystal having a different composition is rough or a superlattice structure having a steep boundary surface cannot be realized. The present invention solves the above-mentioned problems, and provides a vapor phase epitaxial growth apparatus and a growth method therefor capable of obtaining an epitaxial crystal of Hg 1-x Cd x Te having a uniform composition over the entire region of a substrate. To aim.

【0019】[0019]

【課題を解決するための手段】本発明の気相エピタキシ
ャル成長装置は、請求項1に示すように、反応管内に収
容されたエピタキシャル成長用基板上に分解温度がそれ
ぞれ異なるエピタキシャル成長用ガスを供給して、該基
板上に生成エネルギーがそれぞれ異なるエピタキシャル
層を形成する装置に於いて、前記エピタキシャル成長用
基板を収容する反応管と、該反応管内に設置され、前記
エピタキシャル成長用基板を載置し、該基板を加熱する
基板加熱台と、該基板加熱台の近傍に設けられ、加熱領
域と非加熱領域とを備え、該反応管内に流入されるエピ
タキシャル成長用ガスのガス流入側、或いはガス流入側
以外の位置に、前記基板加熱台と独立して、加熱領域の
みが選択的に移動する移動手段を備えた予備加熱板と、
前記基板加熱台と前記予備加熱板の加熱領域を加熱する
加熱手段を備え、前記予備加熱板の加熱領域を、前記エ
ピタキシャル成長用基板のガス流入側、或いはガス流入
側以外の位置に移動するのと同期して、分解温度がそれ
ぞれ異なるエピタキシャル成長用ガスを反応管内に流入
し、前記エピタキシャル成長用ガスが、前記加熱領域上
を通過、或いは非通過の状態で、基板上に供給されるよ
うにしたことを特徴とする。
The vapor phase epitaxial growth apparatus of the present invention, as set forth in claim 1, supplies epitaxial growth gases having different decomposition temperatures onto an epitaxial growth substrate contained in a reaction tube, In an apparatus for forming epitaxial layers having different generated energies on the substrate, a reaction tube accommodating the substrate for epitaxial growth, a reaction tube installed in the reaction tube, the substrate for epitaxial growth is placed, and the substrate is heated. The substrate heating table to be, and provided in the vicinity of the substrate heating table, comprising a heating region and a non-heating region, the gas inflow side of the epitaxial growth gas flowing into the reaction tube, or at a position other than the gas inflow side, Independently of the substrate heating table, a preheating plate provided with a moving means for selectively moving only the heating region,
A heating means for heating the heating region of the substrate heating table and the preheating plate, and moving the heating region of the preheating plate to a gas inflow side of the epitaxial growth substrate or a position other than the gas inflow side. In synchronism, the epitaxial growth gases having different decomposition temperatures are flown into the reaction tube, and the epitaxial growth gas is supplied onto the substrate while passing through the heating region or not passing therethrough. Characterize.

【0020】また請求項2に示すように、請求項1記載
の非加熱領域と加熱領域を有する予備加熱板をドーナツ
形状として、円板状の基板加熱台の側面に同心円状に配
置し、前記予備加熱板を前記基板加熱台の回転とは独立
して回転移動させ、前記予備加熱板の加熱領域が、前記
基板のガス流入側、或いは基板のガス流入側以外の領域
に移動可能としたことを特徴とする。
According to a second aspect of the present invention, the preheating plate having the non-heating region and the heating region according to the first aspect is formed into a donut shape and is concentrically arranged on a side surface of a disk-shaped substrate heating table. The preheating plate is rotationally moved independently of the rotation of the substrate heating table so that the heating region of the preheating plate can be moved to a gas inflow side of the substrate or a region other than the gas inflow side of the substrate. Is characterized by.

【0021】また請求項3に示すように、前記予備加熱
板の加熱領域を電磁波の吸収し易い材料で形成し、前記
予備加熱板の非加熱領域を電磁波の吸収し難い材料で形
成し、前記予備加熱板の加熱領域を基板加熱台の加熱手
段で加熱することを特徴とする。
According to a third aspect of the present invention, the heating region of the preheating plate is formed of a material that easily absorbs electromagnetic waves, and the non-heating region of the preheating plate is formed of a material that hardly absorbs electromagnetic waves. The heating area of the preheating plate is heated by the heating means of the substrate heating table.

【0022】また請求項4に示すように、前記予備加熱
板の加熱領域をエピタキシャル成長用基板のガス流入側
に移動した時点で、水銀ガスと分解温度の高いエピタキ
シャル成長用ガスを反応管内に流入して生成エネルギー
の大きいエピタキシャル結晶を成長すると共に、加熱領
域をガス流入側以外の領域に移動した時点で、水銀ガス
と分解温度の高いエピタキシャル成長用ガスと分解温度
の低いエピタキシャル成長用ガスとを反応管内に流入し
て生成エネルギーの小さいエピタキシャル結晶を成長
し、形成される両方のエピタキシャル結晶の相互拡散に
より基板上に水銀を含む化合物半導体結晶を成長するこ
とを特徴とする。
Further, as described in claim 4, when the heating region of the preheating plate is moved to the gas inflow side of the epitaxial growth substrate, mercury gas and epitaxial growth gas having a high decomposition temperature are flown into the reaction tube. While growing an epitaxial crystal with large production energy, when the heating region is moved to a region other than the gas inflow side, mercury gas, an epitaxial growth gas with a high decomposition temperature and an epitaxial growth gas with a low decomposition temperature are introduced into the reaction tube. Then, an epitaxial crystal having a small generation energy is grown, and a compound semiconductor crystal containing mercury is grown on the substrate by mutual diffusion of both formed epitaxial crystals.

【0023】また請求項5に示すように、前記予備加熱
板の加熱領域をエピタキシャル成長用基板のガス流入側
に移動した時点で、水銀ガスと分解温度の高いエピタキ
シャル成長用ガスを反応管内に流入し、該基板上に生成
エネルギーの高い化合物半導体結晶を成長することを特
徴とする。
Further, as described in claim 5, when the heating region of the preheating plate is moved to the gas inflow side of the epitaxial growth substrate, the mercury gas and the epitaxial growth gas having a high decomposition temperature are flown into the reaction tube, It is characterized in that a compound semiconductor crystal having a high generation energy is grown on the substrate.

