JP2529888B2 - Heating element with thermistor characteristics - Google Patents

Heating element with thermistor characteristics

Info

Publication number
JP2529888B2
JP2529888B2 JP1298816A JP29881689A JP2529888B2 JP 2529888 B2 JP2529888 B2 JP 2529888B2 JP 1298816 A JP1298816 A JP 1298816A JP 29881689 A JP29881689 A JP 29881689A JP 2529888 B2 JP2529888 B2 JP 2529888B2
Authority
JP
Japan
Prior art keywords
heating element
capacitor
thermistor
temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1298816A
Other languages
Japanese (ja)
Other versions
JPH03159091A (en
Inventor
秀昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiya Thermostat Co Ltd
Original Assignee
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co Ltd filed Critical Uchiya Thermostat Co Ltd
Priority to JP1298816A priority Critical patent/JP2529888B2/en
Publication of JPH03159091A publication Critical patent/JPH03159091A/en
Application granted granted Critical
Publication of JP2529888B2 publication Critical patent/JP2529888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 a. 産業上の利用分野 本発明は、サーミスタ特性を有する発熱体に関する。TECHNICAL FIELD The present invention relates to a heating element having thermistor characteristics.

b. 従来の技術 第2図は従来技術による抵抗体を用いた発熱体のため
の電気回路である。
b. Prior Art FIG. 2 is an electric circuit for a heating element using a resistor according to the prior art.

このような回路で発熱体としての抵抗素子RLに流れる
電流を、抵抗素子RLと直列に結合された制御抵抗RCの抵
抗値を制御することは可能であるが、制御抵抗RC自体が
発熱するという問題点がある。また抵抗体材料の代表的
なものはニクロム線等の金属であるので、固有抵抗(又
は抵抗率)があまり大きくなく、かつ小さな形状の発熱
体であって高電圧を印加できるものを形成することは困
難である。
The current flowing through the resistor R L as the heating element in such a circuit, it is possible to control the resistance of the resistor R L and the control resistor R C coupled in series, the control resistor R C itself There is a problem that heat is generated. Further, since a typical resistor material is a metal such as nichrome wire, it is necessary to form a small-sized heating element that does not have a large specific resistance (or resistivity) and can apply a high voltage. It is difficult.

厚膜抵抗体用には高抵抗率の材料があるがこれを用い
た場合、耐熱温度に制限があり発熱体としての使用には
あまり好ましいものではない。
There is a material having a high resistivity for the thick film resistor, but when this material is used, the heat resistant temperature is limited and it is not so preferable for use as a heating element.

PTCという正特性のサーミスタがあり、ある温度以上
は高抵抗へと自己制御する能力を持つが、温度設定に上
限があり、300℃以上に設定することは困難である。ま
た、PTCの場合、大きな突入電流が問題となる事もあ
る。さらに高抵抗率材料であって、抵抗の温度係数が0
または正のものは実用上ほとんどない。
There is a thermistor with a positive characteristic called PTC, and it has the ability to self-control to a high resistance above a certain temperature, but there is an upper limit to the temperature setting, and it is difficult to set it above 300 ° C. Also, in the case of PTC, a large inrush current may be a problem. Further, it is a high resistivity material and has a temperature coefficient of resistance of 0.
Or there are few positive ones in practice.

c. 発明が解決しようとする課題 高い抵抗率材料に着目すると、金属酸化物を主体とす
る半導体系のいわゆるサーミスタ特性を有する材料から
成る抵抗体がある。
c. Problems to be Solved by the Invention Focusing on high-resistivity materials, there is a resistor made of a semiconductor-based material having a so-called thermistor characteristic mainly composed of a metal oxide.

サーミスタ特性を有する抵抗体を自己発熱をさせるた
めに電圧を印加すると、この時流れるジュール熱で自ら
の抵抗を減じる。これにより電流が増加し、ジュール熱
がさらに増加し、さらに抵抗が減少し、やがて破壊に至
るまでこのくり返しが続き、いわゆる熱暴走を起こす。
これを制御する為、定電流電源装置を用いるか、単なる
熱暴走を防止する為の電流制限用の固定抵抗を直列に接
続する方法がとられている。
When a voltage is applied to cause the resistor having the thermistor characteristic to self-heat, the Joule heat flowing at this time reduces the resistance of the resistor. As a result, the current increases, the Joule heat further increases, the resistance further decreases, and this repetition continues until destruction occurs, causing so-called thermal runaway.
In order to control this, a method of using a constant current power supply device or connecting a fixed resistor for current limiting in series to simply prevent thermal runaway has been adopted.

