JPH05144739A - Apparatus and method for organometallic vapor growth - Google Patents

Apparatus and method for organometallic vapor growth

Info

Publication number
JPH05144739A
JPH05144739A JP30578291A JP30578291A JPH05144739A JP H05144739 A JPH05144739 A JP H05144739A JP 30578291 A JP30578291 A JP 30578291A JP 30578291 A JP30578291 A JP 30578291A JP H05144739 A JPH05144739 A JP H05144739A
Authority
JP
Japan
Prior art keywords
growth
chamber
semiconductor wafer
vapor phase
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30578291A
Other languages
Japanese (ja)
Inventor
Hideyuki Doi
秀之 土井
Kouichi Koukado
浩一 香門
Futatsu Shirakawa
二 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30578291A priority Critical patent/JPH05144739A/en
Publication of JPH05144739A publication Critical patent/JPH05144739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute an epitaxial growth operation without contaminating the surface of a semiconductor wafer by a method wherein a carrier-gas supply pipe for raw gas conveyance use is connected to a preliminary chamber which holds a wafer in a vacuum in advance. CONSTITUTION:A piping 14 which supplies a carrier gas 6 to a growth chamber 9 is branched; a piping 16 which is connected to a preliminary chamber 2 is provided. A valve 17 and a flow adjustment valve 18 are installed in the piping 16. A valve 15 is installed in the piping 14. Thereby, the pressure of the growth chamber 9 which has been evacuated is raised up to a growth pressure by using a carrier gas 6 which is introduced via the preliminary chamber 2. As a result, it is possible to prevent that dust particles which have adhered to the inner wall of the growth chamber and to a susceptor whirl including the supply of a raw gas after that, and it is possible to restrain new contamination of the surface of a semiconductor wafer immediately before a growth operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転式サセプタを有す
る有機金属気相成長装置及びその装置を使用する成長方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-organic vapor phase epitaxy apparatus having a rotary susceptor and a growth method using the apparatus.

【0002】[0002]

【従来の技術】図2は、従来の有機金属気相成長装置の
概念図である。縦型成長室9には回転軸12により回転
可能に支持されたサセプタ10が配置され、真空排気系
13により真空排気した状態に保持されている。一方、
予備室2には半導体ウエハを装着したウエハホルダー3
を収容し、真空排気系1により真空排気した後、予備室
2と成長室9を接続する搬送管のゲートバルブ7を開放
し、アーム4により半導体ウエハ11をウエハホルダー
3からサセプタ10に装着する。その後、ゲートバルブ
7及び成長室9のシャッター8を閉じ、配管14よりキ
ャリアガスの水素6を導入し、成長室9内を成長圧力に
なるように真空排気系13を調整する。このとき、成長
室9内部の圧力が急激に上昇しないように流量調整弁2
0を用いて少量ずつキャリアガスを流す。ヒータ(図示
せず)を加熱して半導体ウエハ11を所定の成長温度ま
で昇温したことを確認した後、キャリアガス6の一部を
原料ガスに切り替えて半導体ウエハ11の上にエピタキ
シャル成長を行う。成長終了後、キャリアガスの供給を
停止し、成長室9並びに予備室2を真空排気系13並び
に1で真空排気してから、シャッター8及びゲートバル
ブ7を開放し、アーム4により半導体ウエハ11をサセ
プタ10から予備室1のウエハホルダー3に回収する。
そして、シャッター8及びゲートバルブ7を閉じてから
バルブ19を開放し、窒素ガス5を予備室1に導入して
大気圧までベントし、次いで予備室1を開放してウエハ
ホルダー3から半導体ウエハを取り出して系外に回収す
る。そして、新たな半導体ウエハをウエハホルダー3に
装着して予備室2を閉じて次の気相成長操作に移る。
2. Description of the Related Art FIG. 2 is a conceptual diagram of a conventional metal-organic vapor phase epitaxy apparatus. A susceptor 10 rotatably supported by a rotary shaft 12 is arranged in the vertical growth chamber 9, and is held in a state of being evacuated by a vacuum exhaust system 13. on the other hand,
A wafer holder 3 having a semiconductor wafer mounted in the preliminary chamber 2
After being evacuated by the vacuum evacuation system 1, the gate valve 7 of the transfer pipe connecting the preliminary chamber 2 and the growth chamber 9 is opened, and the semiconductor wafer 11 is mounted on the susceptor 10 from the wafer holder 3 by the arm 4. .. After that, the gate valve 7 and the shutter 8 of the growth chamber 9 are closed, hydrogen 6 as a carrier gas is introduced through the pipe 14, and the vacuum exhaust system 13 is adjusted so that the growth pressure in the growth chamber 9 is reached. At this time, the flow rate adjusting valve 2 is arranged so that the pressure inside the growth chamber 9 does not rise suddenly.
0 is used to flow the carrier gas little by little. After confirming that the heater (not shown) is heated to raise the semiconductor wafer 11 to a predetermined growth temperature, a part of the carrier gas 6 is switched to the raw material gas to perform epitaxial growth on the semiconductor wafer 11. After the growth is completed, the supply of the carrier gas is stopped, the growth chamber 9 and the auxiliary chamber 2 are evacuated by the vacuum exhaust systems 13 and 1, and then the shutter 8 and the gate valve 7 are opened and the semiconductor wafer 11 is moved by the arm 4. The wafer is collected from the susceptor 10 to the wafer holder 3 in the preliminary chamber 1.
Then, after closing the shutter 8 and the gate valve 7, the valve 19 is opened, the nitrogen gas 5 is introduced into the preliminary chamber 1 and vented to the atmospheric pressure, and then the preliminary chamber 1 is opened to remove the semiconductor wafer from the wafer holder 3. Take it out and collect it outside the system. Then, a new semiconductor wafer is mounted on the wafer holder 3, the preliminary chamber 2 is closed, and the next vapor phase growth operation is performed.