【0024】また請求項6に示すように、前記予備加熱
板の加熱領域をエピタキシャル成長用基板のガス流入側
に移動した時点で、水銀ガスと分解温度の低いエピタキ
シャル成長用ガスと分解温度の高いエピタキシャル成長
用ガスを反応管内に流入して基板上に生成エネルギーの
大きいエピタキシャル結晶と、生成エネルギーの小さい
エピタキシャル結晶の混合した結晶か、或いは水銀ガス
と分解温度の高いエピタキシャル成長用ガスを反応管に
流入して生成エネルギーの大きいエピタキシャル結晶を
成長するとともに、前記予備加熱板の加熱領域を、前記
基板のガス流入側以外の位置に移動した時点で、水銀ガ
スと分解温度の低いエピタキシャル成長用ガスと、分解
温度の高いエピタキシャル成長用ガスを、反応管内に導
入して基板上に生成エネルギーの小さいエピタキシャル
結晶を成長し、上記生成エネルギーが大のエピタキシャ
ル結晶を含む結晶層、および生成エネルギーの小さいエ
ピタキシャル結晶を交互に順次積層して超格子構造とす
ることを特徴とする。
Further, as described in claim 6, when the heating region of the preheating plate is moved to the gas inflow side of the epitaxial growth substrate, mercury gas, an epitaxial growth gas having a low decomposition temperature and an epitaxial growth gas having a high decomposition temperature are used. Gas is introduced into the reaction tube and either a crystal with a large production energy and an epitaxial crystal with a low production energy is mixed on the substrate, or mercury gas and an epitaxial growth gas with a high decomposition temperature are introduced into the reaction tube to produce the gas. While growing an epitaxial crystal with large energy, when the heating region of the preheating plate is moved to a position other than the gas inflow side of the substrate, mercury gas, an epitaxial growth gas with a low decomposition temperature, and a high decomposition temperature The gas for epitaxial growth is introduced into the reaction tube and generated on the substrate. Growing energy small epitaxial crystal, characterized in that the generated energy and the crystal layer, and sequentially stacked superlattice structure generate energy small epitaxial crystal alternating containing most of the epitaxial crystals.

【0025】[0025]

【作用】Hg1-x Cdx Te結晶に於いては、混晶中のCdTe結
晶とHgTe結晶とでは、HgTeの生成エネルギーが、CdTeの
生成エネルギーよりも高いため、HgTeの生成速度が遅く
なる。このため、Hgの原料のHgガス、Teの原料のジイソ
プロピルTeガスの予備加熱を行わずに、総ての原料ガ
ス、つまりHgガス、ジイソプロピルTeガス、ジメチルCd
ガスを混合して同時に反応管に流した場合は、図6(a)に
示すようにガス流速が速いと、HgTeの生成が不充分とな
り、HgTeの生成量が基板のガス流入側より見て後方とな
り、組成の不均一を招く。図でa はCdTeの生成曲線、b
はHgTeの生成曲線、3はエピタキシャル成長用基板、縦
軸はCdTe、或いはHgTeの生成量、横軸はガスの移動方向
より見た反応管の位置である。
[Function] In Hg 1-x Cd x Te crystals, the HgTe formation energy is higher than the CdTe formation energy between the CdTe crystal and the HgTe crystal in the mixed crystal, so the HgTe formation rate becomes slower. .. Therefore, all the source gases, that is, Hg gas, diisopropyl Te gas, and dimethyl Cd, without preheating the Hg gas as the Hg source material and the diisopropyl Te gas as the Te source material.
When the gases are mixed and flowed in the reaction tube at the same time, as shown in Fig. 6 (a), when the gas flow rate is high, HgTe is not sufficiently produced, and the amount of HgTe produced is seen from the gas inflow side of the substrate. This is the rear, which causes nonuniform composition. In the figure, a is the CdTe generation curve, b
Is the HgTe generation curve, 3 is the substrate for epitaxial growth, the vertical axis is the amount of CdTe or HgTe generated, and the horizontal axis is the position of the reaction tube as seen from the gas moving direction.

【0026】一方、ガス流速が遅いと、図6(b)に示すよ
うにCdTe結晶が基板の前方で殆ど生成されてしまい、や
はり組成の不均一を招く。図でa はCdTeの生成曲線、b
はHgTeの生成曲線、3はエピタキシャル成長用基板、縦
軸はCdTe、或いはHgTeの生成量、横軸はガスの移動方向
よりみた反応管の位置である。
On the other hand, when the gas flow velocity is low, CdTe crystals are almost generated in front of the substrate as shown in FIG. 6 (b), which also causes nonuniform composition. In the figure, a is the CdTe generation curve, b
Is the HgTe generation curve, 3 is the substrate for epitaxial growth, the vertical axis is the amount of CdTe or HgTe generated, and the horizontal axis is the position of the reaction tube as seen from the gas moving direction.

【0027】そこで、本発明では図1に示すように、加
熱領域11と非加熱領域47を有する予備加熱板12の加熱領
域11のみを、エピタキシャル成長用基板3のい近傍に設
けることで、Hgガス、ジイソプロピルTeガスを予め、加
熱してエネルギーを与えておき、CdTeの生成と同時にHg
Teの生成が起こるようにする。
Therefore, in the present invention, as shown in FIG. 1, by providing only the heating region 11 of the preheating plate 12 having the heating region 11 and the non-heating region 47 in the vicinity of the epitaxial growth substrate 3, Hg gas can be obtained. , Diisopropyl Te gas was previously heated to give energy, and Hg
Allow Te generation to occur.

【0028】この時、予備加熱板12の加熱領域11をエピ
タキシャル成長用基板のガス流入側より、該流入側以外
の位置に移動可能にしておくことで、エピタキシャル成
長用ガスの流速や、エピタキシャル成長温度等の成長条
件は一定のまま、予備加熱板12の加熱領域11の有無によ
って、基板上にHgTeを生成させたり、或いはHgTeの生成
を無くしたりする。
At this time, the heating region 11 of the preheating plate 12 can be moved from the gas inflow side of the epitaxial growth substrate to a position other than the gas inflow side, so that the flow rate of the epitaxial growth gas, the epitaxial growth temperature, etc. With the growth conditions kept constant, HgTe is generated on the substrate or HgTe is not generated depending on the presence or absence of the heating region 11 of the preheating plate 12.

【0029】即ち、本発明により次の成長が可能とな
る。 (1) Hg、ジメチルCd、ジイソプロピルTeのガスを反応管
1内にガス流速が10リットル/minで流し、予備加熱板12
の加熱領域11をエピタキシャル成長用基板3のガス流入
側に設置する。
That is, according to the present invention, the following growth is possible. (1) Gases of Hg, dimethyl Cd, and diisopropyl Te were flown into the reaction tube 1 at a gas flow rate of 10 liter / min, and the preheating plate 12
The heating region 11 is installed on the gas inflow side of the epitaxial growth substrate 3.

【0030】この条件でエピタキシャル成長すると、基
板3上でCdTeとHgTeが同等な生成速度となるため、組成
の均一なHg1-x Cdx Te結晶が基板の全面に得られる。図
5の曲線aにこの状態を示す。図で横軸は反応管の位
置、縦軸はCdTe、或いはHgTeの生成量を示す。 (2) Hg、ジメチルCd、ジイソプロピルTeのガスを反応管
1内に流し、予備加熱板12の加熱領域11をエピタキシャ
ル成長用基板3のガス流入側より他の位置(ガス流入側
と反対側の位置)に移動し、エピタキシャル成長用基板
3のガス流出側に設置する。
When epitaxial growth is performed under these conditions, CdTe and HgTe have the same generation rate on the substrate 3, so that Hg 1-x Cd x Te crystals having a uniform composition can be obtained on the entire surface of the substrate. This state is shown in the curve a of FIG. In the figure, the horizontal axis represents the position of the reaction tube, and the vertical axis represents the amount of CdTe or HgTe produced. (2) Gases of Hg, dimethyl Cd, and diisopropyl Te are made to flow into the reaction tube 1, and the heating region 11 of the preheating plate 12 is located at a position other than the gas inflow side of the epitaxial growth substrate 3 (position opposite to the gas inflow side). ), And it is installed on the gas outflow side of the epitaxial growth substrate 3.

