JPH05142469A - Large-aperture intermediate telephoto lens - Google Patents

Large-aperture intermediate telephoto lens

Info

Publication number
JPH05142469A
JPH05142469A JP31727091A JP31727091A JPH05142469A JP H05142469 A JPH05142469 A JP H05142469A JP 31727091 A JP31727091 A JP 31727091A JP 31727091 A JP31727091 A JP 31727091A JP H05142469 A JPH05142469 A JP H05142469A
Authority
JP
Japan
Prior art keywords
lens
object side
aberration
image side
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31727091A
Other languages
Japanese (ja)
Inventor
Norihiko Aoki
法彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP31727091A priority Critical patent/JPH05142469A/en
Publication of JPH05142469A publication Critical patent/JPH05142469A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the large-aperture intermediate telephoto lens with high performance which is a photographic lens having an about 29 deg. photographic view angle and an about 1.4 F number and makes the defocusing in a defocusing area before or after an in-focus position excellent. CONSTITUTION:This intermediate telephoto lens consists of a front group including three positive lenses which have large-curvature convex surfaces on the object side and at least one negative lens which has a concave surface on the image side and a rear group consisting of a cemented lens, a negative lens which has a large-curvature concave surface on the object side, and at least two positive lens; and a gradient index lens is used in the rear group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に写真レンズ等に好
適な撮影画面が約29°、Fナンバーが1.4程度であ
って、フォーカシングの際の収差変動の非常に少ない高
性能な大口径中望遠レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high-performance large-scale image pickup apparatus which has a photographing screen of about 29 ° and an F-number of about 1.4, which is suitable for photographic lenses. It relates to a medium aperture telephoto lens.

【0002】[0002]

【従来の技術】近年は、一眼レフカメラ、レンズシャッ
ターカメラ共に手軽に画角を変化させ得る変倍レンズの
搭載が主流になりつつある。しかしながら、変倍レンズ
は、小さいFナンバーの明るいレンズ系にすることが困
難な上に単焦点レンズに比べて収差補正が十分とは言え
ない。そのために、明るさや画質を求めるユーザーの声
に応じて単焦点レンズは、大口径比化で高画質化が図ら
れている。
2. Description of the Related Art In recent years, it has become mainstream to mount variable magnification lenses that can easily change the angle of view in both single-lens reflex cameras and lens shutter cameras. However, it is difficult for a variable power lens to be a bright lens system with a small F number, and aberration correction cannot be said to be sufficient as compared with a single focus lens. Therefore, in response to the voice of the user who demands brightness and image quality, the monofocal lens has been improved in image quality by increasing the aperture ratio.

【0003】従来より、大口径比で高画質が比較的容易
に得られるレンズ系として、いわゆるガウス型レンズが
知られている。このガウス型レンズは、主として標準画
角からやや画角の狭い中望遠と呼ばれる領域までの明る
いレンズ系に用いられる。しかし、所定の画角、バック
フォーカス等を維持しながら、Fナンバーを1.4程度
に小さくしてレンズ系を明るくして行くと、特に、サジ
タルコマ収差と球面収差とを同時に補正することが難し
くなる。
Conventionally, a so-called Gauss type lens is known as a lens system which can relatively easily obtain a high image quality with a large aperture ratio. This Gauss type lens is mainly used in a bright lens system from a standard angle of view to a region with a narrow angle of view called a medium telephoto. However, if the F number is reduced to about 1.4 and the lens system is brightened while maintaining a predetermined angle of view, back focus, etc., it is particularly difficult to simultaneously correct sagittal coma and spherical aberration. Become.

【0004】更にポートレート用として用いられる撮影
画角が約29°でFナンバーが1.4程度の明るい中望
遠レンズでは、ピントが合っている位置の性能だけでな
く、その前後のデフォーカス領域でのぼけ方が問題とさ
れ、そのため特に非点収差が良好に補正される必要があ
る。
Further, in a bright mid-telephoto lens having a photographing field angle of about 29 ° and an F number of about 1.4, which is used for portraits, not only the performance at a focused position but also the defocus areas before and after that are taken. The way of blurring is a problem, and therefore astigmatism must be corrected particularly well.

【0005】撮影画角が約29°でFナンバーが1.4
程度の、明るい中望遠レンズの従来例として、特開昭5
9−48723号、特開昭62−244010号、特開
昭63−20562号の各公報に記載されたレンズ系が
ある。
The shooting angle of view is about 29 ° and the F number is 1.4.
As a conventional example of a bright medium telephoto lens of the order of magnitude, Japanese Patent Laid-Open No.
There are lens systems described in JP-A No. 9-48723, JP-A No. 62-244010, and JP-A No. 63-20562.

【0006】しかしこれらの従来例は、球面収差の補正
状況に対してサジタルコマ収差の発生が大きく全系で十
分な補正がなされているとは言えない。
However, in these conventional examples, sagittal coma aberration is large in response to correction of spherical aberration, and it cannot be said that the entire system is sufficiently corrected.

【0007】また特開平1−302311号公報に記載
されたレンズ系は、非球面を用いることにより撮影画角
が29°でFナンバー1.2程度である。
The lens system disclosed in Japanese Patent Laid-Open No. 1-302311 has an imaging angle of view of 29 ° and an F number of about 1.2 by using an aspherical surface.

【0008】しかし、この程度のレンズ系になると、最
も小さいレンズでも有効径が40mm程度になり、又非球
面の精度の点からもコスト高になる問題点を有してい
る。本出願人は、特開平2−50116号公報に開示し
たレンズ系を開発した。このレンズ系は、非球面と比較
して大口径化が容易な光軸方向に屈折率分布を有する屈
折率分布型レンズを用いて球面収差とサジタルコマ収差
とが同時に補正されたものである。しかしこの従来例
は、球面収差とサジタルコマ収差は良好に補正されてい
るが、像面の曲がりが比較的大きい。
However, in such a lens system, even the smallest lens has an effective diameter of about 40 mm, and there is a problem that the cost becomes high in terms of accuracy of the aspherical surface. The applicant has developed the lens system disclosed in Japanese Patent Application Laid-Open No. 2-50116. This lens system is a system in which spherical aberration and sagittal coma aberration are simultaneously corrected by using a gradient index lens having a gradient index distribution in the optical axis direction, which is easier to increase the aperture than an aspherical surface. However, in this conventional example, although spherical aberration and sagittal coma aberration are well corrected, the curvature of the image plane is relatively large.

【0009】[0009]

【発明が解決しようとする課題】本発明は、撮像画角が
約29°でFナンバーが1.4程度のレンズ系で、サジ
タルコマ収差と球面収差の補正に加えて像面の曲がりを
抑え又非点収差を良好に補正することによってピントの
合った位置の前後のデフォーカス領域でのぼけ方を好ま
しいものにした高性能な大口径中望遠レンズを提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention is a lens system having an image pickup angle of view of about 29 ° and an F number of about 1.4. In addition to correcting sagittal coma and spherical aberration, the curvature of the image plane is suppressed. It is an object of the present invention to provide a high-performance large-aperture medium-telephoto lens in which astigmatism is satisfactorily corrected to favorably blur in the defocus areas before and after the in-focus position.

【0010】[0010]

【課題を解決するための手段】本発明のレンズ系は、絞
りを挟んで物体側の前群と像側の後群とよりなり、前群
は物体側より順に物体側に強い凸面を向けた少なくとも
3枚の正レンズと絞りに近接して配置した像側に強い凹
面を向けた負レンズ1枚とを少なくとも含んでいて前群
全体では5枚以上のレンズにて構成されており、又後群
は物体側より順に両凹レンズと両凸レンズとを接合させ
た接合レンズと物体側に強い凹面を向けた負レンズと少
なくとも2枚の正レンズとにて構成され、後群中に少な
くとも1枚の屈折率分布型レンズを用いた大口径中望遠
レンズである。
The lens system of the present invention comprises a front group on the object side and a rear group on the image side with a diaphragm interposed therebetween, and the front group has a strong convex surface directed in order from the object side to the object side. At least three positive lenses and at least one negative lens having a strong concave surface facing the image side arranged close to the diaphragm are included, and the front group as a whole is composed of five or more lenses. The group is composed of a cemented lens in which a biconcave lens and a biconvex lens are cemented in order from the object side, a negative lens having a strong concave surface facing the object side, and at least two positive lenses. At least one lens is included in the rear group. It is a large aperture medium telephoto lens that uses a gradient index lens.

