JPH01302719A - Crystal vapor growth device - Google Patents

Crystal vapor growth device

Info

Publication number
JPH01302719A
JPH01302719A JP13243688A JP13243688A JPH01302719A JP H01302719 A JPH01302719 A JP H01302719A JP 13243688 A JP13243688 A JP 13243688A JP 13243688 A JP13243688 A JP 13243688A JP H01302719 A JPH01302719 A JP H01302719A
Authority
JP
Japan
Prior art keywords
chamber
preparatory chamber
growth
preliminary
preparatory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13243688A
Other languages
Japanese (ja)
Other versions
JP2662695B2 (en
Inventor
Kouichi Kamon
香門 浩一
Hideyuki Doi
秀之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Nissin Electric Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Sumitomo Electric Industries Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63132436A priority Critical patent/JP2662695B2/en
Publication of JPH01302719A publication Critical patent/JPH01302719A/en
Application granted granted Critical
Publication of JP2662695B2 publication Critical patent/JP2662695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent dust and particles from sticking onto the substrate surface by providing a pressure controlling means between a preparatory chamber and a preparatory chamber exhausting means in order to prevent generation of a turbulent flow at the time of initial exhaust in the preparatory chamber. CONSTITUTION:A turbomolecular pump 9 and a rotary pump 10 are connected to a preparatory chamber 1 as a preparatory chamber exhausting means for exhausting the inside of the preparatory chamber 1. A conductance variable valve 13 as a pressure control means is provided between the pump 9 and the preparatory chamber 1. The valve 13 controls the pressure inside the preparatory chamber 1. The valve 13 is initially in a confined state at the time of initial exhaust of the preparatory chamber 1 while gradually becoming an open condition so as to prevent from suddenly becoming a low vacuum state from the atmospheric pressure. A turbulent flow is not generated at the time of initial exhausting. Thereby, dust and particles are prevented from sticking to the substrate surface.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、化学的気相成長法や熱分解気相成長法等に
より薄膜結晶を成長させる気相結晶成長装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase crystal growth apparatus for growing thin film crystals by chemical vapor deposition, pyrolytic vapor growth, or the like.

[従来の技術] 第3図は、従来の気相結晶成長装置を示す概略構成図で
ある。第3図に示す成長装置は、パンケーキ型の減圧気
相結晶成長装置の一例であり、結晶成長を行なう成長室
2と、ロードロツタ室と呼ばれる予備室1とを備えてお
り、予備室1と成長室2の間にはゲートバルブ3が設け
られている。
[Prior Art] FIG. 3 is a schematic configuration diagram showing a conventional vapor phase crystal growth apparatus. The growth apparatus shown in FIG. 3 is an example of a pancake-type reduced pressure vapor phase crystal growth apparatus, and is equipped with a growth chamber 2 in which crystal growth is performed and a preliminary chamber 1 called a load rotor chamber. A gate valve 3 is provided between the growth chambers 2.

このような装置で気相結晶成長させるには、まずサセプ
タ5を成長室2からトランスファロッド8で予備室1に
引き上げておく。予備室1の扉を開け、大気圧に開放し
た後、基板4をサセプタ5上に設置する。そして、扉を
閉じ、大気圧から1O−2Torrの真空度までは、バ
イパスライン(図示せず)を通してロータリポンプ10
により排気する。次に、バイパスラインのバルブを閉じ
、ターボモレキュラーポンプ9に接続されたラインによ
り、ロータリポンプ10とターボモレキュラーポンプ9
の両方で排気し、1O−6Torrの高真空状態にする
To perform vapor phase crystal growth using such an apparatus, first, the susceptor 5 is pulled up from the growth chamber 2 to the preliminary chamber 1 by the transfer rod 8. After opening the door of the preliminary chamber 1 and releasing it to atmospheric pressure, the substrate 4 is placed on the susceptor 5. Then, the door is closed, and the rotary pump 10 is passed through a bypass line (not shown) from atmospheric pressure to a vacuum level of 1O-2 Torr.
Exhaust by. Next, the bypass line valve is closed, and the line connected to the turbo molecular pump 9 connects the rotary pump 10 and the turbo molecular pump 9.
Evacuate both to create a high vacuum of 1O-6 Torr.