【0003】[0003]

【発明が解決しようとする課題】上記の気相成長方法で
は、真空状態に保持された成長室に予備室から半導体ウ
エハを搬送し、サセプタに装着し、その後にキャリアガ
スを成長室に導入して成長圧力まで昇圧してエピタキシ
ャル成長を行っていた。この方法では、流量調整弁を用
いても、圧力差が大きいためにキャリアガスはジェット
流となって成長室に導入され、サセプタ及び成長室内壁
に吹きつけられる。その結果、前回までの成長過程で堆
積したダストを舞い上げ、成長直前の半導体ウエハの表
面を汚染するという問題があった。
In the above vapor phase growth method, a semiconductor wafer is transferred from a preliminary chamber to a growth chamber held in a vacuum state, mounted on a susceptor, and then a carrier gas is introduced into the growth chamber. The growth pressure was increased to epitaxial growth. In this method, even if the flow rate adjusting valve is used, the carrier gas becomes a jet flow and is introduced into the growth chamber due to the large pressure difference, and is sprayed on the susceptor and the inner wall of the growth chamber. As a result, there is a problem that dust accumulated in the growth process up to the last time is lifted up and the surface of the semiconductor wafer immediately before growth is contaminated.

【0004】そこで、本発明は、上記の問題を解消し、
半導体ウエハの表面を汚染することなく、エピタキシャ
ル成長を行うことを可能にした有機金属気相成長装置及
びその装置を用いた気相成長方法を提供しようとするも
のである。
Therefore, the present invention solves the above problems,
It is an object of the present invention to provide an organometallic vapor phase epitaxy apparatus capable of performing epitaxial growth without contaminating the surface of a semiconductor wafer and a vapor phase epitaxy method using the apparatus.

