JP3231404B2 - Shooting lens - Google Patents

Shooting lens

Info

Publication number
JP3231404B2
JP3231404B2 JP19583492A JP19583492A JP3231404B2 JP 3231404 B2 JP3231404 B2 JP 3231404B2 JP 19583492 A JP19583492 A JP 19583492A JP 19583492 A JP19583492 A JP 19583492A JP 3231404 B2 JP3231404 B2 JP 3231404B2
Authority
JP
Japan
Prior art keywords
lens
group
unit
object side
image side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19583492A
Other languages
Japanese (ja)
Other versions
JPH05323184A (en
Inventor
勉 鵜澤
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP19583492A priority Critical patent/JP3231404B2/en
Publication of JPH05323184A publication Critical patent/JPH05323184A/en
Application granted granted Critical
Publication of JP3231404B2 publication Critical patent/JP3231404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カメラ用レンズ特に一
眼レフカメラ用として好適な撮影レンズに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera lens, and more particularly to a photographing lens suitable for a single-lens reflex camera.

【0002】[0002]

【従来の技術】近年、一眼レフカメラ用のレンズとして
ズームレンズが一般的になり、フィルムの対角長程度の
焦点距離をもつ単焦点レンズに代わって広角から望遠ま
でを含むズームレンズが広く用いられるようになってい
る。
2. Description of the Related Art In recent years, a zoom lens has become popular as a lens for a single-lens reflex camera, and a zoom lens including a wide-angle lens to a telephoto lens has been widely used in place of a single focus lens having a focal length about the diagonal length of a film. It is supposed to be.

【0003】しかし、ズームレンズは、小型化、高変倍
化に関する改良は進んでいるが、光学性能に関しては軽
視されていた。
[0003] However, the zoom lens has been improved with respect to miniaturization and high zoom ratio, but its optical performance has been neglected.

【0004】このような状況から、単焦点レンズについ
ては、画面全体にわたって光学性能が良好で、しかも近
距離撮影においても性能の劣化が少ないことが要求され
る。
[0004] Under such circumstances, a single focus lens is required to have good optical performance over the entire screen and to have little deterioration in performance even at a short distance.

【0005】フィルムの対角長程度の焦点距離を持つ標
準レンズとして特開昭51−148421号公報に記載
されたレンズ系のように、ガウスタイプのレンズ系が広
く用いられている。ガウスタイプのレンズ系は、大口径
化に適しているが、サジタルコマフレアーの補正がむず
かしく、また近距離撮影では外向性コマが発生しコント
ラストが劣化する。
As a standard lens having a focal length approximately equal to the diagonal length of a film, a Gauss type lens system such as a lens system described in JP-A-51-148421 is widely used. The Gauss type lens system is suitable for enlargement of the aperture, but it is difficult to correct sagittal coma flare, and extroverted coma is generated in short-distance shooting, resulting in deterioration of contrast.

【0006】又近距離撮影においても収差が補正され良
好な光学性能を有するレンズ系として特開昭59−15
2414号公報、特開平2−285313号公報、特開
平1−214812号公報に記載されているマクロレン
ズが知られている。これらのマクロレンズは、ガウスタ
イプのレンズ系が多く、かつ複数のレンズ群からなり合
焦の際に各レンズ群を独立して動かすフローティングを
採用している。そしてフローティングにより、撮影倍率
が−1/2 倍乃至−1倍程度の範囲で性能を維持してい
る。
Further, a lens system having good optical performance by correcting aberrations even at a short distance is disclosed in JP-A-59-15.
There are known macro lenses described in JP-A-2414, JP-A-2-285313 and JP-A-1-214812. These macro lenses have many Gauss type lens systems, and employ a floating system which includes a plurality of lens groups and independently moves each lens group during focusing. The performance is maintained within the range of the photographing magnification of about -1/2 to -1 by floating.

【0007】しかしこれらのマクロレンズは、極近距離
までの光学性能を良好にすることを目的とするもので、
Fナンバー2.8程度で又半画角ωは20°〜23°程
度とやや狭い。
However, these macro lenses aim at improving the optical performance up to a very short distance,
The F number is about 2.8, and the half angle of view ω is slightly narrow, about 20 ° to 23 °.