成長室2は、結晶成長を行なうとき以外は、ターボモレ
キュラーポンプ11およびロータリポンプ12により1
O−6Torrの高真空状態にされている。予備室1が
1O−6Torrの高真空状態になったところで、ゲー
トバルブ3を開け、基板4の載ったサセプタ5を成長室
2の所定の位置に、トランスファロッド8により移送す
る。次に、ゲートバルブ3を閉じ、成長室2内の原料ガ
ス導入バイブロから原料ガスを導入し、ヒータ7で基板
4を加熱しながら、所望の薄膜結晶を基板4上に気相成
長させる。
The growth chamber 2 is operated by a turbo molecular pump 11 and a rotary pump 12 except when performing crystal growth.
It is kept in a high vacuum state of O-6 Torr. When the preliminary chamber 1 is in a high vacuum state of 10-6 Torr, the gate valve 3 is opened and the susceptor 5 carrying the substrate 4 is transferred to a predetermined position in the growth chamber 2 by the transfer rod 8. Next, the gate valve 3 is closed, a source gas is introduced from the source gas introducing vibro in the growth chamber 2, and a desired thin film crystal is grown on the substrate 4 in a vapor phase while the substrate 4 is heated by the heater 7.

[発明が解決しようとする課題] しかしながら、このような従来の装置では、基板を予備
室に入れた後、大気圧から10””T。
[Problems to be Solved by the Invention] However, in such a conventional apparatus, after the substrate is placed in the preliminary chamber, the temperature is reduced from atmospheric pressure to 10"T.

r「の真空度へ予備的に真空排気する際、室内に蓄積さ
れた粉塵やパーティクル等が初期の排気の際に生じる乱
流によって舞い上がり、基板表面に付着するという問題
があった。このような粉塵やパーティクル等は、数μm
から1μm以下の微少粒子であり、基板表面全体に付着
する。このため、このような微少粒子が付着した基板を
用いてその上に結晶成長させると、薄膜結晶表面のモル
フォロジーが極めて劣化し、結晶の欠陥や結晶表面の凹
凸を生じる。このような薄膜結晶を次の工程の種々のデ
バイスプロセスに使用すると、製品の歩留りが極めて悪
くなり、生産効率の面から大きな問題となった。
When preliminary evacuation is performed to a vacuum level of 100°C, there is a problem in that dust and particles accumulated in the room are blown up by the turbulence generated during the initial evacuation and adhere to the substrate surface. Dust, particles, etc. are a few micrometers in size.
They are microparticles with a diameter of 1 μm or less, and adhere to the entire surface of the substrate. For this reason, when a substrate to which such fine particles are attached is used and crystals are grown thereon, the morphology of the thin film crystal surface is extremely deteriorated, resulting in crystal defects and crystal surface irregularities. When such thin film crystals are used in various device processes in subsequent steps, the yield of products becomes extremely poor, which poses a major problem in terms of production efficiency.

この発明は、かかる従来の問題を解消し、予備室におけ
る初期の排気の際の粉塵やパーティクル等の基板への付
着を抑制することのできる気相結晶成長装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vapor phase crystal growth apparatus which can solve the conventional problems and suppress adhesion of dust, particles, etc. to a substrate during initial evacuation in a preliminary chamber.

[課題を解決するための手段] この発明の気相結晶成長装置では、サセプタ上に基板を
設置した後内部が予備的に排気される予備室と、予備室
の内部を排気するための予備室排気手段と、基板上に薄
膜を結晶成長させるため予備室から移送されてくるサセ
プタを受け入れる成長室と、成長室の内部を排気するた
めの成長室排気手段と、予備室と成長室の間に設けられ
、予備室の内部が排気された後、サセプタを成長室へ送
るため開くゲートバルブとを備え、予備室と予備室排気
手段との間に予備室の内部の圧力を制御する圧力制御手
段が設けられている。
[Means for Solving the Problems] The vapor phase crystal growth apparatus of the present invention includes a preliminary chamber from which the interior is preliminary evacuated after a substrate is placed on the susceptor, and a preliminary chamber for evacuating the interior of the preliminary chamber. An exhaust means, a growth chamber that receives a susceptor transferred from the preliminary chamber for crystal growth of a thin film on a substrate, a growth chamber exhaust means for exhausting the inside of the growth chamber, and a space between the preliminary chamber and the growth chamber. and a gate valve that opens to send the susceptor to the growth chamber after the interior of the preliminary chamber has been evacuated, and a pressure control means for controlling the pressure inside the preliminary chamber between the preliminary chamber and the preliminary chamber exhaust means. is provided.