【0031】この条件で、ガス流速を10リットル/minと
増大させることで、エピタキシャル成長すると、厚さが
均一なCdTe結晶が基板3の全面に成長する。図の曲線b
にこの状態を示す。図で横軸は反応管の位置、縦軸はCd
Te、或いはHgTeの生成量を示す。 (3) Hg、ジイソプロピルTeガスを反応管1内にガス流速
が10リットル/minで流し、予備加熱板12の加熱領域11を
エピタキシャル成長用基板3のガス流入側に設置する。
Under this condition, when the gas flow rate is increased to 10 liters / min and epitaxial growth is performed, CdTe crystals having a uniform thickness grow on the entire surface of the substrate 3. Curve b in the figure
Shows this state. In the figure, the horizontal axis is the position of the reaction tube and the vertical axis is Cd.
Indicates the amount of Te or HgTe produced. (3) Hg and diisopropyl Te gas are caused to flow in the reaction tube 1 at a gas flow rate of 10 l / min, and the heating region 11 of the preheating plate 12 is installed on the gas inflow side of the epitaxial growth substrate 3.

【0032】この条件でエピタキシャル成長すると、厚
さが均一なHgTe結晶が基板上の全面に成長する。図の曲
線cにこの状態を示す。図で横軸は反応管の位置、縦軸
はCdTe、或いはHgTeの生成量を示す。
When epitaxial growth is performed under these conditions, HgTe crystals having a uniform thickness grow on the entire surface of the substrate. This is shown in the curve c in the figure. In the figure, the horizontal axis represents the position of the reaction tube, and the vertical axis represents the amount of CdTe or HgTe produced.

【0033】また図5の曲線dは、反応管内にHg、ジメ
チルCd、ジイソプロピルTeをガス流速が10リットル/min
で流し、加熱領域を基板のガス導入側より反対側に移動
した場合のHgTeの生成曲線を示したものである。
Curve d in FIG. 5 shows that Hg, dimethyl Cd, and diisopropyl Te are introduced into the reaction tube at a gas flow rate of 10 liter / min.
FIG. 3 shows a HgTe generation curve when the heating region is moved to the opposite side from the gas introduction side of the substrate by flowing at.

【0034】上記した(1) 、(2) 、(3) の状態は、エピ
タキシャル成長用ガスの反応管1への供給状態と、予備
加熱板12の加熱領域11のエピタキシャル成長用基板3に
対してガス流入側か、或いはガス流出側かを選択するこ
とで自由に調整できるので、ガス流を安定させた状態
で、連続的に組成比の異なる結晶を積層形成することが
できる。
The above-mentioned states (1), (2) and (3) correspond to the state of supply of the epitaxial growth gas to the reaction tube 1 and the gas for the epitaxial growth substrate 3 in the heating region 11 of the preheating plate 12. Since it can be freely adjusted by selecting either the inflow side or the gas outflow side, it is possible to continuously form a stack of crystals having different composition ratios while the gas flow is stabilized.

【0035】予備加熱板12の加熱領域11を、エピタキシ
ャル成長用基板3のガス流入側に固定した場合でも、ジ
メチルCd、ジイソプロピルTeの原料ガスのみを流すと、
厚さが均一なCdTe結晶が得られるが、このようにする
と、高温のジイソプロピルTeと高温のジメチルCdが反応
することになり、気相中での反応が急激と成って、形成
されるCdTe結晶の表面が荒れる問題があるので、上記し
た(2) の条件を採用する。
Even when the heating region 11 of the preheating plate 12 is fixed to the gas inflow side of the epitaxial growth substrate 3, if only the source gases of dimethyl Cd and diisopropyl Te are flown,
A CdTe crystal with a uniform thickness can be obtained.However, in this way, high-temperature diisopropyl Te and high-temperature dimethyl Cd react with each other, and the reaction in the gas phase becomes abrupt to form a CdTe crystal. Since there is a problem that the surface of is rough, the condition of (2) above is adopted.

【0036】またHgガスを流す配管は、Hgの凝固を防ぐ
ために、高温に保つ必要があり、使用するガスの切替え
バルブの信頼性や耐久性に問題があるので、Hgガスの反
応管への流入、非流入の切替えは行わない方が良い。
Further, the piping for flowing the Hg gas needs to be kept at a high temperature in order to prevent the solidification of Hg, and there is a problem in the reliability and durability of the switching valve for the gas used. It is better not to switch between inflow and non-inflow.

【0037】またHgの基板への供給を停止すると、Hgの
解離圧が高いので、Hg空孔がHg1-x Cdx Te結晶に発生し
易く、また超格子構造を形成するために、HgTe、Hg1-x
Cdx TeからCdTeを連続的に成長する場合に、下層のHgT
e、Hg1-x Cdx Teの表面が荒れ、形成されるCdTe層も表
面が荒れるので、HgTe、Hg1-x Cdx TeとCdTeを交互に連
続して多層構造に積層して超格子構造を形成するには、
本発明のようにHgバルブの切替えを行わずに、常にHgの
供給を継続したまま、加熱領域の位置を変動して連続成
長すると良い。
When the supply of Hg to the substrate is stopped, the dissociation pressure of Hg is high, so that Hg vacancies are likely to occur in the Hg 1-x Cd x Te crystal and a superlattice structure is formed. , Hg 1-x
When continuously growing CdTe from Cd x Te, the lower layer of HgT
e, The surface of Hg 1-x Cd x Te is rough, and the surface of the formed CdTe layer is also rough.HgTe, Hg 1-x Cd x Te and CdTe are alternately stacked in a multilayer structure to form a superlattice. To form the structure,
It is advisable to carry out continuous growth by changing the position of the heating region while continuously supplying Hg without switching the Hg valve as in the present invention.

【0038】このように本発明によれば、ガス流を安定
な状態に保って、大面積の基板上に組成の均一なHg1-x
Cdx Te結晶が、このx 値を任意に変えた状態で、成長可
能となる。また組成の切替えも安定して急速に行い得る
ので、組成比の異なる混晶から成るHg1-x Cdx Teの交互
層や、CdTe層とHg1-x Cdx Teの交互層による超格子構造
が、積層される結晶の境界面の組成変動を急峻にした状
態で得られる。
As described above, according to the present invention, Hg 1-x having a uniform composition can be formed on a large-area substrate while maintaining a stable gas flow.
Cd x Te crystals can grow with this x value arbitrarily changed. In addition, since composition switching can be performed stably and rapidly, superlattices formed by alternating layers of Hg 1-x Cd x Te composed of mixed crystals with different composition ratios or alternating layers of CdTe layers and Hg 1-x Cd x Te The structure is obtained with a sharp composition variation at the boundary surface of the stacked crystals.

【0039】上記したことを表1にまとめて示す。The above is summarized in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【実施例】以下、図面を用いて本発明の実施例に付き詳
細に説明する。図1(a)に示すように、本発明の気相エピ
タキシャル成長装置は、エピタキシャル成長用基板3を
収容する反応管1と、該反応管1内に設置され前記基板
3を載置し、基板を加熱する円板状の基板加熱台2より
なる。
Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 1 (a), the vapor phase epitaxial growth apparatus of the present invention includes a reaction tube 1 for accommodating a substrate 3 for epitaxial growth, a substrate 3 placed in the reaction tube 1, and the substrate 3 placed thereon. The substrate heating table 2 has a disk shape.