このようにサーミスタ特性を有する発熱体を制御する
ために定電流電源装置を使用すると高価になり、抵抗に
よる電流制限では低温時の立上がりが遅く、あるいは発
熱時に固定抵抗側の発熱も無視できない等の問題があ
る。
When a constant current power supply device is used to control a heating element having a thermistor characteristic in this way, it becomes expensive, current rise due to resistance slows the start-up at low temperature, or heat generation on the fixed resistance side cannot be ignored during heat generation. There's a problem.

d. 課題を解決するための手段 上記課題は、抵抗値の温度係数が負であるいわゆるサ
ーミスタ特性を有する材料から成る発熱素子と、この素
子に直列に接続されたコンデンサから成る発熱体によっ
て解決された。
d. Means for Solving the Problems The above problems are solved by a heating element made of a material having a so-called thermistor characteristic in which the temperature coefficient of resistance is negative, and a heating element made of a capacitor connected in series to this element. It was

e. 作 用 コンデンサに抵抗体を直列に接続した交流回路の場
合、抵抗体の抵抗値を変えると、この回路に流れる電流
は抵抗値と、コンデンサの容量と電圧と周波数により決
まる。この時、抵抗値の比較的小さい領域に対しては、
この電流変化が小さくなり、いわゆる定電流の特性が発
現する。
e. In the case of an AC circuit in which a resistor is connected in series to a working capacitor, if the resistance value of the resistor is changed, the current that flows in this circuit is determined by the resistance value, the capacitance, voltage and frequency of the capacitor. At this time, for the region where the resistance value is relatively small,
This change in current becomes small and the so-called constant current characteristic appears.

従って、発熱体の発熱が進行し、抵抗値が減少して
も、流れる電流値が一定であるので、熱暴走を起こすこ
とがない。また電流が一定であるので、発熱が進んで抵
抗値が減少することによる発熱体両端電圧が低下し、発
熱体に印加される電力量が低下し、発熱を抑制する方向
へと進む。すなわち、これによって熱暴走が防止され
る。
Therefore, even if the heat generation of the heating element progresses and the resistance value decreases, the value of the flowing current is constant, so that thermal runaway does not occur. In addition, since the current is constant, the voltage across the heating element decreases due to the progress of heat generation and the decrease in resistance value, the amount of power applied to the heating element decreases, and heat generation is suppressed. That is, this prevents thermal runaway.

f. 実施例 コンデンサによる定電流制御能力が安定的に発現する
のは、発熱素子が低抵抗の領域においてである。
f. Example The constant current control capability of the capacitor is stably exhibited in the region where the heating element has a low resistance.

本発明の有効的な例としては、室温では定電流領域に
入らないが発熱すると定電流領域に入る程度の抵抗値の
発熱素子を用いる。このとき電源投入時に、電源電圧の
ほとんどを発熱素子側に印加する事が可能となり、抵抗
の温度係数にもよるが、電圧と電流の積により与えられ
る電力は、電源投入時に最大を示したり、投入後発熱ま
での間に最大電力を示す様な特性となり、しかもその後
の発熱によりしだいに電力を減じ、自己制御方向へ向か
う特性を得る事が可能となる。また、抵抗値等の条件の
選定のしかたによっては飽和温度に最大電力を出す設定
も可能となる。
As an effective example of the present invention, a heating element having a resistance value that does not enter the constant current region at room temperature but that enters the constant current region when heat is generated is used. At this time, it becomes possible to apply most of the power supply voltage to the heating element side when the power is turned on, and the power given by the product of voltage and current shows the maximum when the power is turned on, although it depends on the temperature coefficient of resistance. It is possible to obtain the characteristic that the maximum electric power is exhibited after the power is turned on and before the heat is generated, and further, the electric power is gradually reduced due to the subsequent heat generation and the characteristic is directed to the self-control direction. Further, depending on the selection of conditions such as the resistance value, it is possible to set the maximum power at the saturation temperature.