【0008】更にドイツ特許出願公開4005300A
1号にて示されているレンズ系は、半画角が32°と広
く、Fナンバーが1.4と明るいがバックフォーカスが
短く一眼レフカメラ用として使用することが出来ない。
又特開平1−145617号公報に記載されているレン
ズ系は、複写用レンズ系であり、有限距離の撮影に限ら
れ又Fナンバーも7〜8と暗い。
Further, German Patent Application Publication No. 4005300A
The lens system shown in No. 1 has a wide half angle of view of 32 ° and a bright F number of 1.4, but has a short back focus and cannot be used for a single-lens reflex camera.
The lens system described in Japanese Patent Application Laid-Open No. 1-145617 is a copying lens system, which is limited to photographing at a finite distance, and has a dark F-number of 7 to 8.

【0009】標準レンズは、通常撮影倍率が0〜−1/5
倍程度の範囲で用いられるのがほとんどであり、撮影倍
率がこの範囲であって良好な性能を持つハイスペックな
単焦点レンズが望まれている。
A standard lens usually has a photographing magnification of 0 to −1/5.
Most of the lenses are used in a range of about 2.times., And a high-spec single focus lens having a good photographic magnification in this range is desired.

【0010】[0010]

【発明が解決しようとする課題】本発明は、焦点距離が
フィルムの対角長に近い値でFナンバーが2.0程度と
明るく全画面にわたって良好な性能を持つ一眼レフカメ
ラ用の標準レンズを提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a standard lens for a single-lens reflex camera having a focal length close to the diagonal length of a film and an F-number of about 2.0, which is bright and has good performance over the entire screen. To provide.

【0011】更に本発明は、撮影倍率が0〜 -1/5 倍程
度の範囲で良好な性能を維持するようにしたフローティ
ング機構を備えた一眼レフカメラ用の標準レンズを提供
するものである。
Further, the present invention provides a standard lens for a single-lens reflex camera provided with a floating mechanism for maintaining good performance at a photographing magnification of about 0 to -1/5.

【0012】[0012]

【課題を解決するための手段】本発明の撮影レンズは、
物体側より順に、正の屈折力の第1群と、絞りと、第2
群と、正の屈折力の第3群とよりなり、前記第1群は負
レンズを最も物体側に又像側に凹面を向けた負レンズを
最も像側に配置したものであり、第2群は、両凹レンズ
と正レンズとを接合した接合レンズを含む2枚接合乃至
3枚接合の接合レンズ成分を最も物体側に配置したもの
であり、第3群は像側に凹面を向けた負レンズを最も像
側に配置したものであり、次の条件(1)乃至(3)を
満足するレンズ系である。 (1) −2<(r+r)/(r−r)<0 (2) −3<(r+r)/(r−r)<0 (3) −1.6<f1(1)/f<−0.6 fは全系の焦点距離、f1(1)は第1群の最も物体側
に配置された負レンズの焦点距離、r,rは第1群
の最も物体側に配置された負レンズの物体側の面および
像側の面の曲率半径、r,rは第3群の最も像側に
配置された負レンズの物体側の面および像側の面の曲率
半径である。本発明のレンズ系は、ガウスタイプのレン
ズの物体側と像側に負レンズを配置した構成にし、この
負レンズの屈折力と形状とを適切に定めることによっ
て、画面全域にわたって良好な性能にしたものである。
According to the present invention, there is provided a photographing lens comprising:
In order from the object side, a first group having a positive refractive power, an aperture, and a second
And a third group having a positive refractive power. The first group has a negative lens disposed closest to the object side and a negative lens whose concave surface faces the image side disposed closest to the image side. The group includes a cemented lens component of two or three cemented lenses including a cemented lens in which a biconcave lens and a positive lens are cemented. The third lens group includes a negative lens having a concave surface facing the image side. A lens system in which a lens is arranged closest to the image side, and satisfies the following conditions (1) to (3). (1) -2 <(r b + r a) / (r b -r a) <0 (2) -3 <(r d + r c) / (r d -r c) <0 (3) -1. 6 <f 1 (1) /f<-0.6 f is the focal length of the entire system, f 1 (1) is the focal length of the negative lens disposed on the most object side of the first group, r a, r b the object side of the negative lens curvature of the object side surface and image side surface of the negative lens disposed on the most object side of the first group radius, r c, the r d which is arranged on the most image side of the third group And the radius of curvature of the image side surface and the image side surface. The lens system of the present invention has a configuration in which a negative lens is arranged on the object side and the image side of a Gaussian type lens, and by setting the refractive power and the shape of the negative lens appropriately, good performance is achieved over the entire screen. Things.