[作用] この発明の気相結晶成長装置では、予備室と予備室排気
手段との間に圧力制御手段が設けられている。この圧力
制御手段としては、具体的にはたとえば圧力制御可能な
スロットバルブやバタフライバルブが用いられる。この
圧力制御手段は、予備室の初期の排気の際、最初閉じら
れた状態であり、徐々に開かれた状態となり、大気圧か
ら急激に低い真空状態になることを防止する。これによ
り、従来のように初期の排気の際に乱流を生じることが
ない。
[Function] In the vapor phase crystal growth apparatus of the present invention, pressure control means is provided between the preliminary chamber and the preliminary chamber exhaust means. As this pressure control means, specifically, for example, a slot valve or a butterfly valve that can control the pressure is used. This pressure control means is initially in a closed state during initial evacuation of the preliminary chamber, and is gradually opened to prevent a sudden drop from atmospheric pressure to a low vacuum state. This prevents turbulence from occurring during initial exhaust as in the conventional case.

従来の一般的な初期の排気の際には、次式に示すような
指数関数的な真空排気特性になる。
In the conventional general initial evacuation, the evacuation characteristics are exponential as shown in the following equation.

ここで、■は真空容器の容積、Sは排気速度、Pは圧力
、Qは真空容器内で発生するガス量を示している。
Here, ■ is the volume of the vacuum vessel, S is the pumping speed, P is the pressure, and Q is the amount of gas generated within the vacuum vessel.

しかしながら、この発明に従う気相結晶成長装置では、
上記の式で示す真空排気特性よりも、より緩やかな排気
特性が得られる。
However, in the vapor phase crystal growth apparatus according to the present invention,
A gentler evacuation characteristic can be obtained than the evacuation characteristic shown by the above formula.

したがって、この発明の気相結晶成長装置では、乱流を
発生せず、予備室内の粉塵やパーティクル類等が舞い上
がり基板表面に付着するのを防止することができる。
Therefore, the vapor phase crystal growth apparatus of the present invention does not generate turbulence and can prevent dust, particles, etc. in the preliminary chamber from flying up and adhering to the substrate surface.

[実施例] 第1図は、この発明の一実施例を示す概略構成図である
。この実施例の気相結晶成長装置も、従来の装置と同様
にロードロック室と呼ばれれる予備室1と成長室2を備
え、その間にはゲートバルブ3が設けられている。サセ
プタ5は、トランスファロッド8により予備室1と成長
室2の間を移送可能なように設けられている。成長室2
内には原料ガスを導入するための原料ガス導入バイブロ
および基板4を加熱するためのヒータ7が設けられてい
る。また、成長室2の内部を排気するための成長室排気
手段としてて、ターボモレキュラーポンプ11およびロ
ータリポンプ12が成長室2に接続されている。また、
予備室1には、予備室1の内部を排気するための予備室
排気手段としてターボモレキュラーポンプ9およびロー
クリポンプ10が接続されている。ターボモレキュラー
ポンプつと予備室1の間には、圧力制御手段としてのコ
ンダクタンス可変バルブ13が設けられている。このコ
ンダクタンス可変バルブ13により、予備室1内の圧力
が制御される。
[Embodiment] FIG. 1 is a schematic diagram showing an embodiment of the present invention. The vapor phase crystal growth apparatus of this embodiment also includes a preliminary chamber 1 called a load lock chamber and a growth chamber 2, like the conventional apparatus, and a gate valve 3 is provided between them. The susceptor 5 is provided so that it can be transferred between the preliminary chamber 1 and the growth chamber 2 by a transfer rod 8. Growth room 2
A source gas introduction vibro for introducing source gas and a heater 7 for heating the substrate 4 are provided inside. Further, a turbo molecular pump 11 and a rotary pump 12 are connected to the growth chamber 2 as growth chamber exhaust means for evacuating the inside of the growth chamber 2. Also,
A turbo molecular pump 9 and a rotary pump 10 are connected to the preliminary chamber 1 as preliminary chamber exhaust means for evacuating the inside of the preliminary chamber 1 . A variable conductance valve 13 is provided between the turbo molecular pump and the preliminary chamber 1 as pressure control means. This variable conductance valve 13 controls the pressure within the preliminary chamber 1.