【0042】また図1(b)に示すように、この基板加熱台
2の周囲には、エピタキシャル成長用基板3の回転とは
別個に独立して回転移動し、一部にグラファイトよりな
る加熱領域11で、他の部分が非加熱領域47の石英製の
予備加熱板12が配置され、この反応管1の周囲には、基
板加熱台2と前記予備加熱板12の加熱領域11を加熱する
高周波誘導コイル5が設置されている。
Further, as shown in FIG. 1 (b), a heating region 11 composed of graphite partially rotates around the substrate heating table 2 independently of the rotation of the epitaxial growth substrate 3. Then, a quartz preheating plate 12 having a non-heating region 47 in the other part is arranged, and a high frequency induction for heating the substrate heating table 2 and the heating region 11 of the preheating plate 12 is provided around the reaction tube 1. The coil 5 is installed.

【0043】そして反応管1の予備加熱板12よりガス流
入側には、該反応管3を水平方向に分割する仕切り板13
が設けられ、この仕切り板13の上部にと、分解温度の低
いジメチルCdガスが流入され、この仕切り板13の下部に
は、分解温度の高いジイソプロピルTeガスが流入される
ように成っている。
A partition plate 13 for horizontally dividing the reaction tube 3 is provided on the gas inflow side of the preheating plate 12 of the reaction tube 1.
The dimethyl Cd gas having a low decomposition temperature is introduced into the upper portion of the partition plate 13, and the diisopropyl Te gas having a high decomposition temperature is introduced into the lower portion of the partition plate 13.

【0044】またこの反応管1の予備加熱板12よりガス
流入側には、反応管1が分岐され、この分岐管14よりHg
ガスが反応管1内に流入する。この水銀ガスが通過する
分岐管14、および反応管1の周囲は水銀ガスの凝固を防
止するため、適当な断熱材15が巻かれ、その内部には保
温ヒータが埋設されている。
The reaction tube 1 is branched from the preheating plate 12 of the reaction tube 1 to the gas inflow side, and Hg is branched from the branch tube 14.
The gas flows into the reaction tube 1. An appropriate heat insulating material 15 is wound around the branch tube 14 through which the mercury gas passes and the reaction tube 1 in order to prevent the mercury gas from solidifying, and a heat insulating heater is embedded in the inside thereof.

【0045】また図2に示すように、基板加熱台2は、
円板状で周囲に突出部21B を設けた支持台16上に設置さ
れ、この支持台16の突出部の一部はくり抜かれて石英製
の歯車17A を有するシャフト18A が設置され、該シャフ
ト18A は反応管1の外側に導出されている。そして基板
加熱台2の底部に形成されたネジ19A と前記歯車17Aは
嵌合する構造とする。そして支持台16の中央に設けら
れた突出部21A と上記基板加熱台2の底部は嵌合し、シ
ャフト18A を回転することで、基板加熱台2は予備加熱
板12に対して独立に回転移動する。
Further, as shown in FIG. 2, the substrate heating table 2 is
It is installed on a support 16 having a disk shape and provided with protrusions 21B on the periphery, and a part of the protrusion of this support 16 is hollowed out to install a shaft 18A having a gear 17A made of quartz. Are led out to the outside of the reaction tube 1. The screw 19A formed on the bottom of the substrate heating table 2 and the gear 17A are fitted together. Then, the protrusion 21A provided at the center of the support base 16 and the bottom portion of the substrate heating base 2 are fitted to each other, and the shaft 18A is rotated, so that the substrate heating base 2 is rotated independently of the preheating plate 12. To do.

【0046】また予備加熱板12は基板加熱台2と別個に
独立して回転移動できるように石英製の歯車17B とシャ
フト18B が設けられ、該シャフト18B は前記したのと同
様に反応管1の外側に導出されている。そして予備加熱
板12の底部に形成されたネジ19B と前記歯車17B は嵌合
する構造とする。
Further, the preheating plate 12 is provided with a quartz gear 17B and a shaft 18B so as to be independently rotatable independently of the substrate heating table 2, and the shaft 18B is provided in the reaction tube 1 in the same manner as described above. It is led out. The screw 19B formed on the bottom of the preheating plate 12 and the gear 17B are fitted together.

【0047】このような本発明の気相エピタキシャル成
長装置を用いてGaAs基板上にHg1-x Cdx Te結晶をエピタ
キシャル成長する場合について述べる。図1(a)に示すよ
うに、GaAsよりなるエピタキシャル成長用基板3を、反
応管1の基板加熱台2に載置し、該反応管1内を排気し
た後、該基板加熱台2を600 ℃の温度に加熱して基板表
面を水素処理して清浄化し、次いで基板加熱台2を温度
を350 ℃のエピタキシャル成長温度に降下させる。
A case where an Hg 1-x Cd x Te crystal is epitaxially grown on a GaAs substrate by using such a vapor phase epitaxial growth apparatus of the present invention will be described. As shown in FIG. 1 (a), a substrate 3 for epitaxial growth made of GaAs is placed on the substrate heating table 2 of the reaction tube 1, the inside of the reaction tube 1 is evacuated, and then the substrate heating table 2 is heated to 600 ° C. To clean the surface of the substrate by hydrogen treatment, and then the temperature of the substrate heating table 2 is lowered to the epitaxial growth temperature of 350 ° C.

【0048】そして分岐管14に連なるHgを収容せる水銀
蒸発器43の温度を250 ℃とし、断熱材15に埋設されてい
る保温ヒータ( 図示せず) を、水銀ガスの凝固を防止す
るために、250 ℃の温度に加熱して保温する。
Then, the temperature of the mercury vaporizer 43 for accommodating Hg connected to the branch pipe 14 is set to 250 ° C., and a heat insulation heater (not shown) embedded in the heat insulating material 15 is used to prevent solidification of mercury gas. Insulate by heating to a temperature of 250 ° C.

【0049】次いでシャフト18B を回転させて、予備加
熱板12の加熱領域11をエピタキシャル成長用基板3のガ
ス流出側に移動し、この状態でバルブ44を開放にしてジ
メチルCd蒸発器41ない水素ガスを導入し、ジメチルCdの
分圧が5 ×10-5気圧に成るように、流量制御器50A,51A
を調節する。またバルブ45を開放にしてジイソプロピル
Te蒸発器42内に水素ガスを導入し、該ジイソプロピルTe
の分圧を5 ×10-4気圧となるように、流量制御器50B,51
B を調整する。またバルブ46は閉じて水銀蒸発器43内に
水素ガスが流入しないようにする。
Next, the shaft 18B is rotated to move the heating region 11 of the preheating plate 12 to the gas outflow side of the substrate 3 for epitaxial growth, and in this state, the valve 44 is opened and the hydrogen gas in the dimethyl Cd evaporator 41 is not supplied. Flow rate controller 50A, 51A so that the partial pressure of dimethyl Cd becomes 5 × 10 -5 atm.
Adjust. Also, open the valve 45 and use diisopropyl
Hydrogen gas was introduced into the Te evaporator 42 and the diisopropyl Te
The partial pressure of such a 5 × 10 -4 atm, a flow rate controller 50B, 51
Adjust B. The valve 46 is closed to prevent hydrogen gas from flowing into the mercury vaporizer 43.