【0013】つまり、ガウスタイプのレンズ系の前後に
負レンズを配置することにより入射瞳と出射瞳とを近く
することが出来る。それによってレンズを通過する軸外
光線高が低くなり広角化および周辺光量の確保を可能に
した。
That is, by arranging the negative lens before and after the Gaussian type lens system, the entrance pupil and the exit pupil can be made closer. As a result, the height of off-axis rays passing through the lens is reduced, and a wider angle and a sufficient amount of peripheral light can be secured.

【0014】更に、前記のような構成にすることによっ
て球面収差とペッツバール和、更にサジタルコマフレア
ーの補正が可能になり、大口径でかつ画面全域にわたっ
て良好な画像を得ることが出来る。
Further, by adopting the above-described configuration, it is possible to correct spherical aberration, Petzval sum, and sagittal coma flare, and a good image can be obtained with a large aperture over the entire screen.

【0015】ガウスタイプのレンズ系は、絞り前後の負
レンズにより球面収差およびペッツバール和の補正を行
なっているが、そのために絞り前後の負レンズの屈折力
を強くする必要がある。このように絞り前後の負レンズ
の屈折力を強くすると、凹面の曲率半径が小さくなり、
サジタル方向のコマフレアーが発生する。
In the Gauss type lens system, spherical aberration and Petzval sum are corrected by negative lenses before and after the stop. For this purpose, it is necessary to increase the refractive power of the negative lenses before and after the stop. When the refractive power of the negative lens before and after the stop is increased in this way, the radius of curvature of the concave surface decreases,
Coma flare occurs in the sagittal direction.

【0016】本発明のレンズ系は、新たに加えた2枚の
負レンズによって、球面収差とペッツバール和の補正を
分担するようにした。これによって絞り前後の負レンズ
の凹面の曲率半径を大にすることが出来、したがってサ
ジタルコマフレアーの補正が可能になった。
In the lens system of the present invention, correction of spherical aberration and Petzval sum is shared by two newly added negative lenses. As a result, the radius of curvature of the concave surface of the negative lens before and after the stop can be increased, and thus sagittal coma flare can be corrected.

【0017】又、本発明は、絞りをはさんでほぼ対称な
レンズ配列となり、コマ収差、歪曲収差、倍率の色収差
の補正にとっても有利になる。
Further, according to the present invention, an almost symmetric lens arrangement is provided across the stop, which is advantageous for correction of coma, distortion, and chromatic aberration of magnification.

【0018】更に軸上色収差および色コマ収差の補正の
ためには、特に絞りの直後に配置した両凹レンズと正の
レンズ成分とを接合した接合レンズが有効であり、接合
面を物体側へ凸面を向けることが色収差の補正にとって
好ましい。そのために第2群は、絞り直後に即ち、第2
群中の最も物体側に両凹レンズと正レンズを接合した成
分を配置するようにしたものである。この接合レンズ成
分は、最も物体側に両凹レンズが配置されていることが
基本であって、その像側に1枚又は2枚のレンズを接合
した2枚接合レンズ又は3枚接合レンズのいずれでもよ
い。
In order to correct longitudinal chromatic aberration and chromatic coma, a cemented lens in which a biconcave lens disposed immediately after the stop and a positive lens component are particularly effective is used. The cemented surface is convex toward the object side. Is preferable for correcting chromatic aberration. For this reason, the second lens group is moved immediately after the stop,
A component in which a biconcave lens and a positive lens are cemented is arranged closest to the object side in the group. This cemented lens component is based on the fact that a biconcave lens is arranged closest to the object side. Either a cemented lens or a cemented three lens in which one or two lenses are cemented on the image side thereof is used. Good.

【0019】以上述べたような理由から、本発明の撮影
レンズは、前記のようなレンズ構成とした。
For the reasons described above, the taking lens of the present invention has the above-described lens configuration.

【0020】次に前記の各条件の意味について説明す
る。条件(1)乃至条件(3)のうち条件(1),
(2)は、絞りより前と絞り以降とにおける収差補正の
バランスを良好に保つために設けたもので、最も絞りか
ら離れた両負レンズ、つまり第1群の最も物体側に配置
した負レンズと第3群の最も像側に配置した負レンズと
の形状を定めたものである。
Next, the meaning of each of the above conditions will be described. Of the conditions (1) to (3), the conditions (1),
(2) is provided to maintain a good balance of aberration correction before and after the stop, and is a negative lens disposed farthest from the stop, that is, a negative lens disposed closest to the object side in the first group. And the shape of the negative lens disposed closest to the image side of the third group.

