JPH05143178A - Temperature control circuit - Google Patents

Temperature control circuit

Info

Publication number
JPH05143178A
JPH05143178A JP30898191A JP30898191A JPH05143178A JP H05143178 A JPH05143178 A JP H05143178A JP 30898191 A JP30898191 A JP 30898191A JP 30898191 A JP30898191 A JP 30898191A JP H05143178 A JPH05143178 A JP H05143178A
Authority
JP
Japan
Prior art keywords
temperature
resistance
variable resistor
resistor
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30898191A
Other languages
Japanese (ja)
Inventor
Masahiro Shinkai
正博 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP30898191A priority Critical patent/JPH05143178A/en
Publication of JPH05143178A publication Critical patent/JPH05143178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To obtain a highly accurate and compact temperature control circuit by serially connecting a heat variable resistor having a positive resistor temperature coefficient to a heating conductor and connecting a controllable resistor in parallel with the conductor and the variable resistor. CONSTITUTION:The resistance of a variable resistor(VR) 10 is adjusted so as to be equal to synthetic resistance between the resistance of a heater 13 and that of a positive characteristic thermistor 14. The circuit 10 is arranged in a thermostat to be controlled at its temperature. When the atmospheric temperature in the thermostat is lower than control temperature, the resistor of the thermistor 14 is reduced correspondingly to the temperature difference, so that synthetic resistance is also reduced, much current is allowed to flow into the heater 13 and heat generation is increased. Thus the highly accurate and compact temperature control device can be attained by the simple constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、恒温槽,半田槽等に適
用される温度制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control circuit applied to a constant temperature bath, a solder bath and the like.

【0002】[0002]

【従来の技術】精度の高い温度制御に、正特性サーミス
タの抵抗温度係数の大きい直線領域を用いた温度制御回
路が知られている((株)技術資料センター発行「最新
検知システム総覧」等)。図4はその温度制御回路1を
示すものである。
2. Description of the Related Art A temperature control circuit using a linear region having a large temperature coefficient of resistance of a positive temperature coefficient thermistor is known for highly accurate temperature control ("Latest Detection System Guide" issued by Technical Data Center Co., Ltd.). .. FIG. 4 shows the temperature control circuit 1.

【0003】同図に示す回路1は、電源2,ヒータ3,
可調整抵抗器VR1 ,VR2 及び正特性サーミスタ4を
具備し、更にスイッチング素子であるトライアック5,
6,抵抗R,コンデンサC,チョークコイルCHを備
え、正特性サーミスタ4を温度検出器として用いて位相
制御方式により温度制御を行うものである。
The circuit 1 shown in FIG.
The adjustable resistors VR1 and VR2 and the positive temperature coefficient thermistor 4 are provided, and the triac 5, which is a switching element, is further provided.
6, a resistor R, a capacitor C, and a choke coil CH are provided, and the positive temperature coefficient thermistor 4 is used as a temperature detector to perform temperature control by a phase control method.

【0004】[0004]

【発明が解決しようとする課題】近年、温度制御回路に
おいても、小型化,簡素化の要求があり、温度制御回路
の構成を高精度な制御が行え、しかも必要最小限度にす
る必要があった。
In recent years, there has been a demand for miniaturization and simplification of the temperature control circuit as well, so that the structure of the temperature control circuit can be controlled with high accuracy, and moreover, it is necessary to minimize it. ..

【0005】そこで、本発明は、上記事情に鑑みてなさ
れたものであり、高精度でしかも小型化,簡素化を図っ
た温度制御装置を提供することを目的とするものであ
る。
Therefore, the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a temperature control device which is highly accurate and which is downsized and simplified.

【0006】[0006]

【課題を解決するための手段】請求項1記載の温度制御
回路は、発熱導体に直列に接続され所定制御温度範囲で
急峻な正の直線的抵抗温度係数を有する熱可変抵抗器
と、前記発熱導体及び熱可変抵抗器に並列に接続された
可調整抵抗器とを具備することを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a temperature control circuit, wherein a heat variable resistor is connected in series to a heating conductor and has a steep positive linear temperature coefficient of resistance in a predetermined control temperature range; And an adjustable resistor connected in parallel with the conductor and the heat variable resistor.