この様な特性はPTCを持つ自己制御性に近いものであ
る。しかしながら、PTCと異なる点はPTCは発熱素子自体
で制御温度が決まってしまうのに対し、コンデンサとサ
ーミスタ特性を有する発熱素子の場合は、平衡点はコン
デンサ容量と抵抗値、B定数により選定でき、たとえば
同じ発熱体でも条件しだいで100℃以下でも200℃以上で
も設定できる。さらにPTCで設定不能であった温度領域
である300℃以上であっても発熱素子の耐熱性さえ問題
なければ設定可能である。
Such characteristics are close to the self-controllability with PTC. However, the difference from PTC is that the control temperature of PTC is determined by the heating element itself, whereas in the case of a heating element with capacitor and thermistor characteristics, the equilibrium point can be selected by the capacitor capacity, resistance value and B constant, For example, the same heating element can be set below 100 ° C or above 200 ° C depending on the conditions. In addition, even if the heat resistance of the heating element does not matter even if it is 300 ° C or higher, which is the temperature range that could not be set by PTC, it can be set.

第1図は本発明に係る発熱体の回路図であり、第3図
はサーミスタ特性を有する発熱素子がR25=7KΩ,B定数
=1,500Kであり、コンデンサの容量Cが1μFの時の、
発熱素子の抵抗値R、発熱素子を流れる電流I、発熱素
子の両端電圧V、発熱素子における発熱電力P、発熱素
子の温度Tの時間変化を示す。
FIG. 1 is a circuit diagram of a heating element according to the present invention, and FIG. 3 is a heating element having a thermistor characteristic, R 25 = 7KΩ, B constant = 1,500K, and a capacitor C having a capacitance C of 1 μF.
The time change of the resistance value R of the heating element, the current I flowing through the heating element, the voltage V across the heating element, the heating power P in the heating element, and the temperature T of the heating element is shown.

電流は、抵抗の高い領域では定電流動作をせず、抵抗
減少につれ徐々に増加しているが、やがて一定値に達し
ている。
The current does not perform constant current operation in the high resistance region and gradually increases as the resistance decreases, but eventually reaches a constant value.

又、発熱体両端電圧は抵抗値の減少につれ減少し、こ
れと電流の積として与えられる電力は温度が安定するま
での途中に最大点を形成し、その後減少して安定域に入
っている。
Also, the voltage across the heating element decreases as the resistance value decreases, and the electric power given as the product of this and the current forms a maximum point on the way until the temperature stabilizes, and then decreases and enters the stable region.

このような動作は、発熱体としては温度の立上りを早
める上で好ましいものである。又発熱体に対する熱負荷
により安定時の抵抗値が変化する場合、印加電力もそれ
に従って変化することを示している。すなわち、熱負荷
が大きくなり発熱体の温度が下がると抵抗値が上がりP
=12Rにより電力が増加する。又熱負荷が小さくなり、
発熱体温度が高くなると、抵抗値が下がり、同様に電力
が減少する。
Such an operation is preferable for a heating element in order to accelerate the rise of temperature. Further, it is shown that when the resistance value at the time of stability changes due to the heat load on the heating element, the applied power also changes accordingly. That is, when the heat load increases and the temperature of the heating element decreases, the resistance value increases and P
= 1 2 power by R increases. Also, the heat load becomes smaller,
When the heating element temperature rises, the resistance value decreases, and the electric power also decreases.

PTCほど抵抗変化が急峻でない為定温制御とまでは行
かないが負荷変動に対し自己発熱量を修正する特性を持
っている。
Since the resistance change is not as steep as PTC, it does not reach the constant temperature control, but it has the characteristic of correcting the self-heating value in response to load fluctuations.