【0005】[0005]

【課題を解決するための手段】本発明は、半導体ウエハ
を装着する回転式サセプタを縦型成長室の中央に配置
し、該成長室に原料ガス供給管を接続し、該ウエハを予
め真空に保持する予備室を設け、該成長室と予備室とを
ゲートバルブを介して搬送管で接続し、該成長室と予備
室にはそれぞれ個別に真空排気系と接続した気相成長装
置において、上記予備室に原料ガス搬送用のキャリアガ
ス供給管を接続したことを特徴とする有機金属気相成長
装置、及び、この装置を使用し、成長終了後の成長室及
び新たな半導体ウエハを収容した予備室をほぼ同一圧力
までそれぞれ真空排気した後ゲートバルブを開放し、原
料ガス搬送用のキャリアガスを予備室を経て成長室に供
給して成長圧力まで昇圧し、成長済みの半導体ウエハと
新たな半導体ウエハを予備室と成長室の間で交換し、ゲ
ートバルブを閉じてから、成長室に原料ガスを供給して
気相成長を行い、予備室には窒素ガスを供給して大気圧
にし、成長済みの半導体ウエハを系外に回収するととも
に新たな半導体ウエハを収容することを特徴とする有機
金属気相成長方法である。
According to the present invention, a rotary susceptor for mounting a semiconductor wafer is arranged at the center of a vertical growth chamber, a source gas supply pipe is connected to the growth chamber, and the wafer is evacuated in advance. In a vapor phase growth apparatus in which a preliminary chamber for holding is provided, the growth chamber and the preliminary chamber are connected by a transfer pipe via a gate valve, and the growth chamber and the preliminary chamber are individually connected to a vacuum exhaust system, A metal-organic vapor phase epitaxy apparatus characterized by connecting a carrier gas supply pipe for transporting a raw material gas to a preparatory room, and a preparatory room for accommodating a growth room after completion of growth and a new semiconductor wafer by using this apparatus. After evacuating the chambers to almost the same pressure, open the gate valve, supply the carrier gas for raw material gas supply to the growth chamber through the preliminary chamber to boost the growth pressure, and grow the semiconductor wafer and new semiconductor. Wafer After exchanging between the preliminary chamber and the growth chamber and closing the gate valve, the source gas is supplied to the growth chamber to perform vapor phase growth, and the nitrogen gas is supplied to the preliminary chamber to bring the atmospheric pressure to It is a metal-organic vapor phase epitaxy method characterized in that a semiconductor wafer is recovered outside the system and a new semiconductor wafer is accommodated.

【0006】[0006]

【作用】図1は、本発明の1具体例である気相成長装置
の概念図である。この装置は、図2の従来の気相成長装
置における、キャリアガス6を成長室9に供給する配管
14を分岐して予備室2に接続する配管16を設け、こ
の配管16にはバルブ17及び流量調整弁18を設け、
上記配管14にはバルブ15を設けた点を除いて図2の
装置構成をそのまま採用したものある。
FIG. 1 is a conceptual diagram of a vapor phase growth apparatus which is one specific example of the present invention. This apparatus is provided with a pipe 16 for branching a pipe 14 for supplying the carrier gas 6 to the growth chamber 9 and connecting it to the preliminary chamber 2 in the conventional vapor phase growth device of FIG. The flow rate adjusting valve 18 is provided,
The pipe 14 has the same apparatus configuration as that of FIG. 2 except that the valve 15 is provided.