このような装置を用いて基板上に気相結晶成長させるに
は、まずサセプタ5をトランスファロッド8により予備
室1に引き上げる。予備室1の扉を開け、大気圧に開放
した後、サセプタ5に基板4を設置する。次いで、扉を
閉じ図示しないバイパスラインを通してロータリポンプ
10により真空排気する。この際、コンダクタンス可変
バルブ13は最初間じた状態にし、徐々に開けた状態に
していく。これにより、大気圧から1O−2T。
To perform vapor phase crystal growth on a substrate using such an apparatus, first the susceptor 5 is pulled up into the preliminary chamber 1 by the transfer rod 8. After opening the door of the preliminary chamber 1 and releasing it to atmospheric pressure, the substrate 4 is placed on the susceptor 5. Next, the door is closed and the vacuum is evacuated by the rotary pump 10 through a bypass line (not shown). At this time, the variable conductance valve 13 is first closed and then gradually opened. This allows 1O-2T from atmospheric pressure.

rrの真空度までの排気が、緩やかになされ、予備室1
内に排気に伴なう乱流を生じることはない。
Evacuation to a vacuum level of rr is performed slowly, and the preliminary chamber 1
There is no turbulence caused by exhaust gas inside the tank.

このようにして1O−2TOrrの真空度に達した後は
、ターボモレキュラーポンプ9およびロータリポンプ1
0の両方を働かせて、10−’T。
After reaching a vacuum level of 10-2 TOrr in this way, the turbo molecular pump 9 and the rotary pump 1
0 and 10-'T.

rrの真空度の高真空領域まで排気する。予備室1が高
真空状態になった後、ゲートバルブ3を開けて、サセプ
タ5をトランスファロッドにより成長室2に移送させ、
気相成長を始める。
Evacuate to a high vacuum region with a degree of vacuum of rr. After the preliminary chamber 1 is in a high vacuum state, the gate valve 3 is opened and the susceptor 5 is transferred to the growth chamber 2 by the transfer rod.
Start vapor phase growth.

第1図に示す実施例の装置を用いて、前処理したGaA
sウェハの表面に気相成長させた。予備室1内を真空排
気した後、ウェハを取出し、その表面に付着したパーテ
ィクル数を、表面パーティクル検査用設備を用いてカウ
ントした。この結果、この実施例の装置を用いたものは
10個/Cm2以下のパーティクル数であった。
GaA pretreated using the apparatus of the example shown in FIG.
vapor phase growth was performed on the surface of the S wafer. After evacuating the inside of the preliminary chamber 1, the wafer was taken out, and the number of particles attached to the surface of the wafer was counted using equipment for surface particle inspection. As a result, the number of particles using the apparatus of this example was 10 particles/Cm2 or less.

また、大気圧から1O−2Torrの真空度までの排気
特性を真空計を用いて測定し、結果を第2図に実線で示
した。
Further, the exhaust characteristics from atmospheric pressure to a degree of vacuum of 10-2 Torr were measured using a vacuum gauge, and the results are shown as a solid line in FIG.

比較として、第3図に示す従来の気相結晶成長装置を用
いて、同じ(GaAsウエノ\の表面に気相成孔させた
。予備室1の真空排気後、ウニ/%を取出し、実施例と
同様に表面パーティクル検査用設備を用いて、表面に付
着したパーティクル数をカウントしたところ、この従来
の装置によるものは、1万個/Cm2以上のパーティク
ル数であった。
For comparison, a conventional vapor phase crystal growth apparatus shown in FIG. Similarly, when the number of particles attached to the surface was counted using the surface particle inspection equipment, the number of particles attached to the surface was found to be 10,000 particles/cm2 or more using this conventional device.

また大気圧から1O−2Torrの真空度までの排気特
性を真空計を用いて測定した。この結果を第2図に点線
で示す。
Further, the exhaust characteristics from atmospheric pressure to a degree of vacuum of 10-2 Torr were measured using a vacuum gauge. The results are shown in FIG. 2 by dotted lines.