【0021】本発明のレンズ系は、絞りをはさんでほぼ
対称なレンズ配列にしてある。しかし無限遠の物体およ
び近距離の物体の撮影に使用するためには、レンズ形状
まで全くの対称な配列にすることは好ましくない。
The lens system of the present invention has a substantially symmetrical lens arrangement with a stop therebetween. However, in order to use it for photographing an object at infinity and an object at a short distance, it is not preferable to form a completely symmetric arrangement up to the lens shape.

【0022】本発明では、上記の両負レンズの形状を夫
々条件(1),(2)を満足する範囲にすることによっ
て収差補正におけるバランスが良好になるようにした。
In the present invention, the balance in aberration correction is improved by setting the shapes of the above both negative lenses in ranges satisfying the conditions (1) and (2), respectively.

【0023】条件(1),(2)の上限を越えるとコマ
収差、歪曲収差が補正不足になり、又条件(1),
(2)の下限を越えると逆に上記各収差が補正過剰とな
る。
If the upper limits of the conditions (1) and (2) are exceeded, coma and distortion will be insufficiently corrected.
If the lower limit of (2) is exceeded, the above aberrations will be overcorrected.

【0024】条件(3)は、ペッツバール和の補正に関
係するもので、最も物体側の負レンズに充分な屈折力を
持たせることによりこの負レンズより像側の正レンズに
おける軸上光線高を高くすることが出来、ペッツバール
和を小さくすることが可能になる。この条件(3)の下
限を越えるとペッツバール和が補正不足になり、逆に上
限を越えるとペッツバール和の補正にとっては有利であ
るが、歪曲収差が補正不足になり好ましくない。
Condition (3) relates to the correction of Petzval's sum. By making the negative lens closest to the object side have sufficient refracting power, the axial ray height of the positive lens closer to the image side than the negative lens can be reduced. It is possible to make the sum higher and Petzval sum smaller. If the lower limit of the condition (3) is exceeded, the Petzval sum is insufficiently corrected. Conversely, if the upper limit is exceeded, the Petzval sum is advantageous for correction, but distortion is insufficiently corrected, which is not preferable.

【0025】尚条件(1)乃至条件(3)をまとめて示
してあるが、前述の通り条件(1),(2)はコマ収
差、歪曲収差を中心に補正するものであり、又条件
(3)はペッツバール和を中心に補正するためのもので
ある。そして条件(1),(2)を満足すれば、条件
(3)を満足するしないに関係なく上記の補正効果は得
られる。同様に条件(3)を満足すれば、条件(1)や
条件(2)とは関係なく一定の補正効果が得られる。
Although the conditions (1) to (3) are collectively shown, as described above, the conditions (1) and (2) are for correcting coma aberration and distortion as a center, and 3) is for correcting mainly the Petzval sum. If the conditions (1) and (2) are satisfied, the above-described correction effect can be obtained regardless of whether the condition (3) is satisfied. Similarly, if the condition (3) is satisfied, a certain correction effect can be obtained irrespective of the conditions (1) and (2).

【0026】前記構成のレンズ系において次の条件
(4),(5),(6)を満足することが収差補正上好
ましい。 (4) 0.3<R2C/f<1.2 (5) 8<ν2P−ν2N<40 (6) 0.4<(R1R+|R2F|)/2f<2 , R2F <0 ただしR1R は第1群の最も像側の負レンズの像側の面の
曲率半径、R2F は第2群の最も物体側の負レンズの物体
側の面の曲率半径、R2C は第2群の接合レンズの物体側
に凸の接合面の曲率半径、ν2N,ν2Pは夫々第2群の接
合レンズの両凹レンズおよび正レンズのアッベ数であ
る。
In the lens system having the above-described configuration, it is preferable to satisfy the following conditions (4), (5), and (6) from the viewpoint of aberration correction. (4) 0.3 <R 2C /f<1.2 (5) 8 <ν 2P −ν 2N <40 (6) 0.4 <(R 1R + | R 2F |) / 2f <2, R 2F <0 where R 1R is the radius of curvature of the image side surface of the negative lens closest to the image side of the first group, R 2F is the radius of curvature of the object side surface of the negative lens closest to the object side of the second group, and R 2C is The radii of curvature of the cemented surfaces convex to the object side of the cemented lens of the second group, ν 2N and ν 2P, are the Abbe numbers of the biconcave lens and the positive lens of the cemented lens of the second group, respectively.