【0050】そして水素ガスとジイソプロピルTeとジメ
チルCdの総流量を10リットル/min、水素ガスとジメチル
CdとジイソプロピルTeの全圧力を300torr として、図4
に示すように、GaAsのエピタキシャル成長用基板3上に
CdTeのバッファ層31を5 μmの厚さに成長する。
Then, the total flow rate of hydrogen gas, diisopropyl Te and dimethyl Cd is 10 liters / min, hydrogen gas and dimethyl Cd
Fig. 4 shows the total pressure of Cd and diisopropyl Te as 300 torr.
On the GaAs epitaxial growth substrate 3 as shown in
A buffer layer 31 of CdTe is grown to a thickness of 5 μm.

【0051】次いでシャフト18B を回転させて歯車17B
を回転することで、加熱領域11を基板3のガス導入側に
移動し、Hg蒸発器43に通じるバルブ46を開放にして、流
量制御器50C,51C を調整し、Hgガスの分圧を1.0 ×10-2
気圧、ジメチルCd蒸発器41に連なるバルブ44を閉じてジ
メチルCdの分圧を零、流量制御器50B,51Bを調節してジ
イソプロピルTeの分圧を1 ×10-3気圧として、全ガス圧
を300torr 、総ガス流量を10リットル/minとして、図4
に示すように、基板上にHgTe層32を0.6 μm の厚さに成
長する。
Next, the shaft 18B is rotated to rotate the gear 17B.
The heating area 11 is moved to the gas introduction side of the substrate 3 by rotating the, the valve 46 leading to the Hg evaporator 43 is opened, the flow rate controllers 50C and 51C are adjusted, and the partial pressure of the Hg gas is adjusted to 1.0. × 10 -2
Atmospheric pressure, the valve 44 connected to the dimethyl Cd evaporator 41 is closed, the partial pressure of dimethyl Cd is set to zero, and the flow controllers 50B and 51B are adjusted to set the partial pressure of diisopropyl Te to 1 × 10 −3 atm, and the total gas pressure is adjusted. Fig. 4 with 300torr and total gas flow rate of 10 liters / min
As shown in, a HgTe layer 32 is grown to a thickness of 0.6 μm on the substrate.

【0052】次いで、シャフト18B を回転させて歯車17
B を回転することで、加熱領域11をガス流出側に移動
し、Hg蒸発器43に連なるバルブ46は、そのまま開放にし
て水銀ガスの分圧を1.0 ×10-2気圧、ジメチルCd蒸発器
41に連なるバルブ44を開いてジメチルCdの分圧を5 ×10
-5気圧、流量調整器50B,51B を調節してジイソプロピル
Teの分圧を5 ×10-4気圧として全ガス圧力を300torr 、
総ガス流量を10リットル/minとして、図4に示すように
基板上にCdTe層33を0.2 μm の厚さに成長する。
Then, the shaft 18B is rotated to rotate the gear 17
By rotating B, the heating region 11 is moved to the gas outflow side, and the valve 46 connected to the Hg evaporator 43 is opened as it is, the partial pressure of mercury gas is 1.0 × 10 -2 atm, and the dimethyl Cd evaporator is used.
Open the valve 44 connected to 41 to adjust the partial pressure of dimethyl Cd to 5 × 10
-5 bar, adjust flow regulator 50B, 51B to adjust to diisopropyl
The total gas pressure is 300 torr with Te partial pressure of 5 × 10 -4 atm.
CdTe layer 33 is grown to a thickness of 0.2 .mu.m on the substrate as shown in FIG. 4 with a total gas flow rate of 10 l / min.

【0053】上記したCdTe層33を形成する場合、加熱領
域11を基板のガス流出側に移動させた状態で、基板上の
全面にHgガスが流れていても、CdTe層が形成できるよう
にガス総流量を10リットル/minと増大させた状態で成長
を行うと、同じガス総流量で加熱領域11を基板のガス流
入側に移動させてジメチルCdの供給を止めるのみでHgTe
層が形成できる。
When forming the CdTe layer 33 described above, a gas is formed so that the CdTe layer can be formed even if Hg gas is flowing over the entire surface of the substrate while the heating region 11 is moved to the gas outflow side of the substrate. When the growth is performed with the total flow rate increased to 10 liters / min, HgTe is simply moved by stopping the supply of dimethyl Cd by moving the heating region 11 to the gas inflow side of the substrate at the same total gas flow rate.
Layers can be formed.

【0054】そして前記HgTe層32を形成した条件でCdTe
層33上に更にHgTe層32を形成し、更にその上に前記CdTe
層33を成長した条件で、更にCdTe層33を形成し、上記Hg
Te層32とCdTe層33を各々10層づつ成長した後、最上層に
CdTe層33を0.2 μm の厚さに形成する。
CdTe is formed under the condition that the HgTe layer 32 is formed.
An HgTe layer 32 is further formed on the layer 33, and the CdTe layer is further formed thereon.
Under the condition that the layer 33 was grown, a CdTe layer 33 was further formed, and the Hg
After 10 layers each of Te layer 32 and CdTe layer 33 are grown,
The CdTe layer 33 is formed to a thickness of 0.2 μm.

【0055】このようにHgTe層とCdTe層を交互に積層
し、基板加熱温度を350 ℃に保つことで、HgTe層とCdTe
層間が相互拡散して、3インチの直径のエピタキシャル
成長用基板3上に厚さが8μm ±0.5 μm の精度で、x
値=0.25±0.001 の範囲に入る高品質のHg1-x Cdx Te(x
=0.25) のエピタキシャル結晶が得られた。
By alternately stacking the HgTe layers and the CdTe layers in this way and maintaining the substrate heating temperature at 350 ° C., the HgTe layers and the CdTe layers were formed.
Inter-diffusion between layers causes the thickness of 8 μm ± 0.5 μm on the substrate 3 for epitaxial growth with a diameter of 3 inches, and x
High quality Hg 1-x Cd x Te (x
= 0.25) was obtained.

【0056】上記した成長条件を表2にまとめて示す。Table 2 shows the growth conditions described above.

【0057】[0057]

【表2】 [Table 2]

【0058】また本発明の他の実施例としてエピタキシ
ャル成長用基板の温度を相互拡散が発生しない300 ℃の
低温に保ち、基板上にHgガスを1.0 ×10-2気圧、ジメチ
ルCdを5 ×10-5気圧、ジイソプロピルTeの分圧を5 ×10
-4気圧として流入し、加熱領域11をエピタキシャル成長
用基板3のガス反対側に移動してCdTe層を形成する。
[0058] Further kept at a low temperature of another embodiment interdiffusion does not occur epitaxial temperature of the growth substrate as 300 ° C. of the present invention, 1.0 × 10 -2 atm Hg gas onto the substrate, the dimethyl Cd 5 × 10 - 5 atm, diisopropyl Te partial pressure 5 × 10
-4 atm., And the heating region 11 is moved to the gas opposite side of the epitaxial growth substrate 3 to form a CdTe layer.