【0011】本発明のような、ガウス型の大口径中望遠
レンズで高性能化を図ろうとすると、特に球面収差とサ
ジタルコマ収差との補正が問題になる。
In order to improve the performance of a Gauss type large aperture medium telephoto lens as in the present invention, correction of spherical aberration and sagittal coma becomes a problem.

【0012】ところが、ガウス型レンズの特徴である絞
りを挟んで互いに向かい合う凹面で発生する球面収差と
サジタルコマ収差とは、これらを同時に補正しようとす
る時とは相反する方向に発生するので、球面収差を良好
に補正したままサジタルコマ収差を十分に補正すること
は出来ない。
However, the spherical aberration and the sagittal coma aberration, which are characteristic of the Gauss-type lens and are generated in the concave surfaces facing each other with the diaphragm interposed therebetween, are generated in the directions opposite to the case where they are simultaneously corrected. It is not possible to sufficiently correct sagittal coma aberration while satisfactorily correcting.

【0013】即ち、全系で負の方向に大きく発生する球
面収差を補正するためには、絞りを挟んで向かい合う凹
面の曲率をきつくして、これら凹面で正の球面収差を発
生させる必要がある。しかしその時に凹面で発生するサ
ジタルコマ収差の特にフレアー成分が大きくなりすぎて
全系での補正が出来なくなる。また逆にこれら凹面の曲
率が緩くなりすぎると、球面収差の補正ばかりか、ペッ
ツバール和が大きな正の値となり、像面が物体側に倒れ
て来る。そのため像面を良好に保ったまま、球面収差と
サジタルコマ収差とを同時に補正することが困難であ
る。
That is, in order to correct the spherical aberration that largely occurs in the negative direction in the entire system, it is necessary to make the curvature of the concave surfaces facing each other across the stop tight and generate positive spherical aberration in these concave surfaces. .. However, the flare component of the sagittal coma aberration generated on the concave surface at that time becomes too large to correct the entire system. On the contrary, when the curvature of these concave surfaces becomes too loose, not only the spherical aberration is corrected but also the Petzval sum becomes a large positive value, and the image surface falls to the object side. Therefore, it is difficult to correct spherical aberration and sagittal coma aberration at the same time while maintaining a good image surface.

【0014】3次の球面収差は、軸上光線の光線高の4
乗に比例するため、本発明では、球面収差に寄与するマ
ージナル光線の光線高の高い絞りより物体側の前群を物
体側より順に少なくとも3枚の正レンズを配置すること
によって、そこで発生する負の球面収差をより小さく抑
えるような構成にした。
The third-order spherical aberration is 4 which is the height of the axial ray.
Since it is proportional to the power, in the present invention, by arranging at least three positive lenses in the front group on the object side of the diaphragm having a high ray height of the marginal ray that contributes to spherical aberration in order from the object side, the negative The spherical aberration of is suppressed to a smaller value.

【0015】更に本発明のレンズ系程度の画角では、画
面中心の性能は、球面収差ばかりでなく軸上色収差の影
響も大きくなる。そのため前記の前群の3枚の正レンズ
で発生する色収差は、極力小さい方が好ましく、アッベ
数の大きい低分散ガラスを用いることが望ましい。
Further, at an angle of view equivalent to that of the lens system of the present invention, not only spherical aberration but also axial chromatic aberration has a large effect on the performance at the center of the screen. Therefore, the chromatic aberration generated by the three positive lenses of the front group is preferably as small as possible, and it is desirable to use a low dispersion glass having a large Abbe number.

【0016】しかしよりアッベ数の大きい低分散ガラス
を用いようとするとどうしても屈折率の低いガラスを使
用せざるを得ない。前群に屈折率の低いガラスよりなる
正レンズを3枚用いると、負の球面収差を抑えるために
は有効であるが、ペッツバール和が大きな正の値とな
り、像面が物体側に倒れ好ましくない。
However, when trying to use a low dispersion glass having a larger Abbe number, it is unavoidable to use a glass having a low refractive index. Use of three positive lenses made of glass having a low refractive index in the front group is effective for suppressing negative spherical aberration, but the Petzval sum becomes a large positive value and the image plane falls toward the object side, which is not preferable. ..

【0017】本発明では、絞りより像側の後群中に両凹
レンズと両凸レンズとを接合した接合レンズよりも像側
に少なくとも1枚の負レンズを配置することにより、こ
の負レンズにより前群で用いた3枚の正レンズで発生す
る球面収差、軸上色収差とは異符号の球面収差、軸上色
収差を発生させて全系での補正を行なうと同時に前群に
アッベ数が大きくて比較的屈折率の低いガラスで構成さ
れた正レンズを多用したことにより悪化したペッツバー
ル和を良好に補正するようにした。更に上記のような構
成にすることによって、絞りを挟んで向かい合う凹面の
曲率をきつくすることなしに全系の球面収差を良好に補
正することができ、同時にサジタルコマ収差の発生も小
さく抑えることが出来る。
In the present invention, by disposing at least one negative lens on the image side of the cemented lens in which the biconcave lens and the biconvex lens are cemented, in the rear group on the image side of the diaphragm, the front lens group is formed by this negative lens. The spherical aberration and axial chromatic aberration generated by the three positive lenses used in 1. are corrected for the whole system by generating spherical aberration and axial chromatic aberration of opposite signs to the axial aberration, and at the same time the Abbe number is large in the front group for comparison. The Petzval sum, which is deteriorated by using many positive lenses made of glass having a low refractive index, is properly corrected. Further, with the above-mentioned configuration, the spherical aberration of the entire system can be favorably corrected without tightly curving the concave surfaces facing each other with the diaphragm interposed therebetween, and at the same time, the occurrence of sagittal coma aberration can be suppressed to a small level. ..

【0018】以上のようにしてある程度諸収差が良好に
補正されたレンズ系を得ることが出来るが、更に高性能
なレンズ系を得るために、本発明では屈折率分布型レン
ズを導入した。
As described above, a lens system in which various aberrations are satisfactorily corrected can be obtained, but in order to obtain a lens system of higher performance, a gradient index lens is introduced in the present invention.

【0019】屈折率分布型レンズは、半径方向に屈折率
分布を有するラジアル型と、光軸方向に屈折率分布を有
するアキシャル型とに大別出来る。
The gradient index lens can be roughly classified into a radial type having a refractive index distribution in the radial direction and an axial type having a refractive index distribution in the optical axis direction.

【0020】ラジアル型の屈折率分布型レンズは、その
媒質でペッツバール和、色収差の補正が可能であり、収
差補正のためには極めて有利である。しかし大口径化が
困難である欠点を有している。
The radial type gradient index lens is capable of correcting Petzval sum and chromatic aberration with the medium, and is extremely advantageous for aberration correction. However, it has a drawback that it is difficult to increase the diameter.

【0021】そのため、本発明のレンズ系のように大口
径のレンズ系は、特にアキシャル型の屈折率分布型レン
ズを用いることがレンズ製造上でも又コストの点でも望
ましい。
Therefore, for a lens system having a large aperture such as the lens system of the present invention, it is preferable to use an axial type gradient index lens in view of lens production and cost.

【0022】また本発明のようなレンズ系は、必要なバ
ックフォーカスを確保するために絞りより物体側の前群
の屈折力を比較的弱くして、絞りより像側の後群の屈折
力を強くした構成にしてあるので、発生する収差量は後
群の方が大である。そこでアキシャル型の屈折率分布型
レンズの効果を最大限に引き出すためには、アキシャル
型の屈折率分布型レンズを後群中に少なくとも一つ用い
ることが効果的である。
Further, in the lens system according to the present invention, in order to secure a necessary back focus, the refractive power of the front group on the object side of the diaphragm is made relatively weak so that the refractive power of the rear group on the image side of the diaphragm is reduced. Since the configuration is made stronger, the amount of aberration that occurs in the rear group is larger. Therefore, in order to maximize the effect of the axial gradient index lens, it is effective to use at least one axial gradient index lens in the rear group.

【0023】本発明のレンズ系は、以上述べたような構
成とすることによって、全系の球面収差を一層良好に補
正でき、これにより球面収差の補正の負担が軽くなった
絞りを挟んで位置する凹面をサジタルコマ収差を補正す
るのに有利な形状とし両者を同時に補正した高性能なレ
ンズ系になし得た。
By configuring the lens system of the present invention as described above, the spherical aberration of the entire system can be corrected more satisfactorily, and as a result, the position where the spherical aberration correction burden is lightened is placed across the diaphragm. The concave surface is shaped to be advantageous for correcting sagittal coma, and a high-performance lens system in which both are simultaneously corrected can be obtained.