【0007】以下、図1により、本発明の気相成長操作
の手順を説明する。 まず、一連の成長操作を終了して成長室9には、成長
済みの半導体ウエハ11がサセプタ10に装着された状
態にあり、また、予備室2には新しい半導体ウエハがウ
エハホルダー3に収容された状態にあり、両室をそれぞ
れの真空排気系13及び1で真空排気する。 成長室9及び予備室2の圧力が同じであることを確認
してからシャッター8及びゲートバルブ7を開放する。 真空排気系1を停止する。 バルブ17を開放し、流量調整弁18で流量を調整し
ながらキャリアガス6を徐々に配管16を介して予備室
2から成長室9に流し、真空排気系13を調整して略成
長圧力まで昇圧する。予備室2にはダストはなく、予備
室から導入されたキャリアガスは成長室9を通過すると
きにはゆるやかな流れとなっているので、成長室9内壁
やサセプタ10に付着しているダストを舞い上がらせる
ことはない。なお、予備室内での対流を防止するため
に、配管16の予備室2側にフィルター等を配置してジ
ェット流を防止することも可能である。 成長室9の成長済み半導体ウエハと予備室2の新たな
半導体ウエハをアーム4を用いて交換する。 バルブ17を閉じてバルブ15を開放し、ゲートバル
ブ7及びシャッター8を閉じる。成長室9内はすでに成
長圧力になっているので、この切り換え時のダストの飛
散を大幅に抑えることが可能となった。 サセプタ10を所定の回転数で回転させつつ、ウエハ
を所定の成長温度まで加熱する。 半導体ウエハの温度が安定してから、キャリアガス6
の一部を原料ガスに切り換えてエピタキシャル成長を行
う。 上記及びの間、真空排気系1により一度真空排気
した後バルブ19を開放し、予備室2に窒素ガス5を導
入して大気圧まで昇圧し、次いで、予備室を開放して成
長済みの半導体ウエハを回収するとともに、新たな半導
体ウエハをウエハホルダーに収容する。
The procedure of the vapor phase growth operation of the present invention will be described below with reference to FIG. First, after a series of growth operations is completed, a grown semiconductor wafer 11 is mounted on the susceptor 10 in the growth chamber 9, and a new semiconductor wafer is stored in the wafer holder 3 in the preliminary chamber 2. In this state, both chambers are evacuated by the respective vacuum evacuation systems 13 and 1. After confirming that the pressures in the growth chamber 9 and the preliminary chamber 2 are the same, the shutter 8 and the gate valve 7 are opened. The evacuation system 1 is stopped. The valve 17 is opened, the carrier gas 6 is gradually made to flow from the preliminary chamber 2 to the growth chamber 9 through the pipe 16 while the flow rate is adjusted by the flow rate adjusting valve 18, and the vacuum exhaust system 13 is adjusted to increase the pressure to approximately the growth pressure. To do. Since there is no dust in the preliminary chamber 2, and the carrier gas introduced from the preliminary chamber has a gentle flow when passing through the growth chamber 9, the dust adhering to the inner wall of the growth chamber 9 and the susceptor 10 is lifted up. There is no such thing. In order to prevent convection in the preliminary chamber, it is possible to arrange a filter or the like on the side of the preliminary chamber 2 of the pipe 16 to prevent the jet flow. The grown semiconductor wafer in the growth chamber 9 and a new semiconductor wafer in the preliminary chamber 2 are exchanged using the arm 4. The valve 17 is closed, the valve 15 is opened, and the gate valve 7 and the shutter 8 are closed. Since the growth pressure in the growth chamber 9 has already been reached, it is possible to greatly suppress the scattering of dust during this switching. While rotating the susceptor 10 at a predetermined rotation speed, the wafer is heated to a predetermined growth temperature. After the temperature of the semiconductor wafer has stabilized, the carrier gas 6
Part of the gas is switched to the raw material gas for epitaxial growth. During the above and after, after vacuum evacuation by the vacuum evacuation system 1 once, the valve 19 is opened, the nitrogen gas 5 is introduced into the preliminary chamber 2 to raise the pressure to the atmospheric pressure, and then the preliminary chamber is opened to grow the grown semiconductor. The wafer is collected and a new semiconductor wafer is stored in the wafer holder.

【0008】以上のように、キャリアガス6を成長室9
に供給する配管14を分岐して予備室2に接続する配管
16を設けることにより、真空排気した成長室9は、予
備室2を経て導入されるキャリアガス6で成長圧力まで
昇圧されるので、その後の原料ガスの供給を含めて、成
長室内壁やサセプタの付着ダストの舞い上がりを防止
し、成長直前の新たな半導体ウエハの表面汚染を大幅に
抑制することができるようになり、良質のエピタキシャ
ルウエハを得ることが可能になった。また、成長室内の
ダストの問題が上記のように改善されたので、成長室を
分解してダストを除去するサイクルを長くすることがで
き、成長装置の稼働率を向上させることが可能になっ
た。
As described above, the carrier gas 6 is supplied to the growth chamber 9
By providing the pipe 16 for branching the pipe 14 to be supplied to the prechamber 2, the vacuum-evacuated growth chamber 9 is boosted to the growth pressure by the carrier gas 6 introduced through the prechamber 2, It is possible to prevent the dust from adhering to the inner walls of the growth chamber and the susceptor, including the supply of the raw material gas after that, and to significantly suppress the surface contamination of the new semiconductor wafer just before the growth. It has become possible to obtain. Also, since the problem of dust in the growth chamber has been improved as described above, it is possible to lengthen the cycle of disassembling the growth chamber and removing the dust, and improving the operating rate of the growth apparatus. ..