【0059】次いで基板上に供給するガスはそのままの
状態とし、加熱領域11をエピタキシャル成長用基板3の
ガス流入側に移動するとHg1-x Cdx Te層が形成され、Cd
Te層とHg1-x Cdx Te層が複数層形成された超格子構造が
結晶層界面の組成変動を急峻にした状態で、且つHg蒸発
器に連なる水銀バルブの開け閉めを行わない状態で容易
に形成できる。
Then, the gas supplied onto the substrate is left as it is, and the heating region 11 is moved to the gas inflow side of the epitaxial growth substrate 3 to form a Hg 1-x Cd x Te layer, and Cd
A superlattice structure consisting of multiple Te layers and Hg 1-x Cd x Te layers makes the composition variation at the crystal layer interface steep and without opening and closing the mercury valve connected to the Hg evaporator. It can be easily formed.

【0060】また本発明の他の実施例として、エピタキ
シャル成長用基板の温度を相互拡散が発生しない300 ℃
の低温に保ち、基板上にHgガスを1.0 ×10-2気圧、ジメ
チルCdを5 ×10-5気圧、ジイソプロピルTeの分圧を5 ×
10-4気圧として導入し、加熱領域11をエピタキシャル成
長用基板3のガス反対側に移動してCdTe層を形成する。
As another embodiment of the present invention, the temperature of the epitaxial growth substrate is set to 300 ° C. at which mutual diffusion does not occur.
Kept at a low temperature of 1.0 × 10 -2 atm of Hg gas, 5 × 10 -5 atm of dimethyl Cd and 5 × 10 -5 atm of diisopropyl Te on the substrate.
Introduced as 10 −4 atmosphere, the heating region 11 is moved to the gas opposite side of the epitaxial growth substrate 3 to form a CdTe layer.

【0061】次いで加熱領域11をエピタキシャル成長用
基板3のガス流入側に移動し、Hg蒸発器に連なるバルブ
46、ジメチルCd蒸発器41に連なるバルブ44、ジイソプロ
ピルTe蒸発器42に連なる流量制御器50B,51B を調節する
ことで、x 値を変動させたHg 1-x Cdx Te層がCdTe層上に
形成されるので、CdTe層とx 値を所定の値に制御したHg
1-x Cdx Te層が超格子構造に交互に成長できる。
Next, the heating region 11 is formed for epitaxial growth.
A valve that moves to the gas inlet side of the substrate 3 and connects to the Hg evaporator
46, valve 44 connected to dimethyl Cd evaporator 41, diisopro
Adjust the flow controllers 50B and 51B connected to the Pill Te evaporator 42
Therefore, Hg with varying x value 1-xCdxTe layer on CdTe layer
CdTe layer and Hg with controlled x value
1-xCdxTe layers can grow alternately in a superlattice structure.

【0062】このように、加熱領域11のエピタキシャル
成長用基板のガス流入側、或いはガス流入側以外の位置
に設置するのと同期させて蒸発器に連なる流量調整器を
調節すると所望の組成のHg1-x Cdx Teが得られる。
As described above, when the flow rate controller connected to the evaporator is adjusted in synchronization with the heating region 11 being installed at the gas inflow side of the epitaxial growth substrate or at a position other than the gas inflow side, Hg 1 of the desired composition is adjusted. -x Cd x Te is obtained.

【0063】また本発明の装置の他の実施例として図3
(a)の平面図、図3(b)の側面図に示すように、エピタキ
シャル成長用基板3を設置する領域の近傍の反応管1の
断面積を横方向に拡大し、予備加熱板12をカーボン製の
加熱領域11と石英製の非加熱領域47を有するように板状
に加工し、この予備加熱板11の底にネジを設け、このネ
ジに嵌合する歯車17を有するシャフト18を用いて、この
シャフト18を回転させることで予備加熱板12の加熱領域
11を基板のガス導入側に位置する構造を採っても良い。
FIG. 3 shows another embodiment of the apparatus of the present invention.
As shown in the plan view of (a) and the side view of FIG. 3 (b), the cross-sectional area of the reaction tube 1 in the vicinity of the region where the epitaxial growth substrate 3 is installed is laterally enlarged, and the preheating plate 12 is covered with carbon. Made into a plate so as to have a heating region 11 made of quartz and a non-heating region 47 made of quartz, a screw is provided on the bottom of this preheating plate 11, and a shaft 18 having a gear 17 fitted to this screw is used. , The heating area of the preheating plate 12 by rotating this shaft 18.
A structure in which 11 is located on the gas introduction side of the substrate may be adopted.

【0064】また前記図3(a)の平面図、図3(b)の側面図
に示すように、基板加熱台2の底部にネジを設け、この
ネジに嵌合する歯車17を有するシャフト18で上記基板加
熱台2を横方向に移動させ、これで加熱領域11がエピタ
キシャル成長用基板3のガス流入側に位置するようにし
ても良い。
As shown in the plan view of FIG. 3 (a) and the side view of FIG. 3 (b), a screw is provided on the bottom of the substrate heating table 2, and a shaft 18 having a gear 17 fitted to the screw 18 is provided. The substrate heating table 2 may be moved laterally so that the heating region 11 is located on the gas inflow side of the epitaxial growth substrate 3.

【0065】このように加熱領域11と非加熱領域47を並
べて配置するのは、加熱領域11を移動させた時に基板3
のガス流入側に非加熱領域47を位置させることで、基板
3のガス流入側のガス流の乱れを防止するために行う。
As described above, the heating region 11 and the non-heating region 47 are arranged side by side so that the substrate 3 is moved when the heating region 11 is moved.
By arranging the non-heated region 47 on the gas inflow side, the turbulence of the gas flow on the gas inflow side of the substrate 3 is prevented.

【0066】また上記予備加熱板の加熱領域はエピタキ
シャル成長用基板の表面に対して上下に移動する構造を
採っても良い。また上記同心円状の予備加熱板12、或い
は板状の予備加熱板12の加熱領域11は本実施例のように
高周波誘導コイル5の電磁誘導により加熱される方法を
採っても良いし、或いは基板3の加熱とは別個に、加熱
領域11のみを選択的に加熱する加熱ヒータを設けても良
い。
The heating region of the preheating plate may have a structure in which it moves vertically with respect to the surface of the epitaxial growth substrate. Further, the concentric preheating plate 12 or the heating region 11 of the plate-shaped preheating plate 12 may be heated by electromagnetic induction of the high frequency induction coil 5 as in this embodiment, or the substrate may be heated. Separately from the heating of No. 3, a heating heater for selectively heating only the heating region 11 may be provided.

【0067】[0067]

【発明の効果】以上述べたように、本発明の装置および
方法によれば、予備加熱板の加熱領域をエピタキシャル
成長用基板のガス導入側、或いはそれ以外の位置に移動
させた時点に同期してエピタキシャル成長用ガスの種類
を異ならせて基板上に供給すること、或いは同じ種類の
エピタキシャル成長用ガスを供給したまま、加熱領域の
移動のみを行うことで、ガス流速条件を一定にしたま
ま、組成の安定したHg1-x Cdx Teのエピタキシャル結
晶、或いはCdTeとHg1-x Cdx Teの超格子構造が容易に形
成でき、該結晶を素子形成材料に用いると高品質の赤外
線検知素子が得られる効果がある。
As described above, according to the apparatus and method of the present invention, the heating region of the preheating plate is moved to the gas introduction side of the epitaxial growth substrate or at a position other than that, in synchronization with the time. By supplying different types of epitaxial growth gas onto the substrate, or by moving only the heating region while supplying the same type of epitaxial growth gas, the composition of the gas can be kept stable while keeping the gas flow rate conditions constant. Epitaxial crystals of Hg 1-x Cd x Te or superlattice structure of CdTe and Hg 1-x Cd x Te can be easily formed, and high quality infrared detectors can be obtained by using these crystals as element forming materials. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の装置の説明図である。FIG. 1 is an explanatory diagram of a device of the present invention.