【0024】ここで、本発明で用いられる光軸方向に屈
折率分布を有するアキシャル型の屈折率分布型レンズ
は、次の式で表わされる屈折率分布を有する。 n(x) =N0 +N1 x+N22 +N33 +・・・ ただしxはアキシャル型の屈折率分布型レンズの物体側
の面から光軸方向への距離、n(x) はxだけ離れたとこ
ろの光軸上での屈折率、N0 は屈折率分布型レンズの物
体側の面の光軸上での屈折率、N1 ,N2 ,N3 ・・・
は夫々1次,2次,3次,・・・の係数である。尚全て
の基準を屈折率分布型レンズの物体側の面においている
が、基準を屈折率分布型レンズの内部にとることも可能
である。
Here, the axial type gradient index lens having a refractive index distribution in the optical axis direction used in the present invention has a refractive index distribution represented by the following formula. n (x) = N 0 + N 1 x + N 2 x 2 + N 3 x 3 + ... where x is the distance from the object side surface of the axial gradient index lens in the optical axis direction, and n (x) is Refractive index on the optical axis at a distance of x, N 0 is the refractive index on the optical axis of the object side surface of the gradient index lens, N 1 , N 2 , N 3 ...
Are first-order, second-order, third-order, ... Coefficients. Although all the references are on the object side surface of the gradient index lens, it is also possible to use the reference inside the gradient index lens.

【0025】前述の構成の本発明のレンズ系における後
群中の両凹レンズと両凸レンズの接合レンズよりも像側
に少なくとも1枚用いている負レンズは、軸外収差特に
非点収差を良好に保つために絞りに対してコンセントリ
ックな形状となることが望ましく物体側に凹面を向けた
メニスカスレンズとすることが好ましい。更にその負レ
ンズは、より像側に配置すると球面収差の補正が困難に
なるので両凹レンズと両凸レンズの接合レンズに近接さ
せて配置させることが効果的である。
In the lens system of the present invention having the above-described structure, at least one negative lens used on the image side of the cemented lens of the biconcave lens and the biconvex lens in the rear group is excellent in off-axis aberration, especially astigmatism. In order to keep the aperture, it is desirable that the aperture has a concentric shape, and it is preferable that the meniscus lens has a concave surface facing the object side. Further, if the negative lens is arranged closer to the image side, it becomes difficult to correct spherical aberration, so it is effective to dispose the negative lens close to the cemented lens of the biconcave lens and the biconvex lens.

【0026】以上のことからこの負レンズに関し次の条
件(1)を満足することが好ましい。 (1) 0.2<R0/R1 <1.0 ただしR0 は後群中の両凹レンズと両凸レンズの接合レ
ンズよりも像側に少なくとも1枚用いる負レンズの物体
側の面の曲率半径、R1 はその負レンズの像側の面の曲
率半径である。
From the above, it is preferable for the negative lens to satisfy the following condition (1). (1) 0.2 <R 0 / R 1 <1.0 where R 0 is the curvature of the object-side surface of the negative lens used at least one on the image side of the cemented lens of the biconcave lens and the biconvex lens in the rear group. The radius R 1 is the radius of curvature of the image-side surface of the negative lens.

【0027】上記条件(1)は、球面収差,ペッツバー
ル和,軸上色収差を良好に保ったまま特に非点収差を補
正するための条件で、下限を越えるとその負レンズの絞
りに対するコンセントリック性が崩れ非点収差を良好に
補正することが出来なくなり、上限を越えるとその負レ
ンズの屈折力が小になり、球面収差,ペッツバール和,
軸上色収差の補正が出来なくなる。
The above condition (1) is a condition for correcting astigmatism in particular while maintaining good spherical aberration, Petzval sum, and axial chromatic aberration. When the lower limit is exceeded, the concentricity of the negative lens with respect to the diaphragm. Cannot be corrected well, and if the upper limit is exceeded, the refractive power of the negative lens becomes small, and spherical aberration, Petzval sum,
The axial chromatic aberration cannot be corrected.

【0028】更に本発明のレンズ系において次の各条件
を満足することが、収差を良好に補正する上で好まし
い。 (2) f・φ・R・N1 <0 (3) 1.55<(n1 +n2 +n3 )/3 (4) 0.5<f1-3 /f<0.9 (5) 0.5<fR /f<0.9 ただし、fは全系の合成焦点距離、φはアキシャル型の
屈折率分布型レンズの屈折率分布がついている側の面の
パワー、Rは前記の面の曲率半径、N1 は屈折率分布式
の1次の係数、n1 ,n2 ,n3は前群の物体側より順
に第1レンズ,第2レンズ,第3レンズの正レンズの屈
折率,f1-3 は前記第1レンズ,第2レンズ,第3レン
ズの合成焦点距離、fR は後群の合成焦点距離である。
Further, in the lens system of the present invention, it is preferable to satisfy the following conditions in order to satisfactorily correct aberrations. (2) f · φ · R · N 1 <0 (3) 1.55 <(n 1 + n 2 + n 3 ) / 3 (4) 0.5 <f 1-3 /f<0.9 (5) 0.5 <f R /f<0.9 where f is the combined focal length of the entire system, φ is the power of the surface of the axial type gradient index lens on the side having the refractive index distribution, and R is the above The radius of curvature of the surface, N 1 is the first-order coefficient of the refractive index distribution formula, and n 1 , n 2 , and n 3 are the refraction of the positive lens of the first lens, the second lens, and the third lens in order from the object side of the front group. The ratio, f 1-3, is the combined focal length of the first lens, the second lens, and the third lens, and f R is the combined focal length of the rear group.

【0029】条件(2)は、アキシャル型の屈折率分布
型レンズで効果的に正の球面収差を発生させるために設
けた条件で、上限を越えると屈折率分布がついている面
で正の球面収差を発生させることが出来なくなり、全系
での球面収差を補正できなくなる。
The condition (2) is a condition provided to effectively generate a positive spherical aberration in the axial type gradient index lens. If the upper limit is exceeded, the surface having a refractive index distribution has a positive spherical surface. Aberration cannot be generated and spherical aberration in the entire system cannot be corrected.

【0030】条件(3)は、全系のペッツバール和を良
好に保つために設けた条件で、下限を越えると全系のペ
ッツバール和が大きな正の値をとるようになり、像面が
物体側に倒れてその補正が出来なくなる。
The condition (3) is a condition provided for keeping the Petzval sum of the entire system in a good condition. When the lower limit is exceeded, the Petzval sum of the entire system takes a large positive value, and the image surface is on the object side. It collapses and cannot be corrected.

【0031】条件(4)は、負の球面収差の発生量を小
さくするために設けた条件で、下限を越えると前群の物
体側より順に配置した3枚の正レンズの屈折力が強くな
りすぎて、負の球面収差の発生量が大きくなり、補正で
きなくなる。また上限を越えると負の球面収差の発生量
は小さくなるが、レンズ系が大型化してしまい好ましく
ない。
Condition (4) is a condition provided to reduce the amount of negative spherical aberration generated. If the lower limit is exceeded, the refractive power of the three positive lenses arranged in order from the object side of the front group will become strong. As a result, the amount of negative spherical aberration generated becomes too large to correct. If the upper limit is exceeded, the amount of negative spherical aberration generated will be small, but the lens system will become large, which is not preferable.

【0032】条件(5)は、レンズ系をコンパクトに保
ったまま必要とするバックフォーカスを確保するための
条件で、下限を越えると後群の屈折力が大きくなりすぎ
て必要なバックフォーカスを確保することができなくな
る。また上限を越えると、後群の屈折力が小さくなりす
ぎてレンズ系が大型化し好ましくない。
The condition (5) is a condition for ensuring the required back focus while keeping the lens system compact, and if the lower limit is exceeded, the refractive power of the rear group becomes too large and the necessary back focus is secured. Can not do. On the other hand, if it exceeds the upper limit, the refractive power of the rear group becomes too small, and the lens system becomes large, which is not preferable.

【0033】更に本発明のレンズ系は、後群中の両凹レ
ンズと両凸レンズの接合レンズよりも像側に少なくとも
1枚用いる負レンズは、次の条件(6)を満足せしめる
ことにより球面収差、ペッツバール和、軸上色収差を一
層良好に補正できるので好ましい。 (6) −2.5<fn/f<−0.5 ただしfn は後群中の両凹レンズと両凸レンズとの接合
レンズより像側に少なくとも1枚用いる負レンズの焦点
距離である。
Further, in the lens system of the present invention, the negative lens used in the rear group, at least one lens on the image side of the cemented lens of the biconcave lens and the biconvex lens, satisfies the following condition (6) so that spherical aberration, It is preferable because Petzval sum and axial chromatic aberration can be corrected more satisfactorily. (6) −2.5 <f n /f<−0.5 where f n is the focal length of at least one negative lens used on the image side of the cemented lens of the biconcave lens and the biconvex lens in the rear group.