【0027】条件(4),(5)は、第2群の接合レン
ズに関するもので色収差の補正にとって好ましい条件で
ある。これら条件において、条件(4)の上限あるいは
条件(5)の下限を越えると軸上色収差および色コマ収
差が補正不足になりやすく、条件(4)の下限あるいは
条件(5)の上限を越えると上記両収差が補正過剰にな
りやすい。
Conditions (4) and (5) relate to the cemented lens of the second group and are preferable conditions for correcting chromatic aberration. Under these conditions, if the upper limit of the condition (4) or the lower limit of the condition (5) is exceeded, axial chromatic aberration and chromatic coma tend to be insufficiently corrected, and if the lower limit of the condition (4) or the upper limit of the condition (5) is exceeded. Both aberrations are likely to be overcorrected.

【0028】条件(6)は、絞りを挟んで向かい合う凹
面の曲率半径を規定したもので、この条件の範囲内であ
れば球面収差、サジタルコマフレアーの補正にとって有
利である。条件(6)の下限を越えるとサジタルコマフ
レアーの補正にとって不利になり、上限を越えると球面
収差の補正にとって不利になりいずれもレンズ系の大口
径比化にとって不利になる。
The condition (6) defines the radius of curvature of the concave surface facing the diaphragm, and if it is within this range, it is advantageous for correcting spherical aberration and sagittal coma flare. Exceeding the lower limit of the condition (6) is disadvantageous for correcting sagittal coma flare, while exceeding the upper limit is disadvantageous for correcting spherical aberration, and both are disadvantageous for increasing the aperture ratio of the lens system.

【0029】前述のように本発明の一つの目的は、無限
遠物体の撮影および近距離物体の撮影のいずれにおいて
も良好な光学性能が得られるようにしたフローティング
機構を備えたレンズ系を提供することにある。
As described above, one object of the present invention is to provide a lens system provided with a floating mechanism capable of obtaining good optical performance in both shooting of an object at infinity and shooting of a short-distance object. It is in.

【0030】この目的を達成するために本発明のレンズ
系は、次のような構成とした。即ち物体側から順に、正
の屈折力の第1群と、絞りと、第2群と、正の屈折力の
第3群とよりなり、前記第3群は像側に凹面を向けた負
レンズを最も像側に配置したもので、第1群と絞りと第
2群とを一体で物体側へ繰り出すと共に第3群を第2群
との間隔が増大するように物体側へ繰り出して近距離物
体に合焦するもので、次の条件(7),(8)を満足す
る撮影レンズである。 (7) 1.2<f12/f<3 (8) 1.2<f/f<3 ただしfは全系の焦点距離、f12は第1群と第2群の
合成焦点距離、fは第3群の焦点距離である。
In order to achieve this object, the lens system of the present invention has the following configuration. That is, in order from the object side, a first unit having a positive refractive power, a stop, a second unit , and a third unit having a positive refractive power are provided. The third unit has a negative surface with a concave surface facing the image side.
A lens in which the first lens unit, the diaphragm, and the second lens unit are integrally extended to the object side, and the third lens unit is extended to the object side so as to increase the distance between the second lens unit and the second lens unit. This is a photographic lens that focuses on a distance object and satisfies the following conditions (7) and (8). (7) 1.2 <f 12 / f <3 (8) 1.2 <f 3 / f <3 provided that f is the focal length of the entire system, f 12 is the composite focal length of the first group and the second group, f 3 is the focal length of the third group.

【0031】近距離撮影時に最も問題になるのは、外向
性のコマ収差が大きく発生することである。この収差を
補正するためにその補正に有効な間隔が変化するフロー
ティングを行なうことがなされている。この場合上記補
正に有効な変化させる間隔が多いほど有利であるが、鏡
枠構成が複雑になり、−1/5 倍程度の撮影倍率までであ
れば、フローティングにより変化する間隔は一か所でよ
い。
The most problematic problem at the time of short-range photographing is that outward coma greatly occurs. In order to correct this aberration, floating in which the interval effective for the correction changes is performed. In this case, it is more advantageous to increase the change interval effective for the above correction, but the configuration of the lens frame becomes complicated, and up to a photographing magnification of about −1/5, the change interval due to floating is one place. Good.

【0032】本発明では、前述のように第1群と絞りと
第2群とを一つの可動群(前群と呼ぶ)とし又第3群を
もう一つの可動群(後群と呼ぶ)し、前群と後群との間
隔が拡大するように物体側へ繰り出すことにより近距離
物体へ合焦するようにした。
In the present invention, as described above, the first group, the aperture, and the second group are formed as one movable group (referred to as a front group), and the third group is defined as another movable group (referred to as a rear group). By moving the lens unit toward the object side so as to increase the distance between the front group and the rear group, focusing on a short-distance object is performed.

【0033】ここで、前群と後群のパワー配置は、両群
とも正の屈折力を持ち、全系の屈折力を分担するように
することが好ましい。このように両群にて正の屈折力を
分担すれば、各群の屈折力を小さく出来、収差補正上有
利である。
Here, the power arrangement of the front group and the rear group is preferably such that both groups have a positive refractive power and share the refractive power of the entire system. If the positive refractive power is shared between the two groups, the refractive power of each group can be reduced, which is advantageous in correcting aberrations.

【0034】もし、前群の屈折力を正、後群の屈折力を
負とすると、繰出量を小にするためには有利であるの
で、撮影倍率が−1倍程度の極近接撮影を行なうマクロ
レンズには適しているが、バックフォーカスを確保する
には不利であって焦点距離を小さくすることつまり画角
を広くすることが難しい。
If the refractive power of the front group is positive and the refractive power of the rear group is negative, it is advantageous to reduce the feeding amount, so that close-up photographing at a photographing magnification of about -1 is performed. Although suitable for a macro lens, it is disadvantageous for securing the back focus, and it is difficult to reduce the focal length, that is, to increase the angle of view.

【0035】又、近距離撮影時には、外向性のコマ収差
ばかりでなく球面収差や歪曲収差が補正不足になる。こ
の球面収差や歪曲収差を補正するために第3群が正の屈
折力を持つようにしかつ最も像側に凹面を向けた負レン
ズを配置した。
In addition, when photographing at a short distance, not only the outward coma but also the spherical aberration and the distortion are insufficiently corrected. In order to correct the spherical aberration and distortion, the third lens unit has a positive refractive power, and a negative lens having a concave surface closest to the image side is disposed.

【0036】次に、前記の条件(7),(8)の意味を
説明する。条件(7),(8)は、夫々前群と後群の屈
折力を定めたもので、条件(7)の上限あるいは条件
(8)の下限を越えると近距離合焦時に球面収差と歪曲
収差の補正が困難になり、逆に条件(7)の下限あるい
は条件(8)の上限を越えるとバックフォーカスの確保
が困難になり、又近距離合焦時におけるフローティング
間隔が大きくなり、その結果後群を通る軸外光線高が高
くなって周辺光量の確保が困難になるので好ましくな
い。
Next, the meaning of the conditions (7) and (8) will be described. Conditions (7) and (8) define the refracting power of the front group and the rear group, respectively. If the upper limit of the condition (7) or the lower limit of the condition (8) is exceeded, spherical aberration and distortion will occur when focusing on a short distance. If aberration correction becomes difficult, and if the lower limit of the condition (7) or the upper limit of the condition (8) is exceeded, it becomes difficult to secure the back focus, and the floating interval at the time of short-distance focusing becomes large. The height of off-axis rays passing through the rear group becomes high, and it becomes difficult to secure the amount of peripheral light.

【0037】以上の条件のほかに次の条件(2)を満足
すれば一層好ましい。 (2) −3<(rd c )/(rd c )<0 ただし c ,rdは夫々第3群の最も像側に配置された
負レンズの物体側の面および像側の面の曲率半径であ
る。
It is more preferable that the following condition (2) be satisfied in addition to the above conditions. (2) -3 <(r d + r c) / (r d - r c) <0 However r c, r d is the object-side surface of the negative lens disposed respectively closest to the image side of the third group and This is the radius of curvature of the image-side surface.

【0038】この条件は、第3群の最も像側に配置した
負レンズの形状に関するもので、近距離撮影時の歪曲収
差を補正するためのものである。この条件(2)の上限
あるいは下限を越えると、いずれも合焦時の歪曲収差の
変動が大きくなるので、撮影倍率が高くなる場合は不利
である。
This condition relates to the shape of the negative lens disposed closest to the image side of the third lens unit, and is for correcting distortion at the time of short-range photographing. If the upper limit or lower limit of the condition (2) is exceeded, the fluctuation of the distortion at the time of focusing becomes large, so that it is disadvantageous when the photographing magnification is increased.

【0039】[0039]

【実施例】次に本発明の撮影レンズの各実施例を示す。 実施例1 f=1 ,F/2.0 ,2ω=51.6°,fB =0.835 r1 =-1.4363 d1 =0.0330 n1 =1.60342 ν1 =38.01 r2 =0.8052 d2 =0.0858 r3 =0.8978 d3 =0.1081 n2 =1.83481 ν2 =42.72 r4 =-1.6004 d4 =0.0029 r5 =0.7367 d5 =0.1148 n3 =1.83400 ν3 =37.16 r6 =5.3117 d6 =0.0208 r7 =-5.4856 d7 =0.0311 n4 =1.58144 ν4 =40.75 r8 =0.6330 d8 =0.0744 r9 =∞(絞り) d9 =0.1524 r10=-0.5215 d10=0.0311 n5 =1.75520 ν5 =27.51 r11=0.5894 d11=0.1100 n6 =1.66524 ν6 =55.12 r12=-2.6568 (非球面)d12=0.0056 r13=3.0018 d13=0.0796 n7 =1.83481 ν7 =42.72 r14=-0.9138 d14=0.0097 r15=-13.7003 d15=0.0760 n8 =1.83400 ν8 =37.16 r16=-0.8037 d16=0.0029 r17=3.3817 d17=0.0330 n9 =1.56732 ν9 =42.83 r18=0.8881 非球面係数 P=1.0000,E=0.15037 ×10 ,F=-0.22036×10 ,G=0.42687 ×102 H=-0.31076×10323=0.031 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.282 , (rb+ra)/(rb-ra) =(r18+r17)/(r18-r17) =-1.71 ,f1(1)/ f=-0.850 , R2C/ f=r11/ f=0.589 ,ν2P−ν2N=ν6 −ν5 =27.6 , f12/ f=1.86 ,f3 / f=1.91 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.577 Next, embodiments of the taking lens according to the present invention will be described. Example 1 f = 1, F / 2.0, 2ω = 51.6 °, f B = 0.835 r 1 = −1.4363 d 1 = 0.0330 n 1 = 1.60342 ν 1 = 38.01 r 2 = 0.8052 d 2 = 0.0858 r 3 = 0.8978 d 3 = 0.1081 n 2 = 1.83481 ν 2 = 42.72 r 4 = -1.6004 d 4 = 0.0029 r 5 = 0.7367 d 5 = 0.1148 n 3 = 1.83400 ν 3 = 37.16 r 6 = 5.3117 d 6 = 0.0208 r 7 = -5.4856 d 7 = 0.0311 n 4 = 1.58144 ν 4 = 40.75 r 8 = 0.6330 d 8 = 0.0744 r 9 = ∞ (aperture) d 9 = 0.1524 r 10 = -0.5215 d 10 = 0.0311 n 5 = 1.75520 ν 5 = 27.51 r 11 = 0.5894 d 11 = 0.1100 n 6 = 1.66524 ν 6 = 55.12 r 12 = -2.6568 ( aspherical) d 12 = 0.0056 r 13 = 3.0018 d 13 = 0.0796 n 7 = 1.83481 ν 7 = 42.72 r 14 = -0.9138 d 14 = 0.0097 r 15 = -13.7003 d 15 = 0.0760 n 8 = 1.83400 v 8 = 37.16 r 16 = -0.8037 d 16 = 0.0029 r 17 = 3.3817 d 17 = 0.0330 n 9 = 1.56732 v 9 = 42.83 r 18 = 0.8881 P = 1.0000, E = 0.15037 10, F = -0.22036 × 10, G = 0.42687 × 10 2 H = -0.31076 × 10 3 D 23 = 0.031 (r b + r a) / (r b -r a) = (r 2 + r 1) / (r 2 -r 1 ) =-0.282, (r b + r a ) / (r b -r a ) = (r 18 + r 17 ) / (r 18 -r 17 ) =-1.71, f 1 (1 ) / f = -0.850, R 2C / f = r 11 / f = 0.589, ν 2P -ν 2N = ν 6 -ν 5 = 27.6, f 12 / f = 1.86, f 3 / f = 1.91, (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) / 2f = 0.577