【図2】 本発明の予備加熱板の説明図である。FIG. 2 is an explanatory diagram of a preheating plate according to the present invention.

【図3】 本発明の装置の他の実施例の説明図である。FIG. 3 is an explanatory view of another embodiment of the device of the present invention.

【図4】 本発明の方法で成長した結晶の断面図であ
る。
FIG. 4 is a cross-sectional view of a crystal grown by the method of the present invention.

【図5】 本発明の方法の原理の説明図である。FIG. 5 is an explanatory diagram of the principle of the method of the present invention.

【図6】 従来の方法に於ける不都合な状態図である。FIG. 6 is an inconvenient state diagram in the conventional method.

【図7】 従来の装置の説明図と不都合な状態図であ
る。
FIG. 7 is an explanatory diagram of a conventional device and an inconvenient state diagram.

【符号の説明】[Explanation of symbols]

1 反応管 2 基板加熱台 3 エピタキシャル成長用基板 5 高周波誘導コイル 11 加熱領域 12 予備加熱板 13 仕切り板 14 分岐管 15 断熱材 16 支持台 17,17A,17B 歯車 18,18A,18B シャフト 19A,19B ネジ 21A,21B 突出部 31 バッファ層 32 HgTe層 33 CdTe層 41 ジメチルCd蒸発器 42 ジイソプロピルTe蒸発器 43 水銀蒸発器 44,45,46,47,48,49 バルブ 50A,50B,50C,51A,51B,511C 流量調整器 1 Reaction tube 2 Substrate heating table 3 Epitaxial growth substrate 5 High frequency induction coil 11 Heating area 12 Preheating plate 13 Partition plate 14 Branch pipe 15 Insulation material 16 Support 17,17A, 17B Gear 18,18A, 18B Shaft 19A, 19B Screw 21A, 21B Projection 31 Buffer layer 32 HgTe layer 33 CdTe layer 41 Dimethyl Cd evaporator 42 Diisopropyl Te evaporator 43 Mercury evaporator 44,45,46,47,48,49 Valve 50A, 50B, 50C, 51A, 51B, 511C flow controller