【0034】条件(6)の下限を越えると、上記の負レ
ンズの屈折力が弱くなりすぎて球面収差、ペッツバール
和,軸上色収差が補正不足になり、上限を越えると逆に
球面収差、ペッツガール和、軸上色収差が補正過剰にな
り好ましくない。
When the lower limit of the condition (6) is exceeded, the refracting power of the negative lens becomes too weak and the spherical aberration, Petzval sum, and axial chromatic aberration are insufficiently corrected. Girl sum and axial chromatic aberration are overcorrected, which is not preferable.

【0035】また、本発明のレンズ系において、絞りよ
り像側の後群中の空気間隔のうちの少なくとも1箇所を
フォーカシング中変化させるいわゆるフローティング機
構を設けることによって、撮影倍率が約−1/7倍の物
点までの全フォーカシング領域で諸収差を良好に補正す
ることが可能である。
Further, in the lens system of the present invention, by providing a so-called floating mechanism for changing at least one of the air gaps in the rear group on the image side of the diaphragm during focusing, the photographing magnification is about -1/7. It is possible to satisfactorily correct various aberrations in the entire focusing area up to the double object point.

【0036】[0036]

【実施例】次に本発明のレンズ系の各実施例を示す。 実施例1 f=1mm ,F/1.44 ,2ω=28.8° r1 =2.1065 d1 =0.0514 n1 =1.69680 ν1 =56.49 r2 =2.5980 d2 =0.0015 r3 =0.7291 d3 =0.0977 n2 =1.49700 ν2 =81.61 r4 =7.9280 d4 =0.0015 r5 =0.5414 d5 =0.0749 n3 =1.69680 ν3 =56.49 r6 =1.0711 d6 =0.0015 r7 =0.4014 d7 =0.0824 n4 =1.69680 ν4 =56.49 r8 =0.3770 d8 =0.0617 r9 =0.9742 d9 =0.0266 n5 =1.75520 ν5 =27.51 r10=0.2913 d10=0.1029 r11=絞り d11=0.0566 r12=-0.5037 d12=0.0206 n6 =1.60342 ν6 =38.01 r13=0.7910 d13=0.1330 n7 =1.88300 ν7 =40.78 r14=-0.7330 d14=0.0226 r15=-0.5124 d15=0.0432 n8 (屈折率分布型レンズ) r16=-1.6573 d16=D117=3.9255 d17=0.0601 n9 =1.74100 ν9 =52.68 r18=-0.7865 d18=D219=2.4150 d19=0.0662 n10=1.69680 ν10=56.49 r20=-3.4322 (フローティング) (屈折率分布型レンズ)物体側の面より像側に0.0154mm
までは屈折率はN0 で一定の均質ガラス。0.0154mmを基
準(x=0)として屈折率分布式に従う。
EXAMPLES Next, examples of the lens system of the present invention will be shown. Example 1 f = 1 mm, F / 1.44, 2ω = 28.8 ° r 1 = 2.1065 d 1 = 0.0514 n 1 = 1.69680 ν 1 = 56.49 r 2 = 2.5980 d 2 = 0.0015 r 3 = 0.7291 d 3 = 0.0977 n 2 = 1.49700 ν 2 = 81.61 r 4 = 7.9280 d 4 = 0.0015 r 5 = 0.5414 d 5 = 0.0749 n 3 = 1.69680 ν 3 = 56.49 r 6 = 1.0711 d 6 = 0.0015 r 7 = 0.4014 d 7 = 0.0824 n 4 = 1.69680 ν 4 = 56.49 r 8 = 0.3770 d 8 = 0.0617 r 9 = 0.9742 d 9 = 0.0266 n 5 = 1.75520 ν 5 = 27.51 r 10 = 0.2913 d 10 = 0.1029 r 11 = diaphragm d 11 = 0.0566 r 12 = -0.5037 d 12 = 0.0206 n 6 = 1.60342 ν 6 = 38.01 r 13 = 0.7910 d 13 = 0.1330 n 7 = 1.88300 ν 7 = 40.78 r 14 = -0.7330 d 14 = 0.0226 r 15 = -0.5124 d 15 = 0.0432 n 8 (Refractive index distribution Type lens) r 16 = -1.6573 d 16 = D 1 r 17 = 3.9255 d 17 = 0.0601 n 9 = 1.74100 ν 9 = 52.68 r 18 = -0.7865 d 18 = D 2 r 19 = 2.4150 d 19 = 0.0662 n 10 = 1.69680 ν 10 = 56.49 r 20 = -3.4322 ( floating) (Refractive index distribution type lens) 0.0154 mm from the object side surface to the image side
A homogeneous glass with a constant refractive index of N 0 up to. Follow the refractive index distribution formula with 0.0154 mm as a reference (x = 0).

【0037】 0/R1 =0.309 ,f・φ・R・N1 =-0.602 ,(n1+
n2+n3)/ 3=1.63 f1-3/f=0.750 ,fR/f=0.753 , fn/f=-1.192 実施例2 f=1mm ,F/1.44 ,2ω=28.8° r1 =1.6296 d1 =0.0494 n1 =1.69680 ν1 =55.52 r2 =3.0124 d2 =0.0015 r3 =0.7186 d3 =0.0905 n2 =1.43875 ν2 =94.97 r4 =5.2012 d4 =0.0015 r5 =0.5313 d5 =0.0756 n3 =1.69680 ν3 =55.52 r6 =0.9715 d6 =0.0015 r7 =0.4037 d7 =0.0826 n4 =1.69680 ν4 =55.52 r8 =0.3605 d8 =0.0617 r9 =0.9306 d9 =0.0271 n5 =1.75520 ν5 =27.51 r10=0.2993 d10=0.1029 r11=絞り d11=0.0566 r12=-0.5007 d12=0.0190 n6 =1.62588 ν6 =35.70 r13=0.6408 d13=0.1329 n7 =1.88300 ν7 =40.78 r14=-0.7075 d14=0.0206 r15=-0.5129 d15=0.0461 n8 (屈折率分布型レンズ) r16=-1.1129 d16=0.0015 r17=3.5472 d17=0.0586 n9 =1.74100 ν9 =52.68 r18=-0.8699 d18=D119=6.9188 d19=0.0559 n10=1.69680 ν10=55.52 r20=-3.0132 (フローティング) (屈折率分布型レンズ)物体側の面より像側に0.0151mm
までは屈折率はN0 で一定の均質ガラス。0.0151mmを基
準(x=0)として屈折率分布式に従う。
[0037] R 0 / R 1 = 0.309, f ・ φ ・ R ・ N 1 = -0.602, (n 1 +
n 2 + n 3 ) / 3 = 1.63 f 1-3 /f=0.750, f R /f=0.753, f n /f=-1.192 Example 2 f = 1 mm, F / 1.44, 2ω = 28.8 ° r 1 = 1.6296 d 1 = 0.0494 n 1 = 1.9680 v 1 = 55.52 r 2 = 3.0124 d 2 = 0.0015 r 3 = 0.7186 d 3 = 0.0905 n 2 = 1.43875 v 2 = 94.97 r 4 = 5.2012 d 4 = 0.0015 r 5 = 0.5313 d 5 = 0.0756 n 3 = 1.9680 ν 3 = 55.52 r 6 = 0.9715 d 6 = 0.0015 r 7 = 0.4037 d 7 = 0.0826 n 4 = 1.69680 ν 4 = 55.52 r 8 = 0.3605 d 8 = 0.0617 r 9 = 0.9306 d 9 = 0.0271 n 5 = 1.75520 ν 5 = 27.51 r 10 = 0.2993 d 10 = 0.1029 r 11 = Aperture d 11 = 0.0566 r 12 = -0.5007 d 12 = 0.0190 n 6 = 1.62588 ν 6 = 35.70 r 13 = 0.6408 d 13 = 0.1329 n 7 = 1.88300 ν 7 = 40.78 r 14 = -0.7075 d 14 = 0.0206 r 15 = -0.5129 d 15 = 0.0461 n 8 (Gradation index lens) r 16 = -1.1129 d 16 = 0.0015 r 17 = 3.5472 d 17 = 0.0586 n 9 = 1.74100 ν 9 = 52.68 r 18 = - 0.8699 d 18 = D 1 r 19 = 6.9188 d 19 = 0.0559 n 10 = 1.69680 ν 10 = 55.52 r 20 = -3.0132 (floating) (Refractive index distribution type lens) 0.0151 mm toward the image side from the object side surface
A homogeneous glass with a constant refractive index of N 0 up to. Follow the refractive index distribution formula with 0.0151 mm as a reference (x = 0).