【0009】[0009]

【実施例】図1の装置を用い、上記の成長操作手順にし
たがってGaAsウエハ上にGaAsエピタキシャル層
を気相成長させた。成長条件は以下のとおりである。 半導体ウエハサイズ :3インチウエハ 成長温度 :650℃ 成長圧力 :50Torr 全ガス流量 :20リットル/min アルシン流量 :1リットル/min トリメチルガリウム流量:40cc/min エピタキシャル成長層表面の欠陥数を欠陥の大きさが
1.2μm2 以上のものについてパーティクルカウンタ
ーで調べたところ、表面欠陥数は120(個/ウエハ)
と大幅に改善することができた。なお、図2の装置を用
いて従来の方法で同様にエピタキシャル成長を行ったと
ころ、表面欠陥数は450(個/ウエハ)であった。
EXAMPLE Using the apparatus shown in FIG. 1, a GaAs epitaxial layer was vapor-phase grown on a GaAs wafer according to the above-described growth operation procedure. The growth conditions are as follows. Semiconductor wafer size: 3 inch wafer Growth temperature: 650 ° C. Growth pressure: 50 Torr Total gas flow rate: 20 liter / min Arsine flow rate: 1 liter / min Trimethylgallium flow rate: 40 cc / min The number of defects on the surface of the epitaxial growth layer The number of surface defects was 120 (pieces / wafer) when examined with a particle counter for 1.2 μm 2 and above.
And could be greatly improved. When epitaxial growth was similarly performed by the conventional method using the apparatus shown in FIG. 2, the number of surface defects was 450 (pieces / wafer).

【0010】[0010]

【発明の効果】本発明は、上記の構成を採用することに
より、有機金属気相成長法おいて、予備室を経由したキ
ャリアガスを真空排気した成長室に供給し、成長圧力ま
で昇圧することができるので、成長室内のダストによる
半導体ウエハの汚染を抑制することができ、良質のエピ
タキシャル成長層を容易に得ることができるようになっ
た。
According to the present invention, by adopting the above structure, in the metalorganic vapor phase epitaxy method, the carrier gas passing through the preliminary chamber is supplied to the evacuated growth chamber to increase the pressure to the growth pressure. Therefore, contamination of the semiconductor wafer due to dust in the growth chamber can be suppressed, and a high-quality epitaxial growth layer can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1具体例である有機金属気相成長装置
の概念図である。
FIG. 1 is a conceptual diagram of a metal-organic vapor phase epitaxy apparatus that is one specific example of the present invention.