【0007】請求項2記載の温度制御回路は、発熱導体
に直列に接続された可調整抵抗器と、前記発熱導体及び
可調整抵抗器に並列に接続され所定制御温度範囲で急峻
な負の直線的抵抗温度係数を有する熱可変抵抗器とを具
備することを特徴とするものである。
According to another aspect of the temperature control circuit of the present invention, the adjustable resistor connected in series to the heating conductor, and the negative linear line steeply connected in parallel to the heating conductor and the adjustable resistor in a predetermined control temperature range. And a heat variable resistor having a dynamic temperature coefficient of resistance.

【0008】請求項3記載の温度制御回路は、請求項1
又は2記載の温度制御回路において、直線的抵抗温度係
数を105 Ω/℃以上とするものである。
According to a third aspect of the present invention, there is provided a temperature control circuit according to the first aspect.
Alternatively, in the temperature control circuit described in item 2, the temperature coefficient of linear resistance is set to 10 5 Ω / ° C. or more.

【0009】請求項4記載の温度制御回路は、請求項1
又は3記載の温度制御回路において、熱可変抵抗器を少
なくとも結晶性重合体を含んで構成された正特性サーミ
スタとするものである。
According to a fourth aspect of the present invention, there is provided a temperature control circuit according to the first aspect.
Alternatively, in the temperature control circuit according to the third aspect, the heat variable resistor is a positive temperature coefficient thermistor including at least a crystalline polymer.

【0010】[0010]

【作用】請求項1記載の温度制御回路によれば、まず、
制御温度において、発熱導体と熱可変抵抗器との合成抵
抗に等しくなるように可調整抵抗器の抵抗を調整する。
次に、温度制御対象の流体中に本回路を配置する。制御
対象の温度が制御温度より低い場合は、その分熱可変抵
抗器の抵抗が低くなるために、合成抵抗も低くなり、電
流が熱可変抵抗器及び発熱導体の側に多く流れ、発熱導
体は多く発熱する。これとは逆に、制御対象の温度が制
御温度より高い場合は、その分熱可変抵抗器の抵抗が高
くなるために、合成抵抗も高くなり、電流が可調整抵抗
器の側に多く流れ、発熱導体の発熱は抑制される。
According to the temperature control circuit of the first aspect, first,
At the control temperature, the resistance of the adjustable resistor is adjusted so as to be equal to the combined resistance of the heat generating conductor and the heat variable resistor.
Next, this circuit is arranged in the fluid whose temperature is to be controlled. When the temperature of the controlled object is lower than the control temperature, the resistance of the heat variable resistor is reduced by that much, so the combined resistance is also reduced, and a large amount of current flows to the side of the heat variable resistor and the heating conductor, and the heating conductor Generates a lot of heat. On the contrary, when the temperature of the controlled object is higher than the control temperature, the resistance of the heat variable resistor increases correspondingly, so the combined resistance also increases and a large amount of current flows to the adjustable resistor side. The heat generation of the heat generating conductor is suppressed.

【0011】請求項2記載の温度制御回路によれば、ま
ず、制御温度において、発熱導体と可調整抵抗器との合
成抵抗が熱可変抵抗器の抵抗に等しくなるように可調整
抵抗器の抵抗を調整する。次に、温度制御対象の流体中
に本回路を配置する。制御対象の温度が制御温度より低
い場合は、その分熱可変抵抗器の抵抗が高くなるため
に、電流が発熱導体及び可調整抵抗器の側に多く流れ、
発熱導体は多く発熱する。これとは逆に、制御対象の温
度が制御温度より高い場合は、その分熱可変抵抗器の抵
抗が低くなるために、電流が熱可変抵抗器の側に多く流
れ、発熱導体の発熱は抑制される。
According to the temperature control circuit of the second aspect, first, at the control temperature, the resistance of the adjustable resistor is adjusted so that the combined resistance of the heat-generating conductor and the adjustable resistor becomes equal to the resistance of the heat variable resistor. Adjust. Next, this circuit is arranged in the fluid whose temperature is to be controlled. When the temperature of the controlled object is lower than the controlled temperature, the resistance of the heat variable resistor increases accordingly, so that a large amount of current flows to the heating conductor and the adjustable resistor side.
The heating conductor generates a lot of heat. On the contrary, when the temperature of the controlled object is higher than the control temperature, the resistance of the heat variable resistor decreases accordingly, so that a large amount of current flows to the heat variable resistor side, and the heat generation of the heat generating conductor is suppressed. To be done.