【0038】 N0123 d線 1.66680 0.70761 0.17083×102 0.80550×102 C線 1.66091 0.79783 0.12060×102 0.18740×103 F線 1.68109 0.74520 0.19728×102 -0.10984×102 g線 1.69298 0.95417 0.15731×102 0.51488×1020/R1 =0.461 ,f・φ・R・N1 =-0.472 ,(n1+n2+n3)/ 3=1.61 f1-3/f=0.746 ,fR/f=0.763 ,fn /f=−1.559 実施例3 f=1mm ,F/1.44 ,2ω=28.8° r1 =1.6507 d1 =0.0494 n1 =1.69680 ν1 =56.49 r2 =2.8068 d2 =0.0015 r3 =0.7601 d3 =0.0844 n2 =1.43875 ν2 =94.97 r4 =4.5581 d4 =0.0015 r5 =0.5225 d5 =0.0758 n3 =1.69680 ν3 =56.49 r6 =0.9767 d6 =0.0015 r7 =0.4018 d7 =0.0826 n4 =1.69680 ν4 =56.49 r8 =0.3571 d8 =0.0617 r9 =0.8653 d9 =0.0273 n5 =1.76180 ν5 =27.11 r10=0.3004 d10=0.1029 r11=絞り d11=0.0566 r12=-0.4914 d12=0.0190 n6 =1.60342 ν6 =38.01 r13=0.6508 d13=0.1335 n7 =1.88300 ν7 =40.78 r14=-0.6863 d14=0.0206 r15=-0.5027 d15=0.0441 n8 (屈折率分布型レンズ) r16=-1.0356 d16=D117=3.0200 d17=0.0589 n9 =1.74100 ν9 =52.68 r18=-0.8497 d18=D219=11.7531 d19=0.0551 n10=1.69680 ν10=56.49 r20=-4.5542 (フローティング) (屈折率分布型レンズ)物体側の面より像側に0.0158mm
までは屈折率はN0 で一定の均質ガラス。0.0158mmを基
準(x=0)として屈折率分布式に従う。
N 0 N 1 N 2 N 3 d line 1.66680 0.70761 0.17083 × 10 2 0.80550 × 10 2 C line 1.66091 0.79783 0.12060 × 10 2 0.18740 × 10 3 F line 1.68109 0.74520 0.19728 × 10 2 -0.10984 × 10 2 g line 1.69298 0.95417 0.15731 × 10 2 0.51488 × 10 2 R 0 / R 1 = 0.461, f ・ φ ・ R ・ N 1 = -0.472, (n 1 + n 2 + n 3 ) / 3 = 1.61 f 1-3 / f = 0.746, f R / f = 0.763, f n / f = -1.559 Example 3 f = 1 mm, F / 1.44, 2ω = 28.8 ° r 1 = 1.6507 d 1 = 0.0494 n 1 = 1.69680 ν 1 = 56.49 r 2 = 2.8068 d 2 = 0.0015 r 3 = 0.7601 d 3 = 0.0844 n 2 = 1.43875 ν 2 = 94.97 r 4 = 4.5581 d 4 = 0.0015 r 5 = 0.5225 d 5 = 0.0758 n 3 = 1.69680 ν 3 = 56.49 r 6 = 0.9767 d 6 = 0.0015 r 7 = 0.4018 d 7 = 0.0826 n 4 = 1.69680 ν 4 = 56.49 r 8 = 0.3571 d 8 = 0.0617 r 9 = 0.8653 d 9 = 0.0273 n 5 = 1.76180 ν 5 = 27.11 r 10 = 0.3004 d 10 = 0.1029 r 11 = Aperture d 11 = 0.0566 r 12 = -0.4914 d 12 = 0.0190 n 6 = 1.60342 ν 6 = 38.01 r 13 = 0.6508 d 13 = 0.1335 n 7 = 1.88300 ν 7 = 40.78 r 14 = -0.6863 d 14 = 0.0206 r 15 = -0.5027 d 15 = 0.0441 n 8 (Refractive index distribution type) Lens) r 16 = -1.0356 d 16 = D 1 r 17 = 3.0200 d 17 = 0.0589 n 9 = 1.74100 ν 9 = 52.68 r 18 = -0.8497 d 18 = D 2 r 19 = 11.7531 d 19 = 0.0551 n 10 = 1.69680 ν 10 = 56.49 r 20 = -4.5542 (floating) (Refractive index distribution type lens) 0.0158mm from the object side to the image side
A homogeneous glass with a constant refractive index of N 0 up to. Follow the refractive index distribution formula with 0.0158 mm as a reference (x = 0).

【0039】 N0123 d線 1.69895 0.68286 0.19140×102 0.80550×102 C線 1.69223 0.76992 0.13512×102 0.18740×103 F線 1.71543 0.71913 0.22105×102 -0.10984×102 g線 1.72933 0.95417 0.15731×102 0.51488×1020/R1 =0.485 ,f・φ・R・N1 =-0.477 ,(n1+
n2+n3)/ 3=1.61 f1-3/f=0.768 ,fR/f=0.764 ,fn/f=−1.527 実施例4 f=1mm ,F/1.44 ,2ω=28.8° r1 =1.6795 d1 =0.0494 n1 =1.69680 ν1 =56.49 r2 =2.8017 d2 =0.0015 r3 =0.7497 d3 =0.0844 n2 =1.43875 ν2 =94.97 r4 =5.4048 d4 =0.0015 r5 =0.5224 d5 =0.0758 n3 =1.69680 ν3 =56.49 r6 =0.9889 d6 =0.0015 r7 =0.4018 d7 =0.0826 n4 =1.69680 ν4 =56.49 r8 =0.3575 d8 =0.0617 r9 =0.8793 d9 =0.0273 n5 =1.76180 ν5 =27.11 r10=0.3005 d10=0.1029 r11=絞り d11=0.0566 r12=-0.4839 d12=0.0190 n6 =1.60342 ν6 =38.01 r13=0.6563 d13=0.1335 n7 =1.88300 ν7 =40.78 r14=-0.6846 d14=0.0206 r15=-0.5065 d15=0.0441 n8 (屈折率分布型レンズ) r16=-1.0572 d16=0.0021 r17=4.3349 d17=0.0590 n9 =1.74100 ν9 =52.68 r18=-0.8443 d18=D119=5.0019 d19=0.0551 n10=1.69680 ν10=56.49 r20=-4.9245 (フローティング) (屈折率分布型レンズ)物体側の面より像側に0.0158mm
までは屈折率はN0 で一定の均質ガラス。0.0158mmを基
準(x=0)として屈折率分布式に従う。
N 0 N 1 N 2 N 3 d line 1.69895 0.68286 0.19 140 × 10 2 0.80550 × 10 2 C line 1.69223 0.76992 0.135 12 × 10 2 0.18740 × 10 3 F line 1.71543 0.71913 0.22 105 × 10 2 -0.10984 × 10 2 g line 1.72933 0.95417 0.15731 × 10 2 0.51488 × 10 2 R 0 / R 1 = 0.485, f ・ φ ・ R ・ N 1 = -0.477, (n 1 +
n 2 + n 3 ) /3=1.61 f 1-3 /f=0.768, f R /f=0.768, f n /f=−1.527 Example 4 f = 1 mm, F / 1.44, 2ω = 28.8 ° r 1 = 1.6795 d 1 = 0.0494 n 1 = 1.9680 v 1 = 56.49 r 2 = 2.8017 d 2 = 0.0015 r 3 = 0.7497 d 3 = 0.0844 n 2 = 1.43875 v 2 = 94.97 r 4 = 5.4048 d 4 = 0.0015 r 5 = 0.5224 d 5 = 0.0758 n 3 = 1.9680 ν 3 = 56.49 r 6 = 0.9889 d 6 = 0.0015 r 7 = 0.4018 d 7 = 0.0826 n 4 = 1.69680 ν 4 = 56.49 r 8 = 0.3575 d 8 = 0.0617 r 9 = 0.8793 d 9 = 0.0273 n 5 = 1.76180 ν 5 = 27.11 r 10 = 0.3005 d 10 = 0.1029 r 11 = stop d 11 = 0.0566 r 12 = -0.4839 d 12 = 0.0190 n 6 = 1.60342 ν 6 = 38.01 r 13 = 0.6563 d 13 = 0.1335 n 7 = 1.88300 ν 7 = 40.78 r 14 = -0.6846 d 14 = 0.0206 r 15 = -0.5065 d 15 = 0.0441 n 8 (gradient distribution type lens) r 16 = -1.0572 d 16 = 0.0021 r 17 = 4.3349 d 17 = 0.0590 n 9 = 1.74100 ν 9 = 52.68 18 = -0.8443 d 18 = D 1 r 19 = 5.0019 d 19 = 0.0551 n 10 = 1.69680 ν 10 = 56.49 r 20 = -4.9245 ( floating) (Refractive index distribution type lens) 0.0158mm from the object side to the image side
A homogeneous glass with a constant refractive index of N 0 up to. Follow the refractive index distribution formula with 0.0158 mm as a reference (x = 0).