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応管(1) 内に収容されたエピタキシャ
ル成長用基板(3) 上に分解温度がそれぞれ異なるエピタ
キシャル成長用ガスを供給して、該基板(3)上に生成エ
ネルギーがそれぞれ異なるエピタキシャル層を形成する
装置に於いて、 前記エピタキシャル成長用基板(3) を収容する反応管
(1) と、該反応管(1) 内に設置され、前記エピタキシャ
ル成長用基板(3) を載置し、該基板(3) を加熱する基板
加熱台(2) と、 該基板加熱台(2) の近傍に設けられ、加熱領域(11)と非
加熱領域(47)とを備え、該反応管(1) 内に流入されるエ
ピタキシャル成長用ガスのガス流入側、或いはガス流入
側以外の位置に、前記基板加熱台(2) と独立して、加熱
領域(11)のみが選択的に移動する移動手段を備えた予備
加熱板(12)と、 前記基板加熱台(2) と前記予備加熱板(12)の加熱領域(1
1)を加熱する加熱手段(5)を備え、 前記予備加熱板(12)の加熱領域(11)を、前記エピタキシ
ャル成長用基板(3) のガス流入側、或いはガス流入側以
外の位置に移動するのと同期して、分解温度がそれぞれ
異なるエピタキシャル成長用ガスを反応管(1) 内に流入
し、前記エピタキシャル成長用ガスが、前記加熱領域上
を通過、或いは非通過の状態で、基板上に供給されるよ
うにしたことを特徴とする気相エピタキシャル成長装
置。
1. An epitaxial layer having different decomposition energies is supplied onto an epitaxial growth substrate (3) housed in a reaction tube (1) to generate different epitaxial energies on the substrate (3). In an apparatus for forming a film, a reaction tube containing the epitaxial growth substrate (3).
(1), a substrate heating table (2) installed in the reaction tube (1), on which the epitaxial growth substrate (3) is placed, and which heats the substrate (3), and the substrate heating table (2 ) Provided with a heating region (11) and a non-heating region (47), the gas for the epitaxial growth gas flowing into the reaction tube (1) is located on the gas inflow side or at a position other than the gas inflow side. A preheating plate (12) provided with a moving means for selectively moving only the heating region (11) independently of the substrate heating table (2); the substrate heating table (2) and the preheating plate; Heating area of (12) (1
A heating means (5) for heating 1) is provided, and the heating region (11) of the preheating plate (12) is moved to the gas inflow side of the epitaxial growth substrate (3) or a position other than the gas inflow side. In synchronism with the above, the epitaxial growth gases having different decomposition temperatures are flown into the reaction tube (1), and the epitaxial growth gas is supplied onto the substrate while passing through the heating region or not passing through the heating region. A vapor phase epitaxial growth apparatus characterized by the above.
【請求項2】 請求項1記載の非加熱領域(47)と加熱領
域(11)を有する予備加熱板(12)をドーナツ形状として、
円板状の基板加熱台(2) の側面に同心円状に配置し、前
記予備加熱板(12)を前記基板加熱台(2) の回転とは独立
して回転移動させ、前記予備加熱板(12)の加熱領域(11)
が、前記基板(3) のガス流入側、或いは基板(3) のガス
流入側以外の領域に移動可能としたことを特徴とする気
相エピタキシャル成長装置。
2. The doughnut-shaped preheating plate (12) having the non-heating region (47) and the heating region (11) according to claim 1,
Arranged concentrically on the side surface of the disk-shaped substrate heating table (2), the preheating plate (12) is rotated independently of the rotation of the substrate heating table (2), and the preheating plate ( Heating area (12) (11)
However, the vapor phase epitaxial growth apparatus is characterized in that it can be moved to a gas inflow side of the substrate (3) or a region other than the gas inflow side of the substrate (3).
【請求項3】 請求項1、或いは請求項2に記載の予備
加熱板(12)の加熱領域(11)を電磁波の吸収し易い材料で
形成し、前記予備加熱板(12)の非加熱領域(47)を電磁波
の吸収し難い材料で形成し、前記予備加熱板(12)の加熱
領域(11)を基板加熱台(2) の加熱手段で加熱することを
特徴とする気相エピタキシャル成長装置。
3. The preheating plate (12) according to claim 1 or 2, wherein the heating region (11) is formed of a material that easily absorbs electromagnetic waves, and the preheating plate (12) is not heated. A vapor phase epitaxial growth apparatus, characterized in that (47) is formed of a material that does not easily absorb electromagnetic waves, and the heating region (11) of the preheating plate (12) is heated by the heating means of the substrate heating table (2).
【請求項4】 請求項1、2、或いは3記載の予備加熱
板(12)の加熱領域(11)をエピタキシャル成長用基板(3)
のガス流入側に移動した時点で、水銀ガスと分解温度の
高いエピタキシャル成長用ガスを反応管(1) 内に流入し
て生成エネルギーの大きいエピタキシャル結晶を成長す
ると共に、加熱領域(11)をガス流入側以外の領域に移動
した時点で、水銀ガスと分解温度の高いエピタキシャル
成長用ガスと分解温度の低いエピタキシャル成長用ガス
とを反応管(1) 内に流入して生成エネルギーの小さいエ
ピタキシャル結晶を成長し、形成される両方のエピタキ
シャル結晶の相互拡散により基板(3) 上に水銀を含む化
合物半導体結晶を成長することを特徴とする気相エピタ
キシャル成長方法。
4. The epitaxial growth substrate (3) is provided with a heating region (11) of the preheating plate (12) according to claim 1, 2, or 3.
When the gas moves to the gas inflow side, the mercury gas and the epitaxial growth gas with a high decomposition temperature are flown into the reaction tube (1) to grow an epitaxial crystal with large production energy, and the heating region (11) is flown into the gas. At the time of moving to a region other than the side, a mercury gas, an epitaxial growth gas with a high decomposition temperature and an epitaxial growth gas with a low decomposition temperature are introduced into the reaction tube (1) to grow an epitaxial crystal with a small production energy, A vapor phase epitaxial growth method characterized in that a compound semiconductor crystal containing mercury is grown on a substrate (3) by mutual diffusion of both formed epitaxial crystals.
【請求項5】 請求項1、2、或いは3記載の予備加熱
板(12)の加熱領域(11)をエピタキシャル成長用基板(3)
のガス流入側に移動した時点で、水銀ガスと分解温度の
高いエピタキシャル成長用ガスを反応管(1) 内に流入
し、該基板(3)上に生成エネルギーの高い化合物半導体
結晶を成長することを特徴とする気相エピタキシャル成
長方法。
5. The epitaxial growth substrate (3) is provided with a heating region (11) of the preheating plate (12) according to claim 1, 2, or 3.
When the gas has moved to the gas inflow side, the mercury gas and the gas for epitaxial growth with a high decomposition temperature are allowed to flow into the reaction tube (1) to grow a compound semiconductor crystal with high production energy on the substrate (3). Characteristic vapor phase epitaxial growth method.
【請求項6】 請求項1、2、或いは3記載の予備加熱
板(12)の加熱領域(11)をエピタキシャル成長用基板(3)
のガス流入側に移動した時点で、水銀ガスと分解温度の
低いエピタキシャル成長用ガスと分解温度の高いエピタ
キシャル成長用ガスを反応管(1) 内に流入して基板(3)
上に生成エネルギーの大きいエピタキシャル結晶と、生
成エネルギーの小さいエピタキシャル結晶の混合した結
晶か、或いは水銀ガスと分解温度の高いエピタキシャル
成長用ガスを反応管(1) に流入して生成エネルギーの大
きいエピタキシャル結晶を成長するとともに、前記予備
加熱板(12)の加熱領域(11)を、前記基板(3) のガス流入
側以外の位置に移動した時点で、水銀ガスと分解温度の
低いエピタキシャル成長用ガスと、分解温度の高いエピ
タキシャル成長用ガスを、反応管(1) 内に導入して基板
(3)上に生成エネルギーの小さいエピタキシャル結晶を
成長し、上記生成エネルギーが大のエピタキシャル結晶
を含む結晶層、および生成エネルギーの小さいエピタキ
シャル結晶を交互に順次積層して超格子構造とすること
を特徴とする気相エピタキシャル成長方法。
6. The substrate (3) for epitaxial growth is provided with the heating region (11) of the preheating plate (12) according to claim 1, 2, or 3.
When it moves to the gas inflow side of the substrate, mercury gas, an epitaxial growth gas with a low decomposition temperature and an epitaxial growth gas with a high decomposition temperature flow into the reaction tube (1) and the substrate (3)
A mixture of an epitaxial crystal with a large production energy and an epitaxial crystal with a small production energy, or a mercury gas and an epitaxial growth gas with a high decomposition temperature are introduced into the reaction tube (1) to produce an epitaxial crystal with a large production energy. While growing, the heating region (11) of the preheating plate (12), when moved to a position other than the gas inflow side of the substrate (3), the mercury gas and the epitaxial growth gas of low decomposition temperature, decomposition A high temperature epitaxial growth gas is introduced into the reaction tube (1) and the substrate
(3) An epitaxial crystal with a small generation energy is grown on the above, and a crystal layer containing an epitaxial crystal with a large generation energy, and an epitaxial crystal with a small generation energy are alternately laminated to form a superlattice structure. Vapor phase epitaxial growth method.
JP30459291A 1991-11-20 1991-11-20 Vapor epitaxial growth device and method of growing Withdrawn JPH05144850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30459291A JPH05144850A (en) 1991-11-20 1991-11-20 Vapor epitaxial growth device and method of growing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30459291A JPH05144850A (en) 1991-11-20 1991-11-20 Vapor epitaxial growth device and method of growing

Publications (1)

Publication Number Publication Date
JPH05144850A true JPH05144850A (en) 1993-06-11

Family

ID=17934859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30459291A Withdrawn JPH05144850A (en) 1991-11-20 1991-11-20 Vapor epitaxial growth device and method of growing

Country Status (1)

Country Link
JP (1) JPH05144850A (en)

Similar Documents

Publication Publication Date Title
JP2722833B2 (en) Vapor phase epitaxial growth apparatus and vapor phase epitaxial growth method
TWI322462B (en) Apparatus for inverted multi-wafer mocvd fabrication
JPS6134929A (en) Growing device of semiconductor device
JPH0691020B2 (en) Vapor growth method and apparatus
JPH05144850A (en) Vapor epitaxial growth device and method of growing
JPH097953A (en) Manufacture of single crystal thin film
JP5100231B2 (en) Group III nitride production equipment
JPS60112694A (en) Gas-phase growth method of compound semiconductor
Snyder et al. Growth of CdTe by organometallic vapor phase epitaxy in an impinging jet reactor
JPS6251919B2 (en)
JPH04122020A (en) Vapor phase epitaxy method
JPH0547669A (en) Vapor growth apparatus
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPS6071596A (en) Vapor-phase growth apparatus
JPH02181938A (en) Vapor phase epitaxial growth apparatus
JPH0582457A (en) Manufacturing equipment for semiconductor crystal and manufacture of semiconductor crystal using the equipment
JPH046840A (en) Vapor growth apparatus
JPH07193003A (en) Vapor growth device and vapor growth method
CA1278272C (en) Method of growing crystalline layers by vapour phase epitaxy
JPH02274877A (en) Vapor phase growing device
JPH02239187A (en) Method and device for vapor growth
JPH0479233A (en) Manufacture device of compound semiconductor crystal
JPH05175141A (en) Vapor-phase epitaxial growth apparatus and method
JPS62182195A (en) Method for growing iii-v compound semiconductor
Reid et al. The Role of Gas Phase Decomposition in the ALE Growth of III–V Compounds

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204