【0012】請求項3記載の温度制御回路によれば、熱
可変抵抗器の直線的抵抗温度係数を105 Ω/℃以上と
することにより、より高精度な制御が可能となる。
According to the temperature control circuit of the third aspect, by setting the linear resistance temperature coefficient of the heat variable resistor to 10 5 Ω / ° C. or more, more precise control becomes possible.

【0013】請求項4記載の温度制御回路によれば、高
い直線的抵抗温度係数が得られる。
According to the temperature control circuit of the fourth aspect, a high linear resistance temperature coefficient can be obtained.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して詳述
する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明の温度制御回路の第1の実施
例を示す概略回路図10である。本回路10は、電源1
2と、発熱導体としてのヒータ13と、このヒータ13
に直列に接続された熱可変抵抗器としての正特性サーミ
スタ14と、ヒータ13及び正特性サーミスタ14に並
列に接続された可調整抵抗器としての可変抵抗器VR10
とを有している。
FIG. 1 is a schematic circuit diagram 10 showing a first embodiment of the temperature control circuit of the present invention. The circuit 10 includes a power source 1
2, a heater 13 as a heating conductor, and this heater 13
Positive temperature coefficient thermistor 14 as a variable heat resistor connected in series to the heater 13 and variable resistance VR10 as an adjustable resistor connected in parallel to the heater 13 and the positive temperature coefficient thermistor 14.
And have.

【0016】前記正特性サーミスタ14は、ポリフッ化
ビニリデン等の結晶性重合体(ポリマー)と、この結晶
性重合体に導電性物質として混練したスパイク状の突起
を有する所定量のスパイク状Niパウダー(インコ・リ
ミテッド製)等の導電性粒子からなるものである。ま
た、結晶性重合体の種類を適宜選択することにより、急
峻な直線的抵抗温度係数を示す温度範囲を100℃乃至
200℃、抵抗温度係数を105 Ω/℃以上の所望の値
にできる。図2はこの正特性サーミスタ14の抵抗温度
特性の一例を示すグラフである。同図に示すように、抵
抗温度係数は、常温(0.6Ω)から温度160℃まで
は104 Ω/℃であるが、温度160℃を超えると10
7 Ω/℃以上の急峻な立ち上がり特性を示し、温度17
6℃で最大の抵抗3×107 となっている。従って、こ
のような特性の場合は、制御温度範囲が160℃乃至1
70℃に適している。なお、正特性サーミスタ14は、
チタン酸バリウム(BaTiO3 )に希土類元素を添加
したものでも、同様に材料組成を変えることにより急峻
な直線的抵抗温度係数を示す温度範囲,抵抗温度係数を
所望の値に設定できる。
The positive temperature coefficient thermistor 14 comprises a crystalline polymer such as polyvinylidene fluoride and a predetermined amount of spiked Ni powder (spike-shaped Ni powder mixed with the crystalline polymer as a conductive substance). Inco Limited) and other conductive particles. Further, by appropriately selecting the type of crystalline polymer, the temperature range exhibiting a steep linear resistance temperature coefficient can be set to a desired value of 100 ° C. to 200 ° C. and the resistance temperature coefficient of 10 5 Ω / ° C. or more. FIG. 2 is a graph showing an example of resistance temperature characteristics of the positive temperature coefficient thermistor 14. As shown in the figure, the temperature coefficient of resistance is 10 4 Ω / ° C. from room temperature (0.6Ω) to 160 ° C., but 10 ° C. is exceeded when the temperature exceeds 160 ° C.
It shows a steep rising characteristic of 7 Ω / ° C or more and a temperature of 17
The maximum resistance is 3 × 10 7 at 6 ° C. Therefore, in the case of such characteristics, the control temperature range is 160 ° C to 1 ° C.
Suitable for 70 ° C. The positive temperature coefficient thermistor 14 is
Even if barium titanate (BaTiO3) is added with a rare earth element, the temperature range and resistance temperature coefficient exhibiting a steep linear resistance temperature coefficient can be set to desired values by changing the material composition in the same manner.