第2図に示されるように、この発明の装置によるものは
、排気開始直後は緩やかに排気している。
As shown in FIG. 2, the device according to the present invention performs gradual exhaustion immediately after the start of exhaustion.

したがって、従来のように急激な排気によって予備室内
に乱流が発生することはなく、このため予備室内に粉塵
やパーティクル等が舞い上がり基板に付着することが少
なくなる。
Therefore, turbulence is not generated in the preparatory chamber due to rapid exhaust air unlike in the conventional case, and therefore, dust, particles, etc. are less likely to fly up in the preparatory chamber and adhere to the substrate.

[発明の効果] 以上説明したように、この発明の気相結晶成長装置では
、予備室と予備室排気手段との間に、圧力制御手段が設
けられており、この圧力制御手段により、予備室におけ
る初期の排気の際に乱流が発生するのを防止することが
できる。このため、従来問題になった、基板表面への粉
塵やパーティクル等の付着を防止することができる。し
たがって、表面モルフォロジーの良好な薄膜結晶を得る
ことが可能になり、製品の歩留りが向上し、工業的な生
産効率を高めることができる。
[Effects of the Invention] As explained above, in the vapor phase crystal growth apparatus of the present invention, a pressure control means is provided between the preliminary chamber and the preliminary chamber exhaust means. This can prevent turbulence from occurring during the initial evacuation. Therefore, it is possible to prevent dust, particles, etc. from adhering to the substrate surface, which has been a problem in the past. Therefore, it is possible to obtain a thin film crystal with good surface morphology, and the yield of products can be improved, and industrial production efficiency can be increased.

この発明は、化学的気相成長法や熱分解気相成長法等の
気相結晶成長法による結晶成長に幅広く適用されるもの
であり、たとえばGaAs系、InP系等の化合物半導
体のエピタキシャル結晶等の半導体薄膜単結晶や、たと
えば5i02.5t3N4等の絶縁性薄膜あるいはTj
Six、WSix等の導電性薄膜結晶などの薄膜多結晶
にも適用されるものである。
This invention is widely applicable to crystal growth by vapor phase crystal growth methods such as chemical vapor growth method and pyrolysis vapor phase growth method, and for example, epitaxial crystals of compound semiconductors such as GaAs-based and InP-based. semiconductor thin film single crystal, insulating thin film such as 5i02.5t3N4, or Tj
It is also applicable to thin film polycrystals such as conductive thin film crystals such as Six and WSix.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す概略構成図である
。第2図は、実施例の初期排気特性を示す図である。第
3図は、従来の気相結晶成長装置を示す概略構成図であ
る。 図において、1は予備室、2は成長室、3はゲートバル
ブ、4は基板、5はサセプタ、6は原料ガス導入パイプ
、7はヒータ、8はトランスファロッド、9はターボモ
レキュラーポンプ、10はロークリポンプ、11はター
ボモレキュラーポンプ、12はロータリポンプ、13は
圧力制御手段としてのコンダクタンス可変バルブを示す
。 特許出願人 住友電気工業株式会社 第2図 時  間 (秒)
FIG. 1 is a schematic diagram showing an embodiment of the present invention. FIG. 2 is a diagram showing the initial exhaust characteristics of the example. FIG. 3 is a schematic configuration diagram showing a conventional vapor phase crystal growth apparatus. In the figure, 1 is a preliminary chamber, 2 is a growth chamber, 3 is a gate valve, 4 is a substrate, 5 is a susceptor, 6 is a source gas introduction pipe, 7 is a heater, 8 is a transfer rod, 9 is a turbo molecular pump, and 10 is a 11 is a turbo molecular pump, 12 is a rotary pump, and 13 is a variable conductance valve as pressure control means. Patent applicant Sumitomo Electric Industries, Ltd. Figure 2 Time (seconds)

Claims (1)