【0040】 N0123 d線 1.69895 0.69245 0.18059×102 0.60527×102 C線 1.69223 0.78074 0.12749×102 0.14081×103 F線 1.71543 0.72924 0.20856×102 -0.82535×10 g線 1.72933 0.95417 0.15731×102 0.51488×1020/R1 =0.479 ,f・φ・R・N1 =-0.484 ,(n1+
n2+n3)/ 3=1.61 f1-3/f=0.755 ,fR/f=0.755 , fn/f=-1.513 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。
N 0 N 1 N 2 N 3 d line 1.69895 0.69245 0.180 59 × 10 2 0.605 27 × 10 2 C line 1.69223 0.78074 0.127 49 × 10 2 0.1408 1 × 10 3 F line 1.71543 0.72924 0.20856 × 10 2 -0.82535 × 10 g line 1.72933 0.95417 0.15731 × 10 2 0.51488 × 10 2 R 0 / R 1 = 0.479, f ・ φ ・ R ・ N 1 = -0.484, (n 1 +
n 2 + n 3 ) / 3 = 1.61 f 1-3 /f=0.755, f R /f=0.755, f n /f=-1.513 where r 1 , r 2 , ... are the radius of curvature of each lens surface , D
1 , d 2 , ... Is the thickness of each lens and the lens interval, n
1 , n 2 , ... Are the refractive indices of the respective lenses, ν 1 , ν 2 ,.
Is the Abbe number of each lens.

【0041】実施例1は、図1に示す構成で、物体側よ
り順に物体側に凸面を向けた正レンズ3枚と、物体側に
凸面を向けたメニスカスレンズと、像側に凹面を向けた
凹のメニスカスレンズと、絞りと、両凹レンズと両凸レ
ンズを接合した接合レンズと、物体側に凹面を向けた凹
のメニスカスレンズと、像側に凸面を向けた正レンズ2
枚より構成され、接合レンズの像側に配置された物体側
に凹面を向けた凹のメニスカスレンズがアキシャル型の
屈折率分布型レンズである。この屈折率分布型レンズの
屈折率分布は、像側の面にのみついている。
Example 1 has the configuration shown in FIG. 1, and three positive lenses having convex surfaces facing the object side in order from the object side, a meniscus lens having a convex surface facing the object side, and a concave surface facing the image side. A concave meniscus lens, a diaphragm, a cemented lens in which a biconcave lens and a biconvex lens are cemented, a concave meniscus lens with a concave surface facing the object side, and a positive lens with a convex surface facing the image side 2
A concave meniscus lens having a concave surface facing the object side arranged on the image side of the cemented lens is an axial type gradient index lens. The refractive index distribution of this gradient index lens is attached only to the image side surface.

【0042】この実施例は、像側の2枚の正レンズをフ
ォーカシングの際に独立に移動させるいわゆるダブルフ
ローティング機構を設け、無限遠物点から約−1/7倍
の物点までの全領域にわたって良好な性能を得ることを
可能にした例である。
In this embodiment, a so-called double floating mechanism for independently moving the two positive lenses on the image side during focusing is provided, and the entire area from the object point at infinity to the object point at about -1/7 times. This is an example that makes it possible to obtain good performance over the entire range.

【0043】図1において(A)は無限遠物点、(B)
は約−1/7倍の物点に対するものである。
In FIG. 1, (A) is an object point at infinity, and (B) is
Is for an object point of about -1/7.

【0044】又、この実施例の無限遠、約−1/7倍の
物点での収差状況は、夫々図5,図6の通りである。
The aberrations of this embodiment at infinity and at an object point of about -1/7 are shown in FIGS. 5 and 6, respectively.

【0045】実施例2は、図2に示す構成で、物体側よ
り順に物体側に凸面を向けた正レンズ3枚と物体側に凸
面を向けたメニスカスレンズと像側に凹面を向けた凹の
メニスカスレンズと、絞りと、両凹レンズと両凸レンズ
を接合した接合レンズと、物体側に凹面を向けた凹のメ
ニスカスレンズと像側に凸面を向けた正レンズ2枚とよ
り構成され、接合レンズの像側に配置された物体側に凹
面を向けた凹のメニスカスレンズがアキシャル型の屈折
率分布型レンズである。尚この実施例のアキシャル型屈
折率分布型レンズの屈折率分布は、像側の面にのみつい
ている。
The second embodiment has the configuration shown in FIG. 2, and includes three positive lenses having convex surfaces facing the object side in order from the object side, a meniscus lens having a convex surface facing the object side, and a concave lens having a concave surface facing the image side. It consists of a meniscus lens, a diaphragm, a cemented lens cemented with a biconcave lens and a biconvex lens, a concave meniscus lens with a concave surface facing the object side, and two positive lenses with a convex surface facing the image side. A concave meniscus lens having a concave surface facing the object side disposed on the image side is an axial gradient index lens. The refractive index distribution of the axial type gradient index lens of this embodiment is attached only to the image side surface.

【0046】この実施例は、最も像側の正レンズ1枚を
フォーカシングの際独立に移動させるフローティング機
構を設けて物点が無限遠から約−1/7倍までの全領域
にわたって良好な性能を得ることを可能にした例であ
る。
In this embodiment, a floating mechanism for independently moving one of the positive lenses closest to the image side during focusing is provided to obtain good performance over the entire range of the object point from infinity to about -1/7. This is an example that makes it possible.

【0047】図2において(A)は無限遠物点、(B)
は約−1/7倍の物点に対するものである。
In FIG. 2, (A) is an object point at infinity, and (B) is
Is for an object point of about -1/7.

【0048】又この実施例の無限遠および約−1/7倍
の収差状況は、夫々図7および図8に示す通りである。
The aberrations of this embodiment at infinity and about -1/7 are as shown in FIGS. 7 and 8, respectively.

【0049】実施例3は、図3に示す通りで、物体側よ
り順に、物体側に凸面を向けた正レンズ3枚と、物体側
に凸面を向けたメニスカスレンズと、像側に凹面を向け
た凹のメニスカスレンズと、絞りと、両凹レンズと両凸
レンズを接合した接合レンズと、物体側に凹面を向けた
凹のメニスカスレンズと、像側に凸面を向けた正レンズ
2枚とより構成され、接合レンズの像側に配置された物
体側に凹面を向けた凹のメニスカスレンズがアキシャル
型の屈折率分布型レンズである。この実施例のアキシャ
ル型屈折率分布型レンズの屈折率分布は像側の面にのみ
ついている。この実施例3では、像側の2枚の正レンズ
をフォーカシングの際独立に移動させるいわゆるダブル
フローティング機構を設け、更にレンズ鏡枠の構成を簡
単にするために最も像側のレンズを常時固定とし、物点
が無限遠から約−1/7倍までの全領域にわたって良好
な性能を得ることを可能にした。
In Example 3, as shown in FIG. 3, three positive lenses having convex surfaces facing the object side, a meniscus lens having convex surfaces facing the object side, and a concave surface facing the image side are arranged in order from the object side. It consists of a concave meniscus lens, a diaphragm, a cemented lens cemented with a biconcave lens and a biconvex lens, a concave meniscus lens with the concave surface facing the object side, and two positive lenses with the convex surface facing the image side. The concave meniscus lens having a concave surface facing the object side disposed on the image side of the cemented lens is an axial gradient index lens. The refractive index distribution of the axial type gradient index lens of this embodiment is attached only to the image side surface. In the third embodiment, a so-called double floating mechanism for independently moving two positive lenses on the image side during focusing is provided, and the lens on the most image side is always fixed in order to simplify the configuration of the lens frame. It was possible to obtain good performance over the entire range from the infinity point to about -1/7.

【0050】図3において(A)は無限遠物点、(B)
は約−1/7倍の物点に対するものである。
In FIG. 3, (A) is an object point at infinity, and (B) is
Is for an object point of about -1/7.

【0051】又この実施例の無限遠および約−1/7倍
の収差状況は、夫々図9および図10に示す通りであ
る。
The aberrations of this embodiment at infinity and about -1/7 are as shown in FIGS. 9 and 10, respectively.

【0052】実施例4は、図4に示す通りで、物体側よ
り順に、物体側に凸面を向けた正レンズ3枚と、物体側
に凸面を向けたメニスカスレンズと、像側に凹面を向け
た凹のメニスカスレンズと、絞りと、両凹レンズと両凸
レンズとを接合した接合レンズと、物体側に凹面を向け
た凹のメニスカスレンズと、像側に凸面を向けた正レン
ズ2枚とより構成され、接合レンズの像側に配置された
物体側に凹面を向けた凹のメニスカスレンズが、アキシ
ャル型の屈折率分布型レンズである。尚このアキシャル
型の屈折率分布型レンズの屈折率分布は像側の面にのみ
ついている。この実施例4では、フォーカシングの際最
も像側の正レンズ1枚を独立に移動させるフローティン
グ機構を設け、更にレンズ鏡枠の構成を簡単にするため
に最も像側のレンズを常時固定として、物点が無限遠か
ら約−1/7倍までの全領域にわたり良好な性能を得る
ことが可能である。
In Example 4, as shown in FIG. 4, three positive lenses having convex surfaces facing the object side, a meniscus lens having convex surfaces facing the object side, and a concave surface facing the image side are arranged in order from the object side. A concave meniscus lens, a diaphragm, a cemented lens in which a biconcave lens and a biconvex lens are cemented together, a concave meniscus lens with a concave surface facing the object side, and two positive lenses with a convex surface facing the image side. The concave meniscus lens having a concave surface facing the object side disposed on the image side of the cemented lens is an axial gradient index lens. The refractive index distribution of this axial type gradient index lens is attached only to the image side surface. In the fourth embodiment, a floating mechanism for independently moving one positive lens closest to the image side during focusing is provided, and the lens closest to the image side is fixed at all times in order to simplify the configuration of the lens barrel. Good performance can be obtained over the entire range of points from infinity to about -1/7.

【0053】図4において(A)は無限遠物点、(B)
は約−1/7倍の物点に対するものである。
In FIG. 4, (A) is an object point at infinity, and (B) is
Is for an object point of about -1/7.

【0054】この実施例4の無限遠および約−1/7倍
の物点の収差状況は、夫々図11および図12に示す通
りである。
The aberrations of the object point at infinity and about -1/7 in Example 4 are as shown in FIGS. 11 and 12, respectively.

【0055】[0055]

【発明の効果】本発明によれば、撮影画角が約29°
で、Fナンバーが1.4程度で、サジタルコマ収差と球
面収差の補正に加えて像面の曲がりをおさえ、非点収差
を良好に補正して、ピントの合った位置前後のデフォー
カス領域でのぼけ方の良好な高性能な大口径中望遠レン
ズを得ることが出来る。
According to the present invention, the photographing field angle is about 29 °.
With an F number of about 1.4, in addition to correcting sagittal coma and spherical aberration, the curvature of the image surface is suppressed, astigmatism is corrected well, and the defocus area before and after the in-focus position is improved. It is possible to obtain a high-performance large-medium telephoto lens with good blurring performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例4の断面図FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の実施例1の無限遠物点に対する収差曲
線図
FIG. 5 is an aberration curve diagram for an object point at infinity according to the first embodiment of the present invention.

【図6】本発明の実施例1の約−1/7倍の物点に対す
る収差曲線図
FIG. 6 is an aberration curve diagram for an object point of about −1/7 times that of Example 1 of the present invention.

【図7】本発明の実施例2の無限遠物点に対する収差曲
線図
FIG. 7 is an aberration curve diagram for an object point at infinity according to Example 2 of the present invention.

【図8】本発明の実施例2の約−1/7倍の物点に対す
る収差曲線図
FIG. 8 is an aberration curve diagram for an object point of about −1/7 times that of Example 2 of the present invention.

【図9】本発明の実施例3の無限遠物点に対する収差曲
線図
FIG. 9 is an aberration curve diagram for an object point at infinity according to Example 3 of the present invention.

【図10】本発明の実施例3の約−1/7倍の物点に対
する収差曲線図
FIG. 10 is an aberration curve diagram for an object point of about −1/7 times that of Example 3 of the present invention.

【図11】本発明の実施例4の無限遠物点に対する収差
曲線図
FIG. 11 is an aberration curve diagram for an object point at infinity according to Example 4 of the present invention.

【図12】本発明の実施例4の約−1/7倍の物点に対
する収差曲線図
FIG. 12 is an aberration curve diagram for an object point of about −1/7 times that of Example 4 of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月20日[Submission date] January 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】近年は、一眼レフカメラ、レンズシャッ
ターカメラ共に手軽に画角を変化させ得る変倍レンズの
搭載が主流になりつつある。しかしながら、変倍レンズ
は、小さいFナンバーの明るいレンズ系にすることが困
難な上に単焦点レンズに比べて収差補正が十分とは言え
ない。そのために、明るさや画質を求めるユーザーの声
に応じて単焦点レンズは、大口径、高画質化が図られて
いる。
2. Description of the Related Art In recent years, it has become mainstream to mount variable magnification lenses that can easily change the angle of view in both single-lens reflex cameras and lens shutter cameras. However, it is difficult for a variable power lens to be a bright lens system with a small F number, and aberration correction cannot be said to be sufficient as compared with a single focus lens. Therefore, the single-focus lens has a large aperture and high image quality in accordance with the voice of the user who demands brightness and image quality.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】撮影画角が約29°でFナンバーが1.4
程度の、明るい中望遠レンズの従来例として、特開昭5
9−48723号、特開昭62−244010号、特開
63−205625号の各公報に記載されたレンズ系
がある。
The shooting angle of view is about 29 ° and the F number is 1.4.
As a conventional example of a bright medium telephoto lens of the order of magnitude, Japanese Patent Laid-Open No.
There are lens systems described in JP-A No. 9-48723, JP-A No. 62-244010, and JP-A No. 63-205625 .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】また特開平1−302311号公報に記載
されたレンズ系は、非球面を用いることにより撮影画角
が29°でFナンバー1.2程度まで明るくした例が開
示されている。
In the lens system described in Japanese Patent Laid-Open No. 1-302311, there is an example in which an aspherical surface is used and the photographing field angle is 29 ° and the F-number is about 1.2.
It is shown.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】しかし、この程度のレンズ系になると、最
も小さいレンズでも有効径が40mm程度になり、又非
球面の精度の点からもコスト高になる問題点を有してい
る。本出願人は、特開平2−50116号公報に開示し
たレンズ系を提案した。このレンズ系は、非球面と比較
して大口径化が容易な光軸方向に屈折率分布を有する屈
折率分布型レンズを用いて球面収差とサジタルコマ収差
とが同時に補正されたものである。しかしこの従来例
は、球面収差とサジタルコマ収差は良好に補正されてい
るが、像面の曲がりが比較的大きい。
However, in such a lens system, even the smallest lens has an effective diameter of about 40 mm, and the cost of the aspherical surface is high. The applicant has proposed the lens system disclosed in Japanese Patent Laid-Open No. 2-50116 . This lens system is a system in which spherical aberration and sagittal coma aberration are simultaneously corrected by using a gradient index lens having a gradient index distribution in the optical axis direction, which is easier to increase the aperture than an aspherical surface. However, in this conventional example, although spherical aberration and sagittal coma aberration are well corrected, the curvature of the image plane is relatively large.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】しかしよりアッベ数の大きい低分散ガラス
を用いようとするとどうしても屈折率の低いガラスを使
用せざるを得ない。前群に正レンズ3枚を用いると、負
の球面収差を抑えるためには有効であるが、その正レン
ズで発生する色収差を極力小さく抑えるためにアッベ数
が大きく屈折率の低いガラスを使うことにより、ペッツ
バール和が大きな正の値となり、像面が物体側に倒れ好
ましくない。
However, when trying to use a low dispersion glass having a larger Abbe number, it is unavoidable to use a glass having a low refractive index. If three positive lenses are used in the front group, it will be negative
Is effective in suppressing the spherical aberration of the
Abbe number to minimize chromatic aberration caused by
By using glass with a large
The bar sum becomes a large positive value, and the image plane falls to the object side and is preferable.
Not good.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】更に本発明のレンズ系において次の各条件
を満足することが、収差を良好に補正する上で好まし
い。 (2) f・φ・R・N<0 (3) 1.55<(n+n+n)/3 (4) 0.5<f1−3/f<0.9 (5) 0.5<f/f<0.9 ただし、fは全系の合成焦点距離、φはアキシャル型の
屈折率分布型レンズの屈折率分布がついている側の面の
パワー、Rは前記の面の曲率半径、Nは屈折率分布式
の1次の係数、n,n,nは前群の物体側より順
に第1レンズ,第2レンズ,第3レンズの正レンズの屈
折率,f1−3は前記第1レンズ,第2レンズ,第3レ
ンズの合成焦点距離、は無限遠物点時の後群の合成
焦点距離である。
Further, in the lens system of the present invention, it is preferable to satisfy the following conditions in order to satisfactorily correct aberrations. (2) f · φ · R · N 1 <0 (3) 1.55 <(n 1 + n 2 + n 3 ) / 3 (4) 0.5 <f 1-3 /f<0.9 (5) 0.5 <f R /f<0.9 where f is the combined focal length of the entire system, φ is the power of the surface of the axial type gradient index lens on the side having the refractive index distribution, and R is the above The radius of curvature of the surface, N 1 is the first-order coefficient of the refractive index distribution formula, and n 1 , n 2 , and n 3 are the refraction of the positive lens of the first lens, the second lens, and the third lens in order from the object side of the front group. , F 1-3 is the combined focal length of the first lens, the second lens, and the third lens, and f R is the combination of the rear lens group at the object point at infinity.
The focal length.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】条件(6)の下限を越えると、上記の負レ
ンズの屈折力が弱くなりすぎて球面収差、ペッツバール
和,軸上色収差が補正不足になり、上限を越えると逆に
球面収差、ペッツバール和、軸上色収差が補正過剰にな
り好ましくない。
[0034] the lower limit of the condition (6), a negative lens spherical aberration power is too weak for the Petzval sum, the axial chromatic aberration is corrected insufficiently, spherical aberration conversely exceeds the upper limit, Petzval In addition , the axial and chromatic aberrations are overcorrected, which is not preferable.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】 /R=0.461,f・φ・R・N=−0.4
72 ,(n+n+n)/3=1.61 f
1−3/f=0.746,f/f=0.763,f
/f=−1.559 実施例3 f=1mm,F/1.44 ,2ω=28.8゜ (フローティング) (屈折率分布型レンズ)物体側の面より像側に0.01
58mmまでは屈折率はNで一定の均質ガラス。0.
0158mmを基準(x=0)として屈折率分布式に従
う。
[0038] R 0 / R 1 = 0.461, f · φ · R · N 1 = -0.4
72, (n 1 + n 2 + n 3 ) /3=1.61 f
1-3 /f=0.746,f R /f=0.763,f n
/F=-1.559 Example 3 f = 1 mm, F / 1.44, 2ω = 28.8 ° (floating) (Refractive index distribution type lens) 0.01 on the image side from the object side surface
A homogeneous glass with a constant refractive index of N 0 up to 58 mm. 0.
The refractive index distribution formula is followed with 0158 mm as a reference (x = 0).

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Item name to be corrected] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0040】 /R=0.479,f・φ・R・N=−0.4
84 ,(n+n+n)/3=1.61 f
1−3/f=0.755,/f=0.775,f
/f=−1.513 ただしr,r,…はレンズ各面の曲率半径、d
,…は各レンズの肉厚およびレンズ間隔、n,n
,…は各レンズの屈折率、ν,ν,…は各レンズ
のアッベ数である。
[0040] R 0 / R 1 = 0.479, f · φ · R · N 1 = -0.4
84, (n 1 + n 2 + n 3 ) /3=1.61 f
1-3 /f=0.755, f R /f=0.775, f n
/F=−1.513 where r 1 , r 2 , ... Are the radii of curvature of the lens surfaces, and d 1 ,
d 2 , ... Is the thickness of each lens and the lens interval, n 1 , n
2 , ... Is the refractive index of each lens, and ν 1 , ν 2 , ... Is the Abbe number of each lens.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絞りを挟んで、物体側の前群と像側の後群
とからなり、前記前群は物体側より順に物体側に強い凸
面を向けた少なくとも3枚の正レンズと絞りに近接して
配置した像側に強い凹面を向けた負レンズ1枚とを少な
くとも含んでおり前群全体では5枚以上のレンズからな
り、前記後群は物体側より順に両凹レンズと両凸レンズ
を貼合わせた接合レンズと物体側に強い凹面を向けた負
レンズと少なくとも2枚の正レンズにて構成され後群中
に少なくとも1枚の屈折率分布型レンズを用いた大口径
中望遠レンズ。
1. A front lens group on the object side and a rear lens group on the image side with a diaphragm interposed therebetween. The front lens group is composed of at least three positive lenses each having a strong convex surface directed toward the object side from the object side, and a diaphragm. At least one negative lens having a strong concave surface facing the image side disposed in close proximity is included, and the front group as a whole is composed of five or more lenses. The rear group has a biconcave lens and a biconvex lens in order from the object side. A large-aperture medium-distance telephoto lens that includes a cemented lens, a negative lens with a strong concave surface facing the object side, and at least two positive lenses, and uses at least one gradient index lens in the rear group.
JP31727091A 1991-11-06 1991-11-06 Large-aperture intermediate telephoto lens Withdrawn JPH05142469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31727091A JPH05142469A (en) 1991-11-06 1991-11-06 Large-aperture intermediate telephoto lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31727091A JPH05142469A (en) 1991-11-06 1991-11-06 Large-aperture intermediate telephoto lens

Publications (1)

Publication Number Publication Date
JPH05142469A true JPH05142469A (en) 1993-06-11

Family

ID=18086367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31727091A Withdrawn JPH05142469A (en) 1991-11-06 1991-11-06 Large-aperture intermediate telephoto lens

Country Status (1)

Country Link
JP (1) JPH05142469A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251398A (en) * 2008-04-09 2009-10-29 Nikon Corp Photographic lens, optical apparatus with the same, and image forming method
JP2011070032A (en) * 2009-09-25 2011-04-07 Canon Inc Optical element and optical apparatus
US8427763B2 (en) 2008-02-12 2013-04-23 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens system
JP2013218015A (en) * 2012-04-05 2013-10-24 Canon Inc Optical system and imaging apparatus using the same
US8693113B2 (en) 2012-03-15 2014-04-08 Panasonic Corporation Inner focus lens, interchangeable lens device and camera system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427763B2 (en) 2008-02-12 2013-04-23 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens system
US8630046B2 (en) 2008-02-12 2014-01-14 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens system
US8773779B2 (en) 2008-02-12 2014-07-08 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens
JP2009251398A (en) * 2008-04-09 2009-10-29 Nikon Corp Photographic lens, optical apparatus with the same, and image forming method
JP2011070032A (en) * 2009-09-25 2011-04-07 Canon Inc Optical element and optical apparatus
US8693113B2 (en) 2012-03-15 2014-04-08 Panasonic Corporation Inner focus lens, interchangeable lens device and camera system
JP2013218015A (en) * 2012-04-05 2013-10-24 Canon Inc Optical system and imaging apparatus using the same

Similar Documents

Publication Publication Date Title
JP3541983B2 (en) Wide-angle lens
JP2915985B2 (en) Large aperture medium telephoto lens
JPH09325274A (en) Zoom lens
JP3369654B2 (en) Wide-angle lens
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JP3725284B2 (en) Compact wide-angle lens
JPH06281863A (en) Zoom lens
JP3033137B2 (en) Compact zoom lens
JPH06130291A (en) Standard lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JPH07152001A (en) Short distance correcting lens having vibrationproof function
JP3735909B2 (en) Retro focus lens
JPH0812326B2 (en) Reverse telephoto wide-angle lens
JP3925748B2 (en) Small lens
KR100189069B1 (en) Small wide angle photo lens
JPH09258098A (en) Photographing lens
JPH06308383A (en) Intermediate telephoto lens for underwater camera
JP3234618B2 (en) Large aperture medium telephoto lens
JPH05346542A (en) Small-sized two-group zoom lens
JPH0527163A (en) Telephoto lens
JP3518886B2 (en) High-performance wide-angle lens
JPH05142469A (en) Large-aperture intermediate telephoto lens
JPH07318798A (en) Photographic lens
JP3231404B2 (en) Shooting lens
JPH05157962A (en) Photographic lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204