第4図は、同じ発熱体(R25約7KΩ、B定数1,500K)
のものでコンデンサ容量を半分の0.47μFとした条件で
測定したものである。印加電力が半分以下になり発熱温
度も約200℃から約100℃となった。電力ピークの位置も
移動し、全体的に特性が変化している。
Fig. 4 shows the same heating element (R 25 about 7KΩ, B constant 1,500K)
It was measured under the condition that the capacitance of the capacitor was half, 0.47 μF. The applied power was reduced to less than half, and the heat generation temperature decreased from about 200 ℃ to about 100 ℃. The position of the power peak has also moved, and the characteristics have changed overall.

この様に同じ発熱体であっても制御側のコンデンサの
条件を変えることにより特性を変化させることが可能で
ある。
Thus, even with the same heating element, it is possible to change the characteristics by changing the conditions of the control side capacitor.

なおサーミスタ特性を有する抵抗体と、コンデンサを
同一基板上に形成することも可能であり、この時はコン
デンサの容量の温度変化を考慮しながら容量を定めるこ
とが好ましい。
It is also possible to form the resistor having the thermistor characteristics and the capacitor on the same substrate. At this time, it is preferable to determine the capacitance while considering the temperature change of the capacitance of the capacitor.

g. 発明の効果 i)従来制御がむずかしく発熱体として利用される事の
少なかったサーミスタ特性を有する発熱体をコンデンサ
により電流制御することにより熱暴走を防止、制御する
ことができる。
g. Effects of the Invention i) It is possible to prevent and control thermal runaway by controlling the current with a capacitor for a heating element having thermistor characteristics that was difficult to control conventionally and used as a heating element.

ii)同一の発熱素子を用いてもコンデンサの容量を変え
ることにより、設定発熱温度を変えることができる。
ii) Even if the same heating element is used, the set heating temperature can be changed by changing the capacitance of the capacitor.

iii)環境の温度が下がると、発熱量が増加し、温度変
化が少なくなるように動作する。
iii) When the temperature of the environment decreases, the amount of heat generated increases, and the temperature change is reduced.

iv)サーミスタ特性を有する抵抗体の抵抗値を小さく
し、コンデンサによる定電流域での制御状態とし、その
抵抗体の両端電圧の変化を温度変化の情報として、制御
に用いることができる。
iv) It is possible to reduce the resistance value of the resistor having the thermistor characteristic, bring the capacitor into a controlled state in a constant current region, and use the change in the voltage across the resistor as information on the temperature change for control.

v)サーミスタ特性を有する発熱素子にあたる風量の変
化による発熱素子の温度変化をその発熱素子の両端電圧
の変化に変換し、風量変化の情報を得ることができる。
v) The temperature change of the heating element due to the change of the air volume corresponding to the heating element having the thermistor characteristic can be converted into the change of the voltage across the heating element to obtain the information of the air volume change.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る発熱体の回路図、第2図は従来技
術による抵抗体を用いた発熱体の回路図、第3図と第4
図は本発明に係る発熱体における発熱素子の抵抗値R、
電流I、両端電圧V、発熱電力P、発熱温度Tの時間変
化を示すグラフである。
FIG. 1 is a circuit diagram of a heating element according to the present invention, FIG. 2 is a circuit diagram of a heating element using a resistor according to the prior art, FIGS. 3 and 4
The figure shows the resistance value R of the heating element in the heating element according to the present invention,
It is a graph which shows the time change of electric current I, both-ends voltage V, heating power P, and heating temperature T.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】抵抗値の温度係数が負であるサーミスタ特
性を有する材料から成る発熱素子と、コンデンサと、該
発熱素子と該コンデンサから成る直列回路に電力を供給
する交流電源からなることを特徴とするサーミスタ特性
を有する発熱体。
1. A heating element made of a material having a thermistor characteristic having a negative temperature coefficient of resistance, a capacitor, and an AC power supply for supplying power to a series circuit including the heating element and the capacitor. A heating element that has the thermistor characteristics.
【請求項2】上記発熱素子のインピーダンスの大きさよ
り上記コンデンサのインピーダンスの方が大きいことを
特徴とする特許請求の範囲第1項記載のサーミスタ特性
を有する発熱体。
2. The heating element having thermistor characteristics according to claim 1, wherein the impedance of the capacitor is larger than the impedance of the heating element.
【請求項3】抵抗値の温度係数が負であるサーミスタ特
性を有する発熱素子に流れる電流をこの発熱素子に直列
に接続されたコンデンサの容量を調節することにより、
交流電流が流れるときの上記発熱素子における発熱量を
制御することを特徴とするサーミスタ特性を有する発熱
素子の制御方法。
3. A current flowing through a heating element having a thermistor characteristic having a negative temperature coefficient of resistance value is adjusted by adjusting the capacity of a capacitor connected in series to the heating element.
A method for controlling a heating element having a thermistor characteristic, characterized by controlling the amount of heat generated by the heating element when an alternating current flows.
【請求項4】上記発熱素子のインピーダンスの大きさよ
り上記コンデンサのインピーダンスの大きさの方が大き
いことを特徴とする特許請求の範囲第3項記載のサーミ
スタ特性を有する発熱素子の制御方法。
4. The method of controlling a heating element having thermistor characteristics according to claim 3, wherein the impedance of the capacitor is larger than the impedance of the heating element.
【請求項5】上記発熱体の両端電圧を温度情報信号とし
て利用することを特徴とする特許請求の範囲第4項記載
のサーミスタ特性を有する発熱素子の制御方法。
5. A method of controlling a heating element having a thermistor characteristic according to claim 4, wherein the voltage across the heating element is used as a temperature information signal.
JP1298816A 1989-11-17 1989-11-17 Heating element with thermistor characteristics Expired - Lifetime JP2529888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298816A JP2529888B2 (en) 1989-11-17 1989-11-17 Heating element with thermistor characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298816A JP2529888B2 (en) 1989-11-17 1989-11-17 Heating element with thermistor characteristics