【0017】前記可変抵抗器VR10は、制御温度におい
て、可変抵抗範囲の中心がヒータ13と正特性サーミス
タ14との合成抵抗とほぼ一致するものを選定する。
The variable resistor VR10 is selected such that the center of the variable resistance range is substantially equal to the combined resistance of the heater 13 and the positive temperature coefficient thermistor 14 at the control temperature.

【0018】次に、上記構成の第1の実施例の温度制御
回路10の作用を恒温槽に適用した場合を例にして説明
する。
Next, a case where the operation of the temperature control circuit 10 of the first embodiment having the above-mentioned structure is applied to a constant temperature bath will be described as an example.

【0019】まず、恒温槽内の温度を本回路10以外の
ヒータにより室温から制御温度(例えば165℃)まで
上昇させる。そして、制御温度において、ヒータ13と
正特性サーミスタ14との合成抵抗に等しくなるように
可変抵抗器VR10の抵抗を調整する。次に、温度制御す
る恒温槽内に本回路10を配置する。恒温槽内の雰囲気
温度が制御温度より低い場合は、その分正特性サーミス
タ14の抵抗が低くなるために、合成抵抗も低くなり、
電流が正特性サーミスタ14及びヒータ13の側に多く
流れ、ヒータ13は多く発熱する。これとは逆に、雰囲
気温度が制御温度より高い場合は、その分正特性サーミ
スタ14の抵抗が高くなるために、合成抵抗も高くな
り、電流が可変抵抗器VR10の側に多く流れ、ヒータ1
3の発熱は抑制される。このようにして、恒温槽内の温
度が制御温度に保たれる。
First, the temperature inside the constant temperature bath is raised from room temperature to a control temperature (for example, 165 ° C.) by a heater other than the circuit 10. Then, at the control temperature, the resistance of the variable resistor VR10 is adjusted so as to be equal to the combined resistance of the heater 13 and the positive temperature coefficient thermistor 14. Next, the circuit 10 is placed in a temperature-controlled constant temperature bath. When the atmospheric temperature in the constant temperature bath is lower than the control temperature, the resistance of the positive temperature coefficient thermistor 14 decreases accordingly, and the combined resistance also decreases.
A large amount of current flows to the side of the positive temperature coefficient thermistor 14 and the heater 13, and the heater 13 generates a large amount of heat. On the contrary, when the ambient temperature is higher than the control temperature, the resistance of the positive temperature coefficient thermistor 14 is correspondingly increased, so that the combined resistance is also increased and a large amount of current flows to the side of the variable resistor VR10 and the heater 1
The heat generation of No. 3 is suppressed. In this way, the temperature inside the constant temperature bath is maintained at the control temperature.

【0020】このような上記第1の実施例の温度制御回
路10によれば、正特性サーミスタ14の抵抗温度係数
が107 Ω/℃の直線的領域を用いて温度制御するよう
にしているので高精度な温度制御が行える。また、本回
路10は、電源12,ヒータ13,正特性サーミスタ1
4及び可変抵抗器VR10から構成され、正特性サーミス
タ14を温度検出器としてだけでなく制御素子としても
用いているので、スイッチング素子等の回路素子が不要
となり、小型化,簡素化が図れる。
According to the temperature control circuit 10 of the first embodiment described above, the temperature control is performed using the linear region where the temperature coefficient of resistance of the positive temperature coefficient thermistor 14 is 10 7 Ω / ° C. Highly accurate temperature control is possible. The circuit 10 includes a power source 12, a heater 13, and a positive temperature coefficient thermistor 1.
4 and the variable resistor VR10, the positive temperature coefficient thermistor 14 is used not only as a temperature detector but also as a control element, so that a circuit element such as a switching element is not required, and miniaturization and simplification can be achieved.

【0021】図3は本発明の温度制御回路の第2の実施
例を示す概略回路図20である。本回路20は、電源1
2と、発熱導体としてのヒータ13と、このヒータ13
に直列に接続された可調整抵抗器としての可変抵抗器V
R20と、ヒータ13及び可変抵抗器VR20に並列に接続
された熱可変抵抗器としての負特性サーミスタ24とを
有している。
FIG. 3 is a schematic circuit diagram 20 showing a second embodiment of the temperature control circuit of the present invention. This circuit 20 has a power source 1
2, a heater 13 as a heating conductor, and this heater 13
Variable resistor V as an adjustable resistor connected in series to
It has R20 and a negative characteristic thermistor 24 as a heat variable resistor connected in parallel to the heater 13 and the variable resistor VR20.