【特許請求の範囲】[Claims] (1)サセプタ上に基板を設置した後、内部が予備的に
排気される予備室と、 前記予備室の内部を排気するための予備室排気手段と、 前記基板上に薄膜を結晶成長させるため、前記予備室か
ら移送されてくる前記サセプタを受け入れる成長室と、 前記成長室の内部を排気するための成長室排気手段と、 前記予備室と前記成長室の間に設けられ、前記予備室の
内部が排気された後、サセプタを前記成長室へ送るため
開くゲートバルブとを備える、気相結晶成長装置におい
て、 前記予備室と前記予備室排気手段との間に、前記予備室
の内部の圧力を制御する圧力制御手段が設けられている
ことを特徴とする、気相結晶成長装置。
(1) A preliminary chamber whose interior is preliminary evacuated after the substrate is placed on the susceptor; a preliminary chamber exhaust means for evacuating the interior of the preliminary chamber; and a preliminary chamber exhaust means for growing crystals of a thin film on the substrate. , a growth chamber for receiving the susceptor transferred from the preparatory chamber; a growth chamber exhaust means for evacuating the inside of the growth chamber; and a growth chamber provided between the preparatory chamber and the growth chamber, In a vapor phase crystal growth apparatus comprising a gate valve that opens to send the susceptor to the growth chamber after the interior is evacuated, the pressure inside the preparatory chamber is disposed between the preparatory chamber and the preparatory chamber evacuation means. A vapor phase crystal growth apparatus, characterized in that it is provided with pressure control means for controlling.
JP63132436A 1988-05-30 1988-05-30 Vapor phase crystal growth equipment Expired - Fee Related JP2662695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132436A JP2662695B2 (en) 1988-05-30 1988-05-30 Vapor phase crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132436A JP2662695B2 (en) 1988-05-30 1988-05-30 Vapor phase crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH01302719A true JPH01302719A (en) 1989-12-06
JP2662695B2 JP2662695B2 (en) 1997-10-15

Family

ID=15081325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132436A Expired - Fee Related JP2662695B2 (en) 1988-05-30 1988-05-30 Vapor phase crystal growth equipment

Country Status (1)

Country Link
JP (1) JP2662695B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080679A (en) * 1997-05-23 2000-06-27 Canon Kabushiki Kaisha High-speed soft evacuation process and system
US6299691B1 (en) 1999-01-28 2001-10-09 Canon Kabushiki Kaisha Method of and apparatus for processing a substrate under a reduced pressure
WO2009078354A1 (en) * 2007-12-18 2009-06-25 Sumitomo Electric Industries, Ltd. Processing method and semiconductor device manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958938U (en) * 1982-10-13 1984-04-17 日本電信電話株式会社 Low pressure processing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958938U (en) * 1982-10-13 1984-04-17 日本電信電話株式会社 Low pressure processing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080679A (en) * 1997-05-23 2000-06-27 Canon Kabushiki Kaisha High-speed soft evacuation process and system
US6299691B1 (en) 1999-01-28 2001-10-09 Canon Kabushiki Kaisha Method of and apparatus for processing a substrate under a reduced pressure
WO2009078354A1 (en) * 2007-12-18 2009-06-25 Sumitomo Electric Industries, Ltd. Processing method and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2662695B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP3501524B2 (en) Vacuum exhaust system for processing equipment
JPH01125821A (en) Vapor growth device
JPH0760804B2 (en) Method and apparatus for semiconductor vapor phase growth
JPH01302719A (en) Crystal vapor growth device
JP3856397B2 (en) Wafer processing method for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP4324418B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP3173681B2 (en) Evacuation apparatus and method
JP3070567B2 (en) Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same
JP2657254B2 (en) Processing apparatus and its exhaust method
JP4456341B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JPH06140335A (en) Film growth device
JPH11260738A (en) Vacuum heat treatment apparatus
JPH01145806A (en) Organic metal vapor growth apparatus
JP2985463B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JPH0693427A (en) Formation of film in vacuum
JPH06224097A (en) Vacuum evaculator
JP2814436B2 (en) Vapor phase growth method and apparatus
JPH03196525A (en) Formation of silicon nitride film
JP2002280385A (en) Thin-film forming method and thin-film forming device
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JP2000106347A (en) Method and device for processing object
JPS5875830A (en) Reduced pressure hot wall cvd method
JPS63270388A (en) Molecular-beam apparatus for crystal growth
JPS6010715A (en) Device for chemical gas-phase growth
JPS62189727A (en) Apparatus for thermal decomposition vapor growth of organic metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees