JPH07152001A - Short distance correcting lens having vibrationproof function - Google Patents

Short distance correcting lens having vibrationproof function

Info

Publication number
JPH07152001A
JPH07152001A JP5323282A JP32328293A JPH07152001A JP H07152001 A JPH07152001 A JP H07152001A JP 5323282 A JP5323282 A JP 5323282A JP 32328293 A JP32328293 A JP 32328293A JP H07152001 A JPH07152001 A JP H07152001A
Authority
JP
Japan
Prior art keywords
lens
lens group
short
distance
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5323282A
Other languages
Japanese (ja)
Inventor
Kenzaburo Suzuki
憲三郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5323282A priority Critical patent/JPH07152001A/en
Priority to EP98107034A priority patent/EP0881516A1/en
Priority to EP94118425A priority patent/EP0655638A1/en
Publication of JPH07152001A publication Critical patent/JPH07152001A/en
Priority to US08/510,267 priority patent/US5751485A/en
Priority to US08/914,773 priority patent/US5946136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide a short distance correcting lens which has a vibrationproof function, is small in size and high in performance and is adequate for photography, videos, etc. CONSTITUTION:This short distance correcting lens has, successively from an object side, a first lens group G1 which has a positive refracting power, a second lens group G2 which has a positive refracting power and a third lens group which is arranged on the extreme image side and has a negative refracting power. The first lens group G1 and the second lens group G2 move to the object side at the time of focusing from infinity to a short distance. The short distance correcting lens described above has a displacing means for preventing vibration by moving the third lens group G3 in a direction nearly orthogonal with the optical axis and satisfies the conditions ¦betaM¦>0.4 when the photographing magnification at the shortest object distance is defined as betaM.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は防振機能を備えた近距離
補正レンズに関し、さらに詳細には、近距離補正レンズ
(いわゆるマイクロレンズ、マクロレンズ)の防振方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short-distance correction lens having a vibration-proof function, and more particularly to a vibration-proof method for a short-distance correction lens (so-called microlens or macrolens).

【0002】[0002]

【従来の技術】従来、特開平1−189621号、特開
平1−191112号および特開平1−191113号
公報に開示されているように、撮影距離が無限遠あるい
は無限遠に近い距離(撮影倍率でいえば0に近い状態)
で、レンズ群全体またはその一部を光軸とほぼ直交する
方向に移動させて、手振れ等に起因する像位置の変動を
補正するものがあった。なお、本明細書において、レン
ズ群を光軸とほぼ直交する方向に移動させて手振れ等に
起因する像位置の変動を補正することを「防振」とい
う。
2. Description of the Related Art Conventionally, as disclosed in JP-A-1-189621, JP-A-1-191112, and JP-A-1-191113, the shooting distance is infinity or a distance close to infinity (shooting magnification). (It is close to 0)
In some cases, the entire lens group or a part of the lens group is moved in a direction substantially orthogonal to the optical axis to correct a change in image position due to camera shake or the like. In this specification, moving the lens group in a direction substantially orthogonal to the optical axis to correct a change in image position due to camera shake or the like is referred to as “anti-vibration”.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ような従来の技術では、十分大きな撮影倍率(たとえば
−1/2倍)状態では防振することができず、まして撮
影倍率が等倍(−1倍)状態近くでは防振することがで
きないという不都合があった。なお、近距離補正レンズ
に関し十分な結像性能を有する防振技術は、公知の文献
(特許公報を含む)には全く開示されていない。本発明
は、前述の課題に鑑みてなされたものであり、防振機能
を備え、且つ小型で高性能な、写真用およびビデオ用等
に好適な近距離補正レンズを提供することを目的とす
る。
However, with the conventional technique as described above, image stabilization cannot be performed in a sufficiently large photographing magnification (for example, -1/2 times), and even if the photographing magnification is equal to (-). There is an inconvenience that the image stabilization cannot be performed near the (1 ×) state. It should be noted that a known document (including patent publications) does not disclose any image stabilization technology having sufficient imaging performance for the short-distance correction lens. The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a short-distance correction lens having a vibration-proof function, small size, and high performance, which is suitable for photography, video, and the like. .

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、物体側から順に、正の屈折力を
有する第1レンズ群G1と、正の屈折力を有する第2レ
ンズ群G2と、最も像側に配置され負の屈折力を有する
第3レンズ群とを備え、無限遠から近距離への合焦時
に、前記第1レンズ群G1および前記第2レンズ群G2
が物体側に移動する近距離補正レンズにおいて、前記第
3レンズ群G3を光軸とほぼ直交する方向に移動させて
防振するための変位手段を備え、最短撮影距離での撮影
倍率をβMとしたとき、 |βM | > 0.4 の条件を満足することを特徴とする近距離補正レンズを
提供する。
In order to solve the above problems, according to the present invention, a first lens group G1 having a positive refractive power and a second lens group having a positive refractive power are arranged in order from the object side. G2 and a third lens group arranged closest to the image side and having a negative refractive power, and when focusing from infinity to a short distance, the first lens group G1 and the second lens group G2.
In the short-distance correction lens that moves toward the object side, a displacement means is provided for moving the third lens group G3 in a direction substantially orthogonal to the optical axis for vibration isolation, and the shooting magnification at the shortest shooting distance is βM. In this case, a short-distance correction lens characterized by satisfying the condition of | βM |> 0.4 is provided.

【0005】本発明の好ましい態様によれば、前記第3
レンズ群G3の焦点距離をfL とし、無限遠におけるレ
ンズ全体の焦点距離をfとし、防振時における前記第3
レンズ群G3の光軸と直交する方向への最大変位量の大
きさを△SL としたとき、 0.5 < |fL |/f < 5.0 △SL /|fL | < 0.1 の条件を満足する。また、前記第3レンズ群が防振のた
めに光軸とほぼ直交する方向に移動する際に不用な光線
を遮蔽するための固定のフレア絞りを光軸上に備えてい
るのが好ましい。
According to a preferred aspect of the present invention, the third
The focal length of the lens group G3 is fL, the focal length of the entire lens at infinity is f, and the third lens unit during image stabilization is
Assuming that the maximum displacement amount of the lens group G3 in the direction orthogonal to the optical axis is ΔSL, the condition of 0.5 <| fL | / f <5.0 ΔSL / | fL | <0.1 is satisfied. To be satisfied. Further, it is preferable that a fixed flare stop is provided on the optical axis for blocking unnecessary light rays when the third lens group moves in a direction substantially orthogonal to the optical axis for image stabilization.

【0006】[0006]

【作用】本発明では、写真用、ビデオ用等の近距離補正
レンズに適するように、物体側から順に、正の屈折力を
有する第1レンズ群G1と、正の屈折力を有する第2レ
ンズ群G2と、最も像側に配置され負の屈折力を有する
第3レンズ群とを備え、無限遠から近距離への合焦時
に、前記第1レンズ群G1および前記第2レンズ群G2
が物体側に移動する構成を採用している。この構成を本
発明で採用した理由として、このタイプの近距離補正レ
ンズの特徴および利点について簡単に説明する。
In the present invention, the first lens group G1 having a positive refractive power and the second lens having a positive refractive power are arranged in this order from the object side so as to be suitable for a short-distance correction lens for photography, video, etc. The first lens group G1 and the second lens group G2 are provided with a group G2 and a third lens group arranged closest to the image side and having a negative refractive power, when focusing from infinity to a short distance.
It adopts a configuration that moves to the object side. As a reason for adopting this configuration in the present invention, the features and advantages of this type of short-distance correction lens will be briefly described.

【0007】第一に、上記構成の近距離補正レンズによ
り、−1/2倍や等倍(−1倍)を含む各撮影倍率にお
いて、良好な結像性能を得ることができる。また、像側
に負レンズ群(第3レンズ群G3)を有し全体でテレフ
ォト・レンズタイプを構成するので、レンズ全体の焦点
距離に比してレンズ全長を短くすることができる。この
ため、コンパクト化に有利であることはもとより、無限
遠から近距離への合焦時における第1レンズ群G1およ
び第2レンズ群G2の移動量を、従来から用いられてい
る全体繰り出し方式に比べ小さくすることができるの
で、保持機構および駆動機構の構成上有利である。
First, with the short-distance correction lens having the above-mentioned structure, good image forming performance can be obtained at each photographing magnification including -1/2 times and equal magnification (-1 times). Further, since the negative lens group (third lens group G3) is provided on the image side to constitute the telephoto lens type as a whole, the total lens length can be shortened as compared with the focal length of the entire lens. For this reason, in addition to being advantageous for compactness, the amount of movement of the first lens group G1 and the second lens group G2 when focusing from infinity to a short distance can be compared with that of the conventional total extension method. Since it can be made small, it is advantageous in the structure of the holding mechanism and the drive mechanism.

【0008】加えて、第3レンズ群G3の負レンズ群の
作用により、全体のペッツバール和を良好にバランスさ
せることができるので収差補正上有利である。本発明
は、このように写真用、ビデオ用等に適するタイプの近
距離補正レンズについて、防振のための最適な条件を見
い出したものである。
In addition, by the action of the negative lens group of the third lens group G3, the entire Petzval sum can be well balanced, which is advantageous for aberration correction. The present invention has found optimum conditions for image stabilization in such a short-distance correction lens suitable for photography and video.

【0009】以下に、本発明の条件を詳述する。まず第
一に、本発明においては、近距離補正すなわち無限遠か
ら近距離への合焦を行なう際に、第1レンズ群G1およ
び第2レンズ群G2がそれぞれ物体側に大きく移動す
る。したがって、第1レンズ群G1または第2レンズ群
G2を光軸に直交する方向に変位する防振補正光学系に
すると、保持機構および駆動機構が複雑化し且つ大型化
するので好ましくない。
The conditions of the present invention will be described in detail below. First of all, in the present invention, the first lens group G1 and the second lens group G2 each largely move to the object side when performing short-distance correction, that is, focusing from infinity to a short distance. Therefore, if the first lens group G1 or the second lens group G2 is an anti-vibration correction optical system that is displaced in the direction orthogonal to the optical axis, the holding mechanism and the drive mechanism become complicated and large in size, which is not preferable.

【0010】そこで、本発明においては、レンズ系全体
の機構の簡素化および防振時における良好な収差特性の
ために、最も像側のレンズ群すなわち第3レンズ群G3
に変位手段を設けて防振を行う構成を採用している。
Therefore, in the present invention, the lens group closest to the image side, that is, the third lens group G3, is provided in order to simplify the mechanism of the entire lens system and to provide good aberration characteristics during image stabilization.
It adopts a structure in which a displacement means is provided in order to prevent vibration.

【0011】本発明の近距離補正レンズは、上記構成に
加えて、以下の条件式(1)を満足する。 |βM | > 0.4 (1) ここで、 βM :最短撮影距離での撮影倍率
The short-distance correction lens of the present invention satisfies the following conditional expression (1) in addition to the above configuration. │βM │> 0.4 (1) where βM is the shooting magnification at the shortest shooting distance.

【0012】条件式(1)は、本発明による光学系の近
距離補正レンズとしての近距離合焦能力を示すと同時
に、実用に足る最短撮影距離での撮影倍率の大きさにつ
いて適切な範囲(下限値)を規定している。条件式
(1)の下限値を下回ると、最短撮影距離での撮影倍率
が小さくなりすぎて近距離合焦能力が不足し、実用に向
かなくなってしまう。
Conditional expression (1) shows the short-distance focusing ability of the optical system according to the present invention as a short-distance correction lens, and at the same time, an appropriate range () for the magnitude of the photographing magnification at the shortest photographing distance for practical use. The lower limit) is specified. If the lower limit of conditional expression (1) is not reached, the shooting magnification at the shortest shooting distance becomes too small, and the short-distance focusing ability becomes insufficient, making it unsuitable for practical use.

【0013】さらに良好な結像性能を得るために、次の
条件式(2)および(3)を満足するのが好ましい。 0.5 < |fL |/f < 5.0 (2) △SL /|fL | < 0.1 (3) ここで、 fL :第3レンズ群G3の焦点距離 f :無限遠におけるレンズ全体の焦点距離 △SL :防振時における第3レンズ群G3の光軸と直交
する方向への最大変位量の大きさ
In order to obtain better imaging performance, it is preferable that the following conditional expressions (2) and (3) are satisfied. 0.5 <| fL | / f <5.0 (2) ΔSL / | fL | <0.1 (3) where, fL: focal length of the third lens group G3 f: total lens length at infinity Focal length ΔSL: magnitude of maximum displacement in the direction orthogonal to the optical axis of the third lens group G3 during image stabilization

【0014】条件式(2)は、第3レンズ群G3の焦点
距離fL と無限遠撮影時のレンズ全体の焦点距離fとの
割合に関して、適切な範囲を定めたものである。条件式
(2)の上限値を上回ると、第3レンズ群G3の焦点距
離fL が大きくなりすぎてレンズ全長が長くなるので、
本発明の目的の1つであるコンパクト化に反するため好
ましくない。また、像面の曲がりおよび球面収差が負側
に過大となる傾向になり、不都合である。
Conditional expression (2) defines an appropriate range for the ratio between the focal length fL of the third lens group G3 and the focal length f of the entire lens at infinity shooting. If the upper limit of conditional expression (2) is exceeded, the focal length fL of the third lens group G3 becomes too large and the total lens length becomes long.
It is not preferable because it is against the compactness which is one of the objects of the present invention. Moreover, the curvature of the image plane and the spherical aberration tend to be excessive on the negative side, which is inconvenient.

【0015】逆に、条件式(2)の下限値を下回ると、
第3レンズ群G3の焦点距離fL が小さくなりすぎて、
その結果バックフォーカスが短くなりすぎるので不都合
である。また、像面の曲がりおよび球面収差が正側に過
大となる傾向になり、不都合である。さらに、歪曲収差
が正側に大きく発生するので、好ましくない。なお、条
件式(2)の上限値を3以下にし、下限値を1以上にす
れば、さらに良好な結像性能を得ることができる。
On the contrary, if the lower limit of conditional expression (2) is exceeded,
The focal length fL of the third lens group G3 becomes too small,
As a result, the back focus becomes too short, which is inconvenient. Further, the curvature of the image plane and the spherical aberration tend to be excessive on the positive side, which is inconvenient. Further, distortion is largely generated on the positive side, which is not preferable. If the upper limit value of conditional expression (2) is set to 3 or less and the lower limit value is set to 1 or more, better imaging performance can be obtained.

【0016】条件式(3)は、防振時における第3レン
ズ群G3の最大変位量の大きさΔSL を第3レンズ群G
3の焦点距離fL との比で適切な範囲を規定している。
条件式(3)の上限値を上回ると、第3レンズ群G3の
防振時における最大変位量の大きさが大きくなりすぎ
て、その結果防振時における収差変動量が大きくなるの
で不都合である。特に、像面上の周辺位置において、メ
リディオナル方向の最良像面とサジタル方向の最良像面
との光軸方向の差が広がるので不都合である。
Conditional expression (3) shows that the maximum displacement amount ΔSL of the third lens group G3 during image stabilization is expressed by the third lens group G3.
An appropriate range is defined by the ratio with the focal length fL of 3.
If the upper limit of conditional expression (3) is exceeded, the maximum displacement amount of the third lens group G3 during image stabilization becomes too large, and as a result, the amount of aberration variation during image stabilization becomes large. . In particular, at the peripheral position on the image plane, the difference in the optical axis direction between the best image plane in the meridional direction and the best image plane in the sagittal direction widens, which is inconvenient.

【0017】さらに良好な結像性能を得るためには、上
述の諸条件に加えて、以下の条件式(4)および(5)
を満たすことが望ましい。 1.05 < βL < 2 (4) L/f < 0.5 (5) ここで、 βL :第3レンズ群G3の結像倍率 L :第3レンズ群G3の軸上厚さ
In order to obtain better imaging performance, in addition to the above-mentioned conditions, the following conditional expressions (4) and (5)
It is desirable to satisfy. 1.05 <βL <2 (4) L / f <0.5 (5) where βL: imaging magnification of the third lens group G3 L: axial thickness of the third lens group G3

【0018】条件式(4)は、第3レンズ群G3の結像
倍率について適切な範囲を規定している。条件式(4)
の下限値を下回ると、第3レンズ群G3の結像倍率が小
さくなりすぎる。このため、防振レンズ群である第3レ
ンズ群G3の防振時における移動量(光軸直交方向)に
対する像の移動量の割合が小さくなりすぎる。その結
果、手振れ等に起因する像の移動を確実に補正して十分
な防振性能を得るためには、防振レンズ群である第3レ
ンズ群G3の移動量を過度に大きくする必要があるの
で、機構上不都合である。逆に、条件式(4)の上限値
を上回ると、無限遠状態および近距離撮影状態のいずれ
の場合においても、球面収差の大きさが過大となりやす
く且つ歪曲が正側に大きくなるので不都合である。な
お、条件式(4)において、上限値を1.6以下とし、
下限値を1.15以上とすれば、さらに良好な結像性能
を得ることができる。
Conditional expression (4) defines an appropriate range for the imaging magnification of the third lens group G3. Conditional expression (4)
Below the lower limit of, the imaging magnification of the third lens group G3 becomes too small. For this reason, the ratio of the amount of movement of the image to the amount of movement (the direction orthogonal to the optical axis) of the third lens group G3 that is the image stabilizing lens group during image stabilization becomes too small. As a result, the amount of movement of the third lens group G3, which is the image stabilizing lens group, needs to be excessively increased in order to reliably correct the movement of the image due to camera shake or the like and obtain sufficient image stabilizing performance. Therefore, it is mechanically inconvenient. On the other hand, if the upper limit of conditional expression (4) is exceeded, the spherical aberration tends to be excessive and the distortion increases toward the positive side both in the infinity state and the short-distance shooting state, which is inconvenient. is there. In conditional expression (4), the upper limit value is set to 1.6 or less,
If the lower limit value is set to 1.15 or more, even better imaging performance can be obtained.

【0019】条件式(5)は、第3レンズ群G3の軸上
厚さと無限遠におけるレンズ系全体の焦点距離との割合
について、適切な範囲を規定している。条件式(5)の
上限値を上回ると、防振レンズ群である第3レンズ群G
3の軸上厚さが大きくなりすぎて、その結果防振のため
の機構が大型化し且つ複雑化するので好ましくない。
Conditional expression (5) defines an appropriate range for the ratio of the axial thickness of the third lens group G3 to the focal length of the entire lens system at infinity. If the upper limit of conditional expression (5) is exceeded, the third lens group G, which is a vibration-proof lens group,
The axial thickness of 3 is too large, and as a result, the mechanism for vibration isolation becomes large and complicated, which is not preferable.

【0020】実際に第3レンズ群G3を構成する際は、
前述の諸条件に加えて、以下の条件式(6)および
(7)を満足するのが望ましい。 1.7 < N- (6) 30 < ν- (7) ここで、 N- :第3レンズ群G3中の負レンズ成分の屈折率のう
ち最大の屈折率 ν- :第3レンズ群G3中の負レンズ成分のアッベ数の
うち最小のアッベ数
When actually constructing the third lens group G3,
In addition to the above-mentioned conditions, it is desirable to satisfy the following conditional expressions (6) and (7). 1.7 <N− (6) 30 <ν− (7) where N−: the maximum refractive index of the negative lens components in the third lens group G3, ν−: in the third lens group G3 Minimum Abbe number of negative lens components of

【0021】条件式(6)の下限値を下回ると、無限遠
状態および近距離撮影状態のいずれの場合においても、
球面収差が正に過大となりやすく且つ歪曲が正側に大き
くなるので不都合である。また、ペッツバール和も負側
に変移しやすくなるため、像面の曲がりが正方向に大き
くなりがちになり、不都合である。
When the value goes below the lower limit of the conditional expression (6), both in the infinity state and the short-distance shooting state,
This is inconvenient because spherical aberration is likely to be excessively large and distortion is large on the positive side. In addition, the Petzval sum also tends to shift to the negative side, so that the curvature of the image surface tends to increase in the positive direction, which is inconvenient.

【0022】条件式(7)の上限値を上回ると、無限遠
状態および近距離撮影状態のいずれの場合においても、
短波長の軸上色収差が正側に過大となりがちで、良好な
結像性能が得ることが困難となる。
When the upper limit of conditional expression (7) is exceeded, in both the infinity state and the short-distance photographing state,
Axial chromatic aberration of short wavelength tends to be excessive on the positive side, and it becomes difficult to obtain good imaging performance.

【0023】さらに良好な結像性能を得るために、上述
の諸条件に加えて、次の条件式(8)および(9)を満
足するのが好ましい。 −3 < q- < 5 (8) −6 < q+ < 2 (9) ここで、 q+ :第3レンズ群G3中の最も物体側の正レンズのシ
ェイプファクター q- :第3レンズ群G3中の最も物体側の負レンズのシ
ェイプファクター なお、シェイプファクターqは、レンズの物体側の面の
曲率半径をra とし、レンズの像側の面の曲率半径をr
b としたとき、次の数式(a)で与えられる。 q=(rb +ra )/(rb −ra ) (a)
In order to obtain better imaging performance, it is preferable that the following conditional expressions (8) and (9) are satisfied in addition to the above-mentioned conditions. -3 <q- <5 (8) -6 <q + <2 (9) where q + is the shape factor of the positive lens closest to the object in the third lens group G3 q-: the third lens group G3 Note the shape factor of the negative lens on the most object side in the, shape factor q is the radius of curvature of the object side surface of the lens and r a, the radius of curvature of the image side surface of the lens r
When b is given, it is given by the following mathematical expression (a). q = (r b + r a ) / (r b −r a ) (a)

【0024】条件式(8)の下限値を下回ると、無限遠
状態および近距離撮影状態のいずれの場合においても、
球面収差が正側に過大となりやすく且つ歪曲が正側に大
きくなるので、不都合である。逆に、条件式(8)の上
限値を上回ると、無限遠状態および近距離撮影状態のい
ずれの場合においても、主光線より上側の光線に外向性
のコマ収差が発生するので不都合である。
When the value goes below the lower limit of conditional expression (8), in both the infinity state and the short-distance shooting state,
This is inconvenient because spherical aberration tends to be excessive on the positive side and distortion increases on the positive side. On the other hand, when the value exceeds the upper limit of conditional expression (8), outward coma is generated in a ray above the principal ray in both the infinity state and the short-distance photographing state, which is inconvenient.

【0025】条件式(9)の下限値を下回ると、無限遠
状態および近距離撮影状態のいずれの場合においても、
球面収差が負に過大となりやすく且つ歪曲が負側に大き
くなるので、不都合である。逆に、条件式(9)の上限
値を上回ると、無限遠状態および近距離撮影状態のいず
れの場合においても、球面収差が負に過大となりやす
く、主光線より上側の光線に内向性のコマ収差が発生す
るので不都合である。
When the value goes below the lower limit of conditional expression (9), in both the infinity state and the short-distance photographing state,
This is inconvenient because the spherical aberration tends to become excessively negative and the distortion becomes large on the negative side. On the other hand, if the upper limit of conditional expression (9) is exceeded, spherical aberration tends to become negative excessively in both cases of infinity and short-distance shooting, and a coma inwardly directed to a ray above the chief ray. This is inconvenient because aberration occurs.

【0026】なお、開口絞りとは別に光軸上に固定のフ
レア絞りを設ければ、防振のため光軸を横切ってレンズ
群が変位する際に不要な光線を遮蔽することができ、ゴ
ーストの発生や不要な露光を未然に回避することができ
る。また、第3レンズ群G3は、保持機構および駆動機
構を簡素化することができるように、近距離合焦時に光
軸に沿って固定とすることが望ましい。
If a fixed flare stop is provided on the optical axis in addition to the aperture stop, unnecessary light rays can be shielded when the lens group is displaced across the optical axis for vibration isolation, and ghost It is possible to prevent the occurrence of the occurrence and unnecessary exposure. Further, it is desirable that the third lens group G3 be fixed along the optical axis when focusing on a short distance so that the holding mechanism and the driving mechanism can be simplified.

【0027】近距離合焦時において、収差補正を十分に
行って良好な結像性能を得るためには、第1レンズ群G
1および第2レンズ群G2を開口絞りを挟んで対称に近
い構成とすることが望ましい。より具体的には、第1レ
ンズ群G1の最も像側の面は、物体側に凸な発散面と
し、第2レンズ群G2の最も物体側の面は像側に凸な発
散面とすることが望ましい。さらに、第1レンズ群G1
の最も物体側のレンズは、物体側に凸面を向けた正メニ
スカスレンズであることが望ましい。
When focusing on a short distance, the first lens group G should be used in order to sufficiently correct aberrations and obtain good imaging performance.
It is desirable that the first and second lens groups G2 have a configuration that is nearly symmetrical with respect to the aperture stop. More specifically, the most image-side surface of the first lens group G1 is a divergent surface that is convex toward the object side, and the most object-side surface of the second lens group G2 is a divergent surface that is convex toward the image side. Is desirable. Further, the first lens group G1
It is desirable that the lens closest to the object side is a positive meniscus lens having a convex surface facing the object side.

【0028】第3レンズ群G3を2枚のレンズで構成に
する場合、負レンズと正レンズとからなる構成とするこ
とが望ましい。より具体的には、物体側に強い凹面を向
けた負レンズと両凸レンズで構成することが望ましい。
第3レンズ群G3を3枚のレンズで構成にする場合、負
レンズ1枚と正レンズ2枚とからなる構成とすることが
望ましい。より具体的には、像側に強い凸面を向けた正
レンズと両凹レンズと物体側に強い凸面を向けた正レン
ズとで構成することが望ましい。
When the third lens group G3 is made up of two lenses, it is desirable that it be made up of a negative lens and a positive lens. More specifically, it is desirable to use a negative lens having a strong concave surface facing the object side and a biconvex lens.
When the third lens group G3 is composed of three lenses, it is desirable that the third lens group G3 be composed of one negative lens and two positive lenses. More specifically, it is desirable that the positive lens has a strong convex surface facing the image side, a biconcave lens, and a positive lens having a strong convex surface facing the object side.

【0029】また、近距離合焦時に良好な色収差補正を
達成するには、近距離合焦時に移動する正屈折力の第1
レンズ群G1および第2レンズ群G2の各々のレンズ群
で色消しする必要がある。したがって、各々のレンズ群
において、負の屈折力を有するレンズ成分を少なくとも
1枚必要とする。このとき、第1レンズ群G1および第
2レンズ群G2のいずれのレンズ群においても、負レン
ズ成分のアッベ数のうち最小のアッベ数νm は、次の条
件式(10)を満足するのが好ましい。 νm < 37 (10)
In order to achieve good chromatic aberration correction when focusing at a short distance, the first positive refractive power that moves when focusing at a short distance is used.
It is necessary to achromatize each lens group of the lens group G1 and the second lens group G2. Therefore, at least one lens component having a negative refractive power is required in each lens group. At this time, in any of the first lens group G1 and the second lens group G2, the minimum Abbe number ν m of the Abbe numbers of the negative lens component preferably satisfies the following conditional expression (10). . νm <37 (10)

【0030】さらに結像性能を高めるためには、第1レ
ンズ群G1と第2レンズ群G2との屈折力配分も重要で
あって、第1レンズ群G1の焦点距離および第2レンズ
群G2の焦点距離をそれぞれf1 およびf2 とすると、
次の条件式(11)を満足するのが好ましい。 1.5 < f1 /f2 < 2.5 (11)
In order to further enhance the image forming performance, it is important to distribute the refractive power between the first lens group G1 and the second lens group G2. The focal length of the first lens group G1 and the second lens group G2 If the focal lengths are f1 and f2 respectively,
It is preferable that the following conditional expression (11) is satisfied. 1.5 <f1 / f2 <2.5 (11)

【0031】また、第3レンズ群G3の一部のレンズあ
るいは一部のレンズ群を防振補正群とすることも可能で
ある。さらに、撮影倍率の大きさが大きくなるにしたが
って、被写界側の深度が浅くなるため、ピントがはずれ
易くなるという不都合がある。この場合、オートフォー
カスシステムと本発明の近距離補正レンズとを組み合わ
せることにより、上記ピントはずれを回避することがで
きる。
It is also possible to use a part of the third lens group G3 or a part of the lens groups as an image stabilization group. Further, as the shooting magnification increases, the depth on the side of the object field becomes shallower, which causes the inconvenience of being easily out of focus. In this case, by combining the autofocus system and the short distance correction lens of the present invention, it is possible to avoid the defocus.

【0032】[0032]

【実施例】本発明による防振機能を備えた近距離補正レ
ンズは各実施例において、物体側から順に、正の屈折力
を有する第1レンズ群G1と、正の屈折力を有する第2
レンズ群G2と、最も像側に配置され負の屈折力を有す
る第3レンズ群とを備え、無限遠から近距離への合焦時
に、前記第1レンズ群G1および前記第2レンズ群G2
が物体側に移動する近距離補正レンズにおいて、前記第
3レンズ群G3を光軸とほぼ直交する方向に移動させて
防振するための変位手段1を備えている。
EXAMPLE A short-distance correction lens having an image stabilizing function according to the present invention in each example has a first lens group G1 having a positive refractive power and a second lens group having a positive refractive power in order from the object side.
A first lens group G1 and a second lens group G2 are provided, which include a lens group G2 and a third lens group arranged closest to the image side and having a negative refractive power, when focusing from infinity to a short distance.
In the short-distance correction lens that moves toward the object side, the displacement means 1 is provided for moving the third lens group G3 in a direction substantially orthogonal to the optical axis to perform image stabilization.

【0033】以下、本発明の各実施例を、添付図面に基
づいて説明する。 〔実施例1〕図1は、本発明の第1実施例にかかる近距
離補正レンズの構成を示す図である。図示の近距離補正
レンズは、物体側より順に、両凸レンズ、物体側に凸面
を向けた正メニスカスレンズおよび物体側に凸面を向け
た負メニスカスレンズからなる第1レンズ群G1と、両
凹レンズと両凸レンズとの貼合わせレンズおよび両凸レ
ンズからなる第2レンズ群G2と、両凸レンズおよび両
凹レンズからなる第3レンズ群G3とから構成されてい
る。なお、第1レンズ群G1と第2レンズ群G2との間
には、図示のように開口絞りSが設けられている。
Each embodiment of the present invention will be described below with reference to the accompanying drawings. [Embodiment 1] FIG. 1 is a diagram showing the structure of a short-distance correction lens according to the first embodiment of the present invention. The illustrated short-distance correction lens includes, in order from the object side, a first lens group G1 including a biconvex lens, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and a biconcave lens and a biconcave lens. The second lens group G2 includes a cemented lens with a convex lens and a biconvex lens, and the third lens group G3 includes a biconvex lens and a biconcave lens. An aperture stop S is provided between the first lens group G1 and the second lens group G2 as shown in the figure.

【0034】図1は、無限遠状態における各レンズ群の
位置関係を示しており、近距離への合焦時には図中矢印
で示す軌道に沿って光軸上を移動する。ただし、第3レ
ンズ群G3は光軸方向に固定であり、変位手段である防
振機構1によって光軸とほぼ直交する方向に適宜移動さ
れ、手振れ等に起因する像の揺れが補正されるようにな
っている。実施例1は、本発明を比較的短い焦点距離の
写真用レンズに適用したものである。
FIG. 1 shows the positional relationship between the lens groups in the infinity state. When focusing on a short distance, the lens groups move on the optical axis along the trajectory shown by the arrow in the figure. However, the third lens group G3 is fixed in the optical axis direction, and is appropriately moved in a direction substantially orthogonal to the optical axis by the image stabilizing mechanism 1 which is a displacement means so that the image shake caused by camera shake or the like is corrected. It has become. Example 1 is an application of the present invention to a photographic lens having a relatively short focal length.

【0035】次の表(1)に、本発明の実施例1の諸元
の値を掲げる。表(1)において、fは無限遠状態にお
ける焦点距離を、βは近距離における撮影倍率を、FNO
は無限遠状態におけるFナンバーを、2ωは無限遠状態
における画角を、Bfはバックフォーカスを表す。さら
に、左端の数字は物体側からの各レンズ面の順序を、r
は各レンズ面の曲率半径を、dは各レンズ面間隔を、n
およびνはd線(λ=587.6nm)に対する屈折率
およびアッベ数を示している。
The following table (1) lists the values of specifications of the first embodiment of the present invention. In Table (1), f is the focal length at infinity, β is the shooting magnification at short range, and F NO
Represents the F number in the infinite state, 2ω represents the angle of view in the infinite state, and Bf represents the back focus. Furthermore, the leftmost number indicates the order of each lens surface from the object side, r
Is the radius of curvature of each lens surface, d is the distance between each lens surface, n
And ν indicate the refractive index and the Abbe number for the d-line (λ = 587.6 nm).

【0036】[0036]

【表1】 f=59.9998 FNO=2.82 2ω=39.4° (防振データ) 無限遠 撮影倍率 撮影倍率 (−1) (−1/2) 防振レンズ群の光軸直交 方向の移動量(mm) 1.00 1.00 1.00 像の移動量(mm) −0.20 −0.20 −0.20 (像の移動量の負号はレンズの移動方向と逆方向を示す) (条件対応値) (1) |βM | = 1.000 (2) |fL |/f = 2.820 (3) △SL /|fL | = 0.0059 (4) βL = 1.20 (5) L/f = 0.12 (6) N- = 1.79631 (7) ν- = 40.90 (8) q- = 0.680 (9) q+ = -0.758 (10)νm = 35.70(G1), 30.05(G2) (11)f1 /f2 = 1.803Table 1 f = 599.9998 F NO = 2.82 2ω = 39.4 ° (Anti-vibration data) Shooting magnification at infinity Shooting magnification (-1) (-1/2) Moving amount of anti-vibration lens group in the direction orthogonal to the optical axis (mm) 1.00 1.00 1.00 Moving amount of image ( mm) -0.20 -0.20 -0.20 (The negative sign of the amount of movement of the image indicates the direction opposite to the moving direction of the lens) (Values corresponding to conditions) (1) | βM | = 1.000 (2) | fL | / f = 2.820 (3) △ SL / | fL | = 0.0059 (4) βL = 1.20 (5) L / f = 0.12 (6) N- = 1.79631 (7) ν- = 40.90 (8) q- = 0.680 (9) q + = -0.758 (10) νm = 35.70 (G1), 30.05 (G2) (11) f1 / f2 = 1.803

【0037】図2乃至図4は、それぞれ無限遠状態にお
ける諸収差図、撮影倍率が−1/2倍の状態における諸
収差図、および撮影倍率が等倍(−1倍)の状態におけ
る諸収差図である。各収差図において、FNOはFナンバ
ーを、Yは像高を、NAは開口数を、Dはd線(λ=5
87.6nm)を、Gはg線(λ=435.8nm)を
それぞれ示している。また、非点収差を示す収差図にお
いて実線はサジタル像面を示し、破線はメリディオナル
像面を示している。各収差図から明らかなように、本実
施例では、防振時も含めて諸収差が良好に補正されてい
ることがわかる。
FIGS. 2 to 4 are graphs showing various aberrations at infinity, various aberrations at a photographing magnification of -1/2, and various aberrations at a uniform photographing magnification (-1). It is a figure. In each aberration diagram, F NO is the F number, Y is the image height, NA is the numerical aperture, and D is the d-line (λ = 5).
87.6 nm) and G indicates the g-line (λ = 435.8 nm). Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present example, it is understood that various aberrations are well corrected including in the case of image stabilization.

【0038】〔実施例2〕図5は、本発明の第2実施例
にかかる近距離補正レンズの構成を示す図である。図示
の近距離補正レンズは、物体側より順に、両凸レンズ、
物体側に凸面を向けた正メニスカスレンズおよび物体側
に凸面を向けた負メニスカスレンズからなる第1レンズ
群G1と、物体側に凹面を向けた負メニスカスレンズと
物体側に凹面を向けた正メニスカスレンズとの貼合わせ
レンズおよび両凸レンズからなる第2レンズ群G2と、
物体側に凹面を向けた正メニスカスレンズ、両凹レンズ
および両凸レンズからなる第3レンズ群G3とから構成
されている。なお、第1レンズ群G1と第2レンズ群G
2との間には、図示のように開口絞りSが設けられてい
る。
[Embodiment 2] FIG. 5 is a diagram showing a structure of a short-distance correction lens according to a second embodiment of the present invention. The short-distance correction lens shown in the figure is a biconvex lens in order from the object side.
A first lens group G1 including a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a concave surface facing the object side, and a positive meniscus lens having a concave surface facing the object side. A second lens group G2 including a cemented lens with a lens and a biconvex lens;
The third lens group G3 includes a positive meniscus lens having a concave surface facing the object side, a biconcave lens, and a biconvex lens. The first lens group G1 and the second lens group G
An aperture stop S is provided between the two as shown.

【0039】図5は、無限遠状態における各レンズ群の
位置関係を示しており、近距離への合焦時には図中矢印
で示す軌道に沿って光軸上を移動する。ただし、第3レ
ンズ群G3は光軸方向に固定であり、変位手段である防
振機構1によって光軸とほぼ直交する方向に適宜移動さ
れ、手振れ等に起因する像の揺れが補正されるようにな
っている。実施例2は、本発明を実施例1よりも焦点距
離の長い写真用レンズに適用したものであって、上述し
た実施例1の近距離補正レンズと同様な基本的構成を有
するが、各レンズ群の屈折力および形状等が異なってい
る。
FIG. 5 shows the positional relationship of each lens group in the infinite state, and when focusing on a short distance, it moves along the optical axis along the trajectory shown by the arrow in the figure. However, the third lens group G3 is fixed in the optical axis direction, and is appropriately moved in a direction substantially orthogonal to the optical axis by the image stabilizing mechanism 1 which is a displacement means so that the image shake caused by camera shake or the like is corrected. It has become. Example 2 is an application of the present invention to a photographic lens having a longer focal length than that of Example 1, and has the same basic configuration as the short-distance correction lens of Example 1 described above, but each lens The refractive power and shape of the groups are different.

【0040】次の表(2)に、本発明の実施例2の諸元
の値を掲げる。表(2)において、fは無限遠状態にお
ける焦点距離を、βは近距離における撮影倍率を、FNO
は無限遠状態におけるFナンバーを、2ωは無限遠状態
における画角を、Bfはバックフォーカスを表す。さら
に、左端の数字は物体側からの各レンズ面の順序を、r
は各レンズ面の曲率半径を、dは各レンズ面間隔を、n
およびνはd線(λ=587.6nm)に対する屈折率
およびアッベ数を示している。
The following table (2) lists the values of specifications of the second embodiment of the present invention. In Table (2), f is the focal length at infinity, β is the shooting magnification at short range, and F NO
Represents the F number in the infinite state, 2ω represents the angle of view in the infinite state, and Bf represents the back focus. Furthermore, the leftmost number indicates the order of each lens surface from the object side, r
Is the radius of curvature of each lens surface, d is the distance between each lens surface, n
And ν indicate the refractive index and the Abbe number for the d-line (λ = 587.6 nm).

【0041】[0041]

【表2】 f=105 FNO=2.86 2ω=23.06° (防振データ) 無限遠 撮影倍率 撮影倍率 (−1) (−1/2) 防振レンズ群の光軸直交 方向の移動量(mm) 1.00 1.00 1.00 像の移動量(mm) −0.249 −0.249 −0.249 (像の移動量の負号はレンズの移動方向と逆方向を示す) (条件対応値) (1) |βM | = 1.000 (2) |fL |/f = 1.782 (3) △SL /|fL | = 0.0053 (4) βL = 1.249 (5) L/f = 0.234 (6) N- = 1.79631 (7) ν- = 40.90 (8) q- = 0.287 (9) q+ = -4.427 (10)νm = 35.70(G1), 33.75(G2) (11)f1 /f2 = 2.142[Table 2] f = 105 F NO = 2.86 2ω = 23.06 ° (Anti-vibration data) Shooting magnification at infinity Shooting magnification (-1) (-1/2) Moving amount of anti-vibration lens group in the direction orthogonal to the optical axis (mm) 1.00 1.00 1.00 Moving amount of image ( mm) −0.249 −0.249 −0.249 (The negative sign of the amount of movement of the image indicates the direction opposite to the moving direction of the lens) (Values corresponding to conditions) (1) | βM | = 1.000 (2) | fL | / f = 1.782 (3) △ SL / | fL | = 0.0053 (4) βL = 1.249 (5) L / f = 0.234 (6) N- = 1.79631 (7) ν- = 40.90 (8) q- = 0.287 (9) q + = -4.427 (10) νm = 35.70 (G1), 33.75 (G2) (11) f1 / f2 = 2.142

【0042】図6乃至図8は、それぞれ無限遠状態にお
ける諸収差図、撮影倍率が−1/2倍の状態における諸
収差図、および撮影倍率が等倍(−1倍)の状態におけ
る諸収差図である。各収差図において、FNOはFナンバ
ーを、Yは像高を、NAは開口数を、Dはd線(λ=5
87.6nm)を、Gはg線(λ=435.8nm)を
それぞれ示している。また、非点収差を示す収差図にお
いて実線はサジタル像面を示し、破線はメリディオナル
像面を示している。各収差図から明らかなように、本実
施例では、防振時も含めて諸収差が良好に補正されてい
ることがわかる。
FIGS. 6 to 8 are graphs showing various aberrations in the state of infinity, various aberrations in the state where the photographing magnification is −1/2, and various aberrations in the state where the photographing magnification is equal (−1). It is a figure. In each aberration diagram, F NO is the F number, Y is the image height, NA is the numerical aperture, and D is the d-line (λ = 5).
87.6 nm) and G indicates the g-line (λ = 435.8 nm). Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present example, it is understood that various aberrations are well corrected including in the case of image stabilization.

【0043】〔実施例3〕図9は、本発明の第3実施例
にかかる近距離補正レンズの構成を示す図である。図示
の近距離補正レンズは、物体側より順に、両凸レンズ、
物体側に凸面を向けた正メニスカスレンズおよび物体側
に凸面を向けた負メニスカスレンズからなる第1レンズ
群G1と、両凹面レンズと両凸レンズとの貼合わせレン
ズおよび両凸レンズからなる第2レンズ群G2と、物体
側に凹面を向けた正メニスカスレンズ、両凹レンズ、両
凸レンズおよび物体側に凸面を向けた負メニスカスレン
ズからなる第3レンズ群G3とから構成されている。な
お、第1レンズ群G1と第2レンズ群G2との間には、
図示のように開口絞りSが設けられている。
[Third Embodiment] FIG. 9 is a diagram showing the structure of a short-distance correction lens according to a third embodiment of the present invention. The short-distance correction lens shown in the figure is a biconvex lens in order from the object side.
A first lens group G1 including a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a second lens group including a cemented lens of a biconcave lens and a biconvex lens and a biconvex lens. The third lens group G3 includes a positive meniscus lens having a concave surface facing the object side, a biconcave lens, a biconvex lens, and a negative meniscus lens having a convex surface facing the object side. In addition, between the first lens group G1 and the second lens group G2,
An aperture stop S is provided as shown.

【0044】図9は、無限遠状態における各レンズ群の
位置関係を示しており、近距離への合焦時には図中矢印
で示す軌道に沿って光軸上を移動する。ただし、第3レ
ンズ群G3は光軸方向に固定であり、変位手段である防
振機構1によって光軸とほぼ直交する方向に適宜移動さ
れ、手振れ等に起因する像の揺れが補正されるようにな
っている。実施例3は、本発明を実施例1よりも焦点距
離の長い写真用レンズに適用したものであって、上述し
た実施例1の近距離補正レンズと同様な基本的構成を有
するが、各レンズ群の屈折力および形状等が異なってい
る。
FIG. 9 shows the positional relationship of each lens group in the infinite state, and when focusing on a short distance, it moves along the optical axis along the trajectory shown by the arrow in the figure. However, the third lens group G3 is fixed in the optical axis direction, and is appropriately moved in a direction substantially orthogonal to the optical axis by the image stabilizing mechanism 1 which is a displacement means so that the image shake caused by camera shake or the like is corrected. It has become. Example 3 is an application of the present invention to a photographic lens having a longer focal length than that of Example 1, and has the same basic structure as the short-distance correction lens of Example 1 described above, but each lens The refractive power and shape of the groups are different.

【0045】次の表(3)に、本発明の実施例3の諸元
の値を掲げる。表(3)において、fは無限遠状態にお
ける焦点距離を、βは近距離における撮影倍率を、FNO
は無限遠状態におけるFナンバーを、2ωは無限遠状態
における画角を、Bfはバックフォーカスを表す。さら
に、左端の数字は物体側からの各レンズ面の順序を、r
は各レンズ面の曲率半径を、dは各レンズ面間隔を、n
およびνはd線(λ=587.6nm)に対する屈折率
およびアッベ数を示している。
Table (3) below lists values of specifications of the third embodiment of the present invention. In Table (3), f is the focal length at infinity, β is the shooting magnification at short range, and F NO
Represents the F number in the infinite state, 2ω represents the angle of view in the infinite state, and Bf represents the back focus. Furthermore, the leftmost number indicates the order of each lens surface from the object side, r
Is the radius of curvature of each lens surface, d is the distance between each lens surface, n
And ν indicate the refractive index and the Abbe number for the d-line (λ = 587.6 nm).

【0046】[0046]

【表3】 f=105.0000 FNO=2.80 2ω=23.14° (防振データ) 無限遠 撮影倍率 (−1/2) 防振レンズ群の光軸直交 方向の移動量(mm) 1.20 1.20 像の移動量(mm) −0.480 −0.480 (像の移動量の負号はレンズの移動方向と逆方向を示す) (条件対応値) (1) |βM | = 0.500 (2) |fL |/f = 1.129 (3) △SL /|fL | = 0.0101 (4) βL = 1.400 (5) L/f = 0.211 (6) N- = 1.80454 (7) ν- = 39.61 (8) q- = -0.384 (9) q+ = -1.777 (10)νm = 35.19(G1), 31.15(G2) (11)f1 /f2 = 1.894Table 3 f = 105.0000 F NO = 2.80 2ω = 23.14 ° (Anti-vibration data) Shooting magnification at infinity (-1/2) Amount of movement of the anti-vibration lens group in the direction orthogonal to the optical axis (mm) 1.20 1.20 Amount of image movement (mm) -0.480-0. 480 (The negative sign of the moving amount of the image shows the direction opposite to the moving direction of the lens) (Value corresponding to the condition) (1) | βM | = 0.500 (2) | fL | / f = 1.129 (3) ΔSL / | fL | = 0.0101 (4) βL = 1.400 (5) L / f = 0.211 (6) N- = 1.80454 (7) ν- = 39.61 (8) q- = -0.384 (9) q + = -1.777 (10) ) Νm = 35.19 (G1), 31.15 (G2) (11) f1 / f2 = 1.894

【0047】図10および図11は、それぞれ無限遠状
態における諸収差図および撮影倍率が−1/2倍の状態
における諸収差図である。各収差図において、FNOはF
ナンバーを、Yは像高を、NAは開口数を、Dはd線
(λ=587.6nm)を、Gはg線(λ=435.8
nm)をそれぞれ示している。また、非点収差を示す収
差図において実線はサジタル像面を示し、破線はメリデ
ィオナル像面を示している。各収差図から明らかなよう
に、本実施例では、防振時も含めて諸収差が良好に補正
されていることがわかる。
FIG. 10 and FIG. 11 are graphs showing various aberrations in the state of infinity and graphs in the state where the photographing magnification is -1/2. In each aberration diagram, F NO is F
No., Y is the image height, NA is the numerical aperture, D is the d-line (λ = 587.6 nm), and G is the g-line (λ = 435.8).
nm) respectively. Further, in the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. As is clear from each aberration diagram, in the present example, it is understood that various aberrations are well corrected including in the case of image stabilization.

【0048】[0048]

【効果】以上説明したように、本発明によれば、防振機
能を備え、小型で高性能な写真用およびビデオ用等に好
適な近距離補正レンズを提供することができる。このた
め、手持ち撮影も可能となり、実際の撮影時には極めて
好都合であるばかりでなく、手振れ等に起因する振動条
件下での撮影も良好な結像性能をもって行うことができ
る。
As described above, according to the present invention, it is possible to provide a small-sized, high-performance short-distance correction lens suitable for photography and video, which is provided with a vibration-proof function. For this reason, hand-held photography becomes possible, which is extremely convenient at the time of actual photography, and photography can also be performed with good imaging performance under vibration conditions caused by camera shake or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかる近距離補正レンズ
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a short-distance correction lens according to Example 1 of the present invention.

【図2】図1の第1実施例の無限遠状態における諸収差
図である。
FIG. 2 is a diagram of various types of aberration in the infinite state of the first example of FIG.

【図3】図1の第1実施例の撮影倍率が−1/2倍の状
態における諸収差図である。
FIG. 3 is a diagram of various types of aberration when the imaging magnification of the first example of FIG. 1 is −1/2.

【図4】図1の第1実施例の撮影倍率が等倍(−1倍)
の状態における諸収差図である。
FIG. 4 is a same magnification (-1 ×) as the photographing magnification of the first embodiment of FIG.
FIG. 6 is a diagram of various aberrations in the state of FIG.

【図5】本発明の第2実施例にかかる近距離補正レンズ
の構成を示す図である。
FIG. 5 is a diagram showing a configuration of a short-distance correction lens according to Example 2 of the present invention.

【図6】図5の第2実施例の無限遠状態における諸収差
図である。
FIG. 6 is a diagram of various types of aberration in the infinite state of the second example of FIG.

【図7】図5の第2実施例の撮影倍率が−1/2倍の状
態における諸収差図である。
FIG. 7 is a diagram of various types of aberration in the second example of FIG. 5 at a photographing magnification of −1/2.

【図8】図5の第2実施例の撮影倍率が等倍(−1倍)
の状態における諸収差図である。
FIG. 8 is a photographing magnification of 1 × (−1 ×) in the second embodiment of FIG.
FIG. 6 is a diagram of various aberrations in the state of FIG.

【図9】本発明の第3実施例にかかる近距離補正レンズ
の構成を示す図である。
FIG. 9 is a diagram showing a configuration of a short-distance correction lens according to Example 3 of the present invention.

【図10】図9の第3実施例の無限遠状態における諸収
差図である。
FIG. 10 is a diagram of various types of aberration in the infinite state of the third example of FIG.

【図11】図9の第3実施例の撮影倍率が−1/2倍の
状態における諸収差図である。
FIG. 11 is a diagram of various types of aberration in the third embodiment of FIG. 9 when the imaging magnification is −1/2.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 1 変位手段(防振機構) S 開口絞り G1 First lens group G2 Second lens group G3 Third lens group 1 Displacement means (anti-vibration mechanism) S Aperture stop

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、正の屈折力を有する第
1レンズ群と、正の屈折力を有する第2レンズ群と、最
も像側に配置され負の屈折力を有する第3レンズ群とを
備え、無限遠から近距離への合焦時に、前記第1レンズ
群および前記第2レンズ群が物体側に移動する近距離補
正レンズにおいて、 前記第3レンズ群を光軸とほぼ直交する方向に移動させ
て防振するための変位手段を備え、 最短撮影距離での撮影倍率をβM としたとき、 |βM | > 0.4 の条件を満足することを特徴とする近距離補正レンズ。
1. A first lens group having a positive refracting power, a second lens group having a positive refracting power, and a third lens group having a negative refracting power arranged closest to the image side, in order from the object side. And a short-distance correction lens in which the first lens group and the second lens group move to the object side when focusing from infinity to a short distance, in a direction substantially orthogonal to the optical axis of the third lens group. A short-distance correction lens, which is provided with a displacement means for moving the lens to prevent vibration and satisfies the condition of | βM |> 0.4, where βM is the shooting magnification at the shortest shooting distance.
【請求項2】 前記第3レンズ群は、近距離合焦時に光
軸に沿って固定であることを特徴とする請求項1に記載
の近距離補正レンズ。
2. The short-distance correction lens according to claim 1, wherein the third lens group is fixed along the optical axis when focusing on a short distance.
【請求項3】 前記第3レンズ群の焦点距離をfL と
し、無限遠におけるレンズ全体の焦点距離をfとし、防
振時における前記第3レンズ群の光軸と直交する方向へ
の最大変位量の大きさを△SL としたとき、 0.5 < |fL |/f < 5.0 △SL /|fL | < 0.1 の条件を満足することを特徴とする請求項1または2に
記載の近距離補正レンズ。
3. A focal length of the third lens group is fL, a focal length of the entire lens at infinity is f, and a maximum displacement amount in a direction orthogonal to an optical axis of the third lens group during image stabilization. 3. When the magnitude of ΔSL is ΔSL, the condition of 0.5 <| fL | / f <5.0 ΔSL / | fL | <0.1 is satisfied. 3. Short-distance correction lens.
【請求項4】 前記第3レンズ群の結像倍率をβL と
し、前記第3レンズ群の軸上厚さをLとし、無限遠にお
けるレンズ全体の焦点距離をfとしたとき、 1.05 < βL < 2 L/f < 0.5 の条件を満足することを特徴とする請求項1乃至3のい
ずれか1項に記載の近距離補正レンズ。
4. When the imaging magnification of the third lens group is β L, the axial thickness of the third lens group is L, and the focal length of the entire lens at infinity is f, then 1.05 < The short-distance correction lens according to any one of claims 1 to 3, which satisfies a condition of β L <2 L / f <0.5.
【請求項5】 前記第3レンズ群中の負レンズ成分の屈
折率のうち最大の屈折率をN- とし、前記第3レンズ群
中の負レンズ成分のアッベ数のうち最小のアッベ数をν
- としたとき、 1.7 < N- 30 < ν- の条件を満足することを特徴とする請求項1乃至4のい
ずれか1項に記載の近距離補正レンズ。
5. The maximum refractive index of the negative lens components in the third lens group is N-, and the minimum Abbe number of the negative lens components in the third lens group is ν.
-, The short-distance correction lens according to any one of claims 1 to 4, wherein the condition of 1.7 <N-30 <ν- is satisfied.
【請求項6】 前記第3レンズ群中の最も物体側の正レ
ンズのシェイプファクターをq+ とし、前記第3レンズ
群中の最も物体側の負レンズのシェイプファクターをq
- としたとき、 −5 < q- < 5 −6 < q+ < 2 の条件を満足することを特徴とする請求項1乃至5のい
ずれか1項に記載の近距離補正レンズ。
6. The shape factor of the positive lens closest to the object side in the third lens group is q +, and the shape factor of the negative lens closest to the object side in the third lens group is q +.
The short-distance correction lens according to any one of claims 1 to 5, wherein the condition of -5 <q- <5-6 <q + <2 is satisfied.
【請求項7】 前記第3レンズ群が防振のために光軸と
ほぼ直交する方向に移動する際に不用な光線を遮蔽する
ための固定のフレア絞りを光軸上に備えていることを特
徴とする請求項1乃至6のいずれか1項に記載の近距離
補正レンズ。
7. A fixed flare diaphragm is provided on the optical axis for blocking unnecessary light rays when the third lens group moves in a direction substantially orthogonal to the optical axis for image stabilization. The short-distance correction lens according to any one of claims 1 to 6, which is characterized in that.
JP5323282A 1993-11-29 1993-11-29 Short distance correcting lens having vibrationproof function Pending JPH07152001A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5323282A JPH07152001A (en) 1993-11-29 1993-11-29 Short distance correcting lens having vibrationproof function
EP98107034A EP0881516A1 (en) 1993-11-29 1994-11-23 Lens capable of short distance photographing with vibration reduction function
EP94118425A EP0655638A1 (en) 1993-11-29 1994-11-23 Lens capable of short distance photographing with vibration reduction functionm
US08/510,267 US5751485A (en) 1993-11-29 1995-08-02 Lens capable of short distance photographing with vibration reduction function
US08/914,773 US5946136A (en) 1993-11-29 1997-08-20 Lens capable of short distance photographing with vibration reduction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5323282A JPH07152001A (en) 1993-11-29 1993-11-29 Short distance correcting lens having vibrationproof function

Publications (1)

Publication Number Publication Date
JPH07152001A true JPH07152001A (en) 1995-06-16

Family

ID=18153054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5323282A Pending JPH07152001A (en) 1993-11-29 1993-11-29 Short distance correcting lens having vibrationproof function

Country Status (1)

Country Link
JP (1) JPH07152001A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789259A3 (en) * 1996-02-08 1997-11-19 Minolta Co., Ltd. Optical system with vibration reduction function
JPH1068880A (en) * 1996-08-27 1998-03-10 Nikon Corp Aberration variable optical system having macro mechanism
JP2009145588A (en) * 2007-12-13 2009-07-02 Nikon Corp Macro lens, optical apparatus, method for focusing macro lens, and method for vibration reduction of macro lens
JP2009145589A (en) * 2007-12-13 2009-07-02 Nikon Corp Macro lens, optical apparatus, and method for focusing macro lens
JP2009145587A (en) * 2007-12-13 2009-07-02 Nikon Corp Macro lens, optical apparatus, and method for focusing macro lens
JP2011150036A (en) * 2010-01-20 2011-08-04 Nikon Corp Imaging lens, optical apparatus equipped therewith, and method of manufacturing imaging lens
JP2012173299A (en) * 2011-02-17 2012-09-10 Sony Corp Imaging lens and imaging apparatus
JP2012234169A (en) * 2011-04-18 2012-11-29 Sigma Corp Imaging optical system with anti-vibration mechanism
US8681435B2 (en) 2009-10-28 2014-03-25 Samsung Electronics Co., Ltd. Macro lens system and pickup device including the same
US8736975B2 (en) 2010-09-27 2014-05-27 Samsung Electronics Co., Ltd. Macro lens system and image pickup device including the same
US9001440B2 (en) 2012-04-06 2015-04-07 Pentax Ricoh Imaging Company, Ltd. Macro lens system
WO2017130571A1 (en) * 2016-01-26 2017-08-03 ソニー株式会社 Image pickup lens and image pickup device
JP2019101317A (en) * 2017-12-06 2019-06-24 株式会社リコー Imaging lens and image capturing device
WO2019131751A1 (en) * 2017-12-28 2019-07-04 株式会社nittoh Lens system and imaging device
JP2020016788A (en) * 2018-07-26 2020-01-30 富士フイルム株式会社 Image capturing lens and image capturing device
CN114966919A (en) * 2021-02-27 2022-08-30 华为技术有限公司 Long-focus lens, camera module and electronic equipment

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789259A3 (en) * 1996-02-08 1997-11-19 Minolta Co., Ltd. Optical system with vibration reduction function
JPH1068880A (en) * 1996-08-27 1998-03-10 Nikon Corp Aberration variable optical system having macro mechanism
JP2009145588A (en) * 2007-12-13 2009-07-02 Nikon Corp Macro lens, optical apparatus, method for focusing macro lens, and method for vibration reduction of macro lens
JP2009145589A (en) * 2007-12-13 2009-07-02 Nikon Corp Macro lens, optical apparatus, and method for focusing macro lens
JP2009145587A (en) * 2007-12-13 2009-07-02 Nikon Corp Macro lens, optical apparatus, and method for focusing macro lens
US8681435B2 (en) 2009-10-28 2014-03-25 Samsung Electronics Co., Ltd. Macro lens system and pickup device including the same
JP2011150036A (en) * 2010-01-20 2011-08-04 Nikon Corp Imaging lens, optical apparatus equipped therewith, and method of manufacturing imaging lens
US8736975B2 (en) 2010-09-27 2014-05-27 Samsung Electronics Co., Ltd. Macro lens system and image pickup device including the same
JP2012173299A (en) * 2011-02-17 2012-09-10 Sony Corp Imaging lens and imaging apparatus
JP2012234169A (en) * 2011-04-18 2012-11-29 Sigma Corp Imaging optical system with anti-vibration mechanism
US9001440B2 (en) 2012-04-06 2015-04-07 Pentax Ricoh Imaging Company, Ltd. Macro lens system
CN108474925A (en) * 2016-01-26 2018-08-31 索尼公司 Imaging len and imaging device
US10656372B2 (en) 2016-01-26 2020-05-19 Sony Corporation Imaging lens and imaging apparatus
JPWO2017130571A1 (en) * 2016-01-26 2018-11-15 ソニー株式会社 Imaging lens and imaging apparatus
WO2017130571A1 (en) * 2016-01-26 2017-08-03 ソニー株式会社 Image pickup lens and image pickup device
JP2019101317A (en) * 2017-12-06 2019-06-24 株式会社リコー Imaging lens and image capturing device
WO2019131751A1 (en) * 2017-12-28 2019-07-04 株式会社nittoh Lens system and imaging device
CN111527434A (en) * 2017-12-28 2020-08-11 株式会社日东 Lens system and image pickup apparatus
JPWO2019131751A1 (en) * 2017-12-28 2020-12-10 株式会社nittoh Lens system and imaging device
US11467372B2 (en) 2017-12-28 2022-10-11 Nittoh Inc. Lens system and image pickup apparatus
CN110780417A (en) * 2018-07-26 2020-02-11 富士胶片株式会社 Imaging lens and imaging device
JP2020016788A (en) * 2018-07-26 2020-01-30 富士フイルム株式会社 Image capturing lens and image capturing device
US11209662B2 (en) 2018-07-26 2021-12-28 Fujifilm Corporation Imaging lens and imaging apparatus
CN110780417B (en) * 2018-07-26 2022-10-28 富士胶片株式会社 Imaging lens and imaging device
CN114966919A (en) * 2021-02-27 2022-08-30 华为技术有限公司 Long-focus lens, camera module and electronic equipment

Similar Documents

Publication Publication Date Title
JP3395169B2 (en) Zoom lens with anti-vibration function
JPH07152002A (en) Zoom lens having vibrationproof function
JPH07199124A (en) Zoom lens with oscillation-proof function
JP3541283B2 (en) Inner focus telephoto lens
JPH09325274A (en) Zoom lens
JPH0792431A (en) Zoom lens equipped with vibration-proof function
JPH08278445A (en) Zoom lens having vibration-isolating function
JPH06265826A (en) Compact zoom lens with vibration proof function
JPH0915502A (en) Zoom lens provided with vibration-proof function
JPH08220424A (en) Gauss type lens having vibration proof function
JP3646295B2 (en) In-focus telephoto lens
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JP5544926B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JPH07152001A (en) Short distance correcting lens having vibrationproof function
JP2004240023A (en) Fisheye lens switchable to a plurality of screen sizes
JP3536128B2 (en) Zoom lens with anti-vibration function
JP4194297B2 (en) Optical system capable of photographing at close range and optical apparatus using the same
JP2001337265A (en) Photographing lens utilizing floating
JPH0727975A (en) Rear conversion lens provided with vibration proof function
JPH06130330A (en) Zoom lens equipped with vibration preventing function
JP2007271752A (en) Macro lens, optical device and focusing method for macro lens
JP4115746B2 (en) Telephoto zoom lens
JP4624581B2 (en) Inner focus lens
JPH06123836A (en) Zoom lens with vibration preventing function
JPH09218349A (en) Photographing lens