Publications (2)

Publication Number Publication Date
JPH03159091A JPH03159091A (en) 1991-07-09
JP2529888B2 true JP2529888B2 (en) 1996-09-04

Family

ID=17864591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298816A Expired - Lifetime JP2529888B2 (en) 1989-11-17 1989-11-17 Heating element with thermistor characteristics

Country Status (1)

Country Link
JP (1) JP2529888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245689B2 (en) 2003-06-18 2007-07-17 Mitsubishi Heavy Industries, Ltd Nuclear reactor internal structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425092B (en) * 2011-06-02 2014-02-01 Food Industry Res & Dev Inst Bacterial cellulose composite with capsules embedded therein and preparation thereof
JP5875278B2 (en) * 2011-08-04 2016-03-02 三菱重工業株式会社 HEATER CONTROL DEVICE, ITS CONTROL METHOD, AND ITS PROGRAM

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287472A (en) * 1988-05-14 1989-11-20 Murata Mfg Co Ltd Measuring method for capacitor insulation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245689B2 (en) 2003-06-18 2007-07-17 Mitsubishi Heavy Industries, Ltd Nuclear reactor internal structure

Also Published As

Publication number Publication date
JPH03159091A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
US4316080A (en) Temperature control devices
JPS5920017A (en) Main voltage identifier
US3590365A (en) Temperature control apparatus
US3651308A (en) Automatic electric cooker
US4757176A (en) Control circuit for induction heating electric cooker
JP2529888B2 (en) Heating element with thermistor characteristics
JPS59158415A (en) Heat efficiency adjusting circuit for heating element
US5026971A (en) Temperature control system for a heating oven using a glass-ceramic temperature sensor
US3419214A (en) Temperature regulating system
US3987318A (en) Adjustable temperature actuated switching apparatus
JPS60250596A (en) Operating voltage regulating circuit for high voltage gas discharge lamp
US3349223A (en) Oven temperature control stabilizing network
JP2662322B2 (en) Temperature control device for electric carpet
JPS6123224A (en) Temperature controller
JPS5833499Y2 (en) electric kotatsu
US1844149A (en) Electrical regulating apparatus
JPS6347018Y2 (en)
JPS6127114Y2 (en)
JPH0449759B2 (en)
JPH01161696A (en) Temperature control circuit
JPS60243712A (en) Temperature control device
JPS6053884B2 (en) temperature control circuit
JPS6340191Y2 (en)
JPH05143178A (en) Temperature control circuit
JPH02196312A (en) Temperature controller