【0022】前記負特性サーミスタ24は、抵抗温度係
数が正特性サーミスタ14と比較して約0.5Ω/℃と
低いが、温度係数の直線性を示す温度範囲が正特性サー
ミスタ14と比較して広いため、制御温度範囲の広い場
合に適している。また、負特性サーミスタ24の代わり
に、バナジウム酸化物半導体等の臨界温度サーミスタC
TR(Critical Temperature Resistor )を用いてもよ
い。この臨界温度サーミスタCTRは、温度範囲65乃
至70℃に急峻な負の直線的抵抗温度係数(約102 Ω
/℃)を有しているため、制御温度範囲が65乃至70
℃の場合に適している。
The temperature coefficient of resistance of the negative characteristic thermistor 24 is as low as about 0.5Ω / ° C. as compared with the temperature coefficient of the positive characteristic thermistor 14, but the temperature range showing the linearity of the temperature coefficient is lower than that of the positive characteristic thermistor 14. Since it is wide, it is suitable for a wide control temperature range. Further, instead of the negative characteristic thermistor 24, a critical temperature thermistor C such as a vanadium oxide semiconductor is used.
TR (Critical Temperature Resistor) may be used. This critical temperature thermistor CTR has a steep negative linear resistance temperature coefficient (about 10 2 Ω) in a temperature range of 65 to 70 ° C.
/ ° C), the control temperature range is 65 to 70.
Suitable for ℃.

【0023】次に上記構成の第2の実施例の温度制御回
路20の作用を説明する。
Next, the operation of the temperature control circuit 20 of the second embodiment having the above construction will be described.

【0024】まず、恒温槽内の温度を本回路20以外の
ヒータにより室温から制御温度(例えば100℃)まで
上昇させる。そして、制御温度において、ヒータ13と
可変抵抗器VR20との合成抵抗が負特性サーミスタ24
の抵抗に等しくなるように可変抵抗器VR20の抵抗を調
整する。次に、温度制御する恒温槽内に本回路20を配
置する。恒温槽内の雰囲気温度が制御温度より低い場合
は、その分負特性サーミスタ24の抵抗が高くなるため
に、電流がヒータ13及び可変抵抗器VR20の側に多く
流れ、ヒータ13は多く発熱する。これとは逆に、雰囲
気温度が制御温度より高い場合は、その分負特性サーミ
スタ24の抵抗が低くなるために、電流が負特性サーミ
スタ24の側に多く流れ、ヒータ13の発熱は抑制され
る。このようにして、恒温槽内の温度が制御温度に保た
れる。
First, the temperature inside the constant temperature bath is raised from room temperature to a control temperature (for example, 100 ° C.) by a heater other than the main circuit 20. Then, at the control temperature, the combined resistance of the heater 13 and the variable resistor VR20 has a negative characteristic thermistor 24.
The resistance of the variable resistor VR20 is adjusted so as to be equal to the resistance of Next, the circuit 20 is placed in a temperature-controlled constant temperature bath. When the ambient temperature in the constant temperature bath is lower than the control temperature, the resistance of the negative characteristic thermistor 24 increases accordingly, so that a large amount of current flows to the heater 13 and the variable resistor VR20 side, and the heater 13 generates a large amount of heat. On the contrary, when the ambient temperature is higher than the control temperature, the resistance of the negative characteristic thermistor 24 decreases accordingly, so that a large amount of current flows to the negative characteristic thermistor 24 side, and the heat generation of the heater 13 is suppressed. .. In this way, the temperature inside the constant temperature bath is maintained at the control temperature.