【図2】従来の有機金属気相成長装置の概念図である。FIG. 2 is a conceptual diagram of a conventional metal-organic vapor phase epitaxy apparatus.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハを装着する回転式サセプタ
を縦型成長室の中央に配置し、該成長室に原料ガス供給
管を接続し、該ウエハを予め真空に保持する予備室を設
け、該成長室と予備室とをゲートバルブを介して搬送管
で接続し、該成長室と予備室にはそれぞれ個別に真空排
気系を接続した気相成長装置において、上記予備室に原
料ガス搬送用のキャリアガス供給管を接続したことを特
徴とする有機金属気相成長装置。
1. A rotary susceptor for mounting a semiconductor wafer is arranged in the center of a vertical growth chamber, a source gas supply pipe is connected to the growth chamber, and a preliminary chamber for preliminarily holding the wafer in vacuum is provided. In a vapor phase growth apparatus in which a growth chamber and a preparatory chamber are connected by a transfer pipe via a gate valve, and a vacuum exhaust system is individually connected to the growth chamber and the preparatory chamber, the preparatory chamber for transferring a raw material gas is used. An organometallic vapor phase epitaxy apparatus having a carrier gas supply pipe connected thereto.
【請求項2】 請求項1記載の有機金属気相成長装置を
使用し、成長終了後の成長室及び新たな半導体ウエハを
収容した予備室をほぼ同一圧力までそれぞれ真空排気し
た後ゲートバルブを開放し、原料ガス搬送用のキャリア
ガスを予備室を経て成長室に供給して成長圧力まで昇圧
し、成長済みの半導体ウエハと新たな半導体ウエハを予
備室と成長室の間で交換し、ゲートバルブを閉じてか
ら、成長室に原料ガスを供給して気相成長を行い、予備
室には窒素ガスを供給して大気圧にし、成長済みの半導
体ウエハを系外に回収するとともに新たな半導体ウエハ
を収容することを特徴とする有機金属気相成長方法。
2. The metal-organic vapor phase epitaxy apparatus according to claim 1, wherein the growth chamber after the growth and the preliminary chamber containing a new semiconductor wafer are evacuated to almost the same pressure, and the gate valve is opened. Then, the carrier gas for transporting the raw material gas is supplied to the growth chamber through the preliminary chamber to raise the pressure to the growth pressure, and the grown semiconductor wafer and the new semiconductor wafer are exchanged between the preliminary chamber and the growth chamber, and the gate valve After closing the chamber, the source gas is supplied to the growth chamber for vapor phase growth, the nitrogen gas is supplied to the preliminary chamber to bring it to atmospheric pressure, and the grown semiconductor wafers are collected outside the system and new semiconductor wafers are collected. A metal-organic vapor phase epitaxy method comprising:
JP30578291A 1991-11-21 1991-11-21 Apparatus and method for organometallic vapor growth Pending JPH05144739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30578291A JPH05144739A (en) 1991-11-21 1991-11-21 Apparatus and method for organometallic vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30578291A JPH05144739A (en) 1991-11-21 1991-11-21 Apparatus and method for organometallic vapor growth

Publications (1)

Publication Number Publication Date
JPH05144739A true JPH05144739A (en) 1993-06-11

Family

ID=17949287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30578291A Pending JPH05144739A (en) 1991-11-21 1991-11-21 Apparatus and method for organometallic vapor growth

Country Status (1)

Country Link
JP (1) JPH05144739A (en)

Similar Documents

Publication Publication Date Title
JP3909608B2 (en) Vacuum processing equipment
JP2670515B2 (en) Vertical heat treatment equipment
US20220199398A1 (en) Vapor deposition method and vapor deposition device
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JPH05144739A (en) Apparatus and method for organometallic vapor growth
JP3856397B2 (en) Wafer processing method for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP3061455B2 (en) Vapor phase growth apparatus and cleaning method in vapor phase growth apparatus
JP3146021B2 (en) Semiconductor vapor deposition equipment
JP2608533B2 (en) Single crystal thin film semiconductor growth method
JPH06135796A (en) Metal organic vapor phase growth system and method therefor
JP2656029B2 (en) Crystal growth equipment
JP4627860B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JPS6235809B2 (en)
JPH0513348A (en) Device for manufacturing semiconductor
JPH04145619A (en) Vapor growth device
JPS62128518A (en) Vapor growth equipment
JPH01302719A (en) Crystal vapor growth device
JPH1192280A (en) Silicon epitaxial vapor-phase growth apparatus
JPH01145806A (en) Organic metal vapor growth apparatus
JP2805865B2 (en) Vapor phase growth method of phosphorus compound semiconductor crystal
JPH0574712A (en) Organic metal vapor-growth device
JPH02268433A (en) Manufacture of semiconductor device
JPS62189727A (en) Apparatus for thermal decomposition vapor growth of organic metal
JPH0362922A (en) Vapor growth apparatus for organic metal
JPH01257193A (en) Vapor-phase growth device for semiconductor