【0025】このような上記第2の実施例の温度制御回
路20によれば、負特性サーミスタ24の抵抗温度係数
の直線的領域を用いて温度制御するようにしているの
で、第1の実施例と同様に、高精度な温度制御が行え
る。また、本回路20は、電源12,ヒータ13,負特
性サーミスタ24及び可変抵抗器VR20から構成され、
負特性サーミスタ24を温度検出器としてだけでなく制
御素子としても用いているので、第1の実施例と同様
に、スイッチング素子等の回路素子が不要となり、小型
化,簡素化が図れる。
According to the temperature control circuit 20 of the second embodiment, the temperature is controlled by using the linear region of the temperature coefficient of resistance of the negative characteristic thermistor 24. Similarly to the above, highly accurate temperature control can be performed. The circuit 20 includes a power source 12, a heater 13, a negative characteristic thermistor 24, and a variable resistor VR20.
Since the negative characteristic thermistor 24 is used not only as a temperature detector but also as a control element, a circuit element such as a switching element is not required as in the first embodiment, and the size and simplification can be achieved.

【0026】なお、本発明は上記実施例に限定されず、
その要旨を変更しない範囲内で種々に変形実施できる。
The present invention is not limited to the above embodiment,
Various modifications can be made without departing from the spirit of the invention.

【0027】[0027]

【発明の効果】以上詳述した本発明によれば、以下の効
果を奏する。
According to the present invention described in detail above, the following effects are exhibited.

【0028】請求項1記載の発明によれば、所定制御温
度範囲で急峻な正の直線的抵抗温度係数を有する熱可変
抵抗器,発熱導体及び可調整抵抗器を具備し、熱可変抵
抗器を温度検出器としてだけでなく制御素子としても用
いているので、高精度でしかも小型化,簡素化を図った
温度制御装置を提供することができる。
According to the first aspect of the present invention, there is provided a thermal variable resistor having a steep positive linear temperature coefficient of resistance in a predetermined control temperature range, a heating conductor and an adjustable resistor, and the thermal variable resistor is provided. Since the temperature control device is used not only as a temperature detector but also as a control element, it is possible to provide a temperature control device which is highly accurate and is downsized and simplified.

【0029】請求項2記載の発明によれば、所定制御温
度範囲で急峻な負の直線的抵抗温度係数を有する熱可変
抵抗器,発熱導体及び可調整抵抗器を具備し、熱可変抵
抗器を温度検出器としてだけでなく制御素子としても用
いているので、高精度でしかも小型化,簡素化を図った
温度制御装置を提供することができる。
According to the second aspect of the present invention, the thermal variable resistor is provided which has a steep negative linear resistance temperature coefficient within a predetermined control temperature range, a heating conductor and an adjustable resistor. Since the temperature control device is used not only as a temperature detector but also as a control element, it is possible to provide a temperature control device which is highly accurate and is downsized and simplified.

【0030】請求項3記載の発明によれば、熱可変抵抗
器の直線的抵抗温度係数を105 Ω/℃以上としている
ので、小型化,簡素化が図れると共により高精度な制御
が可能な温度制御装置を提供することができる。
According to the third aspect of the present invention, since the linear resistance temperature coefficient of the heat variable resistor is set to 10 5 Ω / ° C. or more, downsizing and simplification can be achieved and more precise control is possible. A temperature control device can be provided.

【0031】請求項4記載の発明によれば、高い直線的
抵抗温度係数が得られるので、小型化,簡素化が図れる
と共により高制度な制御が可能な温度制御装置を提供す
ることができる。
According to the invention described in claim 4, since a high linear resistance temperature coefficient can be obtained, it is possible to provide a temperature control device which can be downsized and simplified, and which can perform more precise control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度制御回路の第1の実施例を示す概
略回路図である。
FIG. 1 is a schematic circuit diagram showing a first embodiment of a temperature control circuit of the present invention.

【図2】図1に示す正特性サーミスタの抵抗温度特性の
一例を示すグラフである。
FIG. 2 is a graph showing an example of resistance temperature characteristics of the positive temperature coefficient thermistor shown in FIG.

【図3】本発明の温度制御回路の第2の実施例を示す概
略回路図である。
FIG. 3 is a schematic circuit diagram showing a second embodiment of the temperature control circuit of the present invention.

【図4】従来の温度制御回路を示す回路図である。FIG. 4 is a circuit diagram showing a conventional temperature control circuit.

【符号の説明】[Explanation of symbols]

13 ヒータ(発熱導体) 14 正特性サーミスタ(熱可変抵抗器) 24 負特性サーミスタ(熱可変抵抗器) VR10,VR20 可変抵抗器(可調整抵抗器) 13 Heater (heating conductor) 14 Positive characteristic thermistor (thermal variable resistor) 24 Negative characteristic thermistor (thermal variable resistor) VR10, VR20 Variable resistor (adjustable resistor)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発熱導体に直列に接続され所定制御温度
範囲で急峻な正の直線的抵抗温度係数を有する熱可変抵
抗器と、前記発熱導体及び熱可変抵抗器に並列に接続さ
れた可調整抵抗器とを具備することを特徴とする温度制
御回路。
1. A heat variable resistor connected in series to a heat generating conductor and having a steep positive linear temperature coefficient of resistance in a predetermined control temperature range, and an adjustable resistor connected in parallel to the heat generating conductor and the heat variable resistor. A temperature control circuit comprising a resistor.
【請求項2】 発熱導体に直列に接続された可調整抵抗
器と、前記発熱導体及び可調整抵抗器に並列に接続され
所定制御温度範囲で急峻な負の直線的抵抗温度係数を有
する熱可変抵抗器とを具備することを特徴とする温度制
御回路。
2. An adjustable resistor connected in series with a heating conductor, and a heat variable resistor connected in parallel with the heating conductor and the adjustable resistor and having a steep negative linear resistance temperature coefficient in a predetermined control temperature range. A temperature control circuit comprising a resistor.
【請求項3】 前記直線的抵抗温度係数は、105 Ω/
℃以上である請求項1又は2記載の温度制御回路。
3. The linear resistance temperature coefficient is 10 5 Ω /
The temperature control circuit according to claim 1, which has a temperature of not less than ° C.
【請求項4】 前記熱可変抵抗器は、少なくとも結晶性
重合体を含んで構成された正特性サーミスタとする請求
項1又は3記載の温度制御装置。
4. The temperature control device according to claim 1, wherein the heat variable resistor is a positive temperature coefficient thermistor including at least a crystalline polymer.
JP30898191A 1991-11-25 1991-11-25 Temperature control circuit Pending JPH05143178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30898191A JPH05143178A (en) 1991-11-25 1991-11-25 Temperature control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30898191A JPH05143178A (en) 1991-11-25 1991-11-25 Temperature control circuit

Publications (1)

Publication Number Publication Date
JPH05143178A true JPH05143178A (en) 1993-06-11

Family

ID=17987527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30898191A Pending JPH05143178A (en) 1991-11-25 1991-11-25 Temperature control circuit

Country Status (1)

Country Link
JP (1) JPH05143178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587280B2 (en) 2000-05-11 2003-07-01 Canon Kabushiki Kaisha Zoom lens and optical device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587280B2 (en) 2000-05-11 2003-07-01 Canon Kabushiki Kaisha Zoom lens and optical device using the same

Similar Documents

Publication Publication Date Title
US3614480A (en) Temperature-stabilized electronic devices
US4424461A (en) Semiconductor integrated circuit providing temperature compensation
US3590365A (en) Temperature control apparatus
JPS6362924B2 (en)
US20040251988A1 (en) Adjustable phase change material resistor
JPH05143178A (en) Temperature control circuit
US2375497A (en) Circuit arrangement for resistance elements having a high resistancetemperature coefficient
US5500618A (en) Operational function generator
US4139798A (en) Temperature compensation circuit for image intensifiers
US3349223A (en) Oven temperature control stabilizing network
JP2529888B2 (en) Heating element with thermistor characteristics
US4456886A (en) Control circuit for voltage controlled variable attenuator
US2369675A (en) Constant current electrical circuits
JPH04348001A (en) Current controlling element
JPS6127224Y2 (en)
JPS6117459Y2 (en)
Besch 2.3 Thermal Properties
CA1046628A (en) Temperature-rise preventive apparatus for television receiver parts
JPS6023987Y2 (en) Variable capacitance diode temperature compensation circuit
JPS63278306A (en) Temperature rheostat
JPH01268312A (en) Timer circuit
KR0147970B1 (en) A ceramic composite for a ptc thermister
JP2543079B2 (en) Amplifier temperature compensation circuit
JP2004228710A (en) Variable attenuation circuit
JPH0583052A (en) Variable gain amplifier

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020122