【0040】実施例2 f=1 ,F/2.0 ,2ω=50.0°,fB =0.836 r1 =-1.5245 d1 =0.0330 n1 =1.51454 ν1 =54.69 r2 =0.7207 d2 =0.1214 r3 =0.8777 d3 =0.1081 n2 =1.78590 ν2 =44.18 r4 =-1.5212 d4 =0.0029 r5 =0.6296 d5 =0.1222 n3 =1.77250 ν3 =49.66 r6 =4.1050 d6 =0.0220 r7 =-4.5849 d7 =0.0311 n4 =1.64769 ν4 =33.80 r8 =0.5544 d8 =0.0787 r9 =∞(絞り) d9 =0.0958 r10=-0.5759 d10=0.0311 n5 =1.75520 ν5 =27.51 r11=0.5396 d11=0.1051 n6 =1.66524 ν6 =55.12 r12=-2.7571 (非球面)d12=0.0056 r13=3.0687 d13=0.0816 n7 =1.78472 ν7 =25.68 r14=-0.8368 d14=0.0097 r15=5.1735 d15=0.0835 n8 =1.77250 ν8 =49.66 r16=-0.7844 d16=0.0029 r17=9.4695 d17=0.0330 n9 =1.67270 ν9 =32.10 r18=0.8782 非球面係数 P=1.0000,E=0.16832 ×10 ,F=-0.14716×10 ,G=0.30461 ×102 H=-0.25785×10323=0.026 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.358 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-1.20 ,f1(1)/ f=-0.946, R2C/ f=r11/ f=0.540 ,ν2P−ν2N=ν6 −ν5 =27.6 , f12/ f=1.71 ,f3 / f =2.19 , (R1R+|R2F|)/2f=(r8+|r10|)/ 2f=0.565 Example 2 f = 1, F / 2.0, 2ω = 50.0 °, f B = 0.836 r 1 = -1.5245 d 1 = 0.0330 n 1 = 1.51454 ν 1 = 54.69 r 2 = 0.7207 d 2 = 0.1214 r 3 = 0.8777 d 3 = 0.1081 n 2 = 1.78590 v 2 = 44.18 r 4 = -1.5212 d 4 = 0.0029 r 5 = 0.6296 d 5 = 0.1222 n 3 = 1.77 250 v 3 = 49.66 r 6 = 4.1050 d 6 = 0.0220 r 7 = -4.5849 d 7 = 0.0311 n 4 = 1.64769 ν 4 = 33.80 r 8 = 0.5544 d 8 = 0.0787 r 9 = ∞ ( stop) d 9 = 0.0958 r 10 = -0.5759 d 10 = 0.0311 n 5 = 1.75520 ν 5 = 27.51 r 11 = 0.5396 d 11 = 0.1051 n 6 = 1.66524 ν 6 = 55.12 r 12 = -2.7571 ( aspherical) d 12 = 0.0056 r 13 = 3.0687 d 13 = 0.0816 n 7 = 1.78472 ν 7 = 25.68 r 14 = -0.8368 d 14 = 0.0097 r 15 = 5.1735 d 15 = 0.0835 n 8 = 1.77250 ν 8 = 49.66 r 16 = -0.7844 d 16 = 0.0029 r 17 = 9.4695 d 17 = 0.0330 n 9 = 1.67270 ν 9 = 32.10 r 18 = 0.8782 non Spherical coefficient P = 1.0000 E = 0.16832 × 10, F = -0.14716 × 10, G = 0.30461 × 10 2 H = -0.25785 × 10 3 D 23 = 0.026 (r b + r a) / (r b -r a) = (r 2 + r 1 ) / (r 2 -r 1 ) =-0.358, (r d + r c ) / (r d -r c ) = (r 18 + r 17 ) / (r 18 -r 17 ) =-1.20, f 1 (1) / f = -0.946, R 2C / f = r 11 / f = 0.540, ν 2P -ν 2N = ν 6 -ν 5 = 27.6, f 12 / f = 1.71, f 3 / f = 2.19 , (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) /2f=0.565

【0041】実施例3 f=1 ,F/2.06 ,2ω=51.8°,fB =0.83 r1 =-1.6622 d1 =0.0330 n1 =1.54072 ν1 =47.20 r2 =0.6503 d2 =0.0858 r3 =0.7019 d3 =0.1345 n2 =1.79952 ν2 =42.24 r4 =-1.9054 d4 =0.0029 r5 =0.6818 d5 =0.0980 n3 =1.83400 ν3 =37.16 r6 =1.4453 d6 =0.0240 r7 =5.5065 d7 =0.0311 n4 =1.60342 ν4 =38.01 r8 =0.6051 d8 =0.0793 r9 =∞(絞り) d9 =0.0724 r10=-0.5510 d10=0.0301 n5 =1.75520 ν5 =27.51 r11=0.4653 d11=0.0899 n6 =1.66524 ν6 =55.12 r12=-2.3890 (非球面)d12=0.0056 r13=1.5790 d13=0.1098 n7 =1.80400 ν7 =46.57 r14=-1.2056 d14=0.0255 r15=-8.9143 d15=0.0651 n8 =1.83400 ν8 =37.16 r16=-0.7196 d16=0.0029 r17=2.4047 d17=0.0621 n9 =1.49831 ν9 =65.03 r18=0.6449 非球面係数 P=1.0000,E=0.19658 ×10 ,F=0.87501 ×10 ,G=-0.10099×103 H=0.63155 ×10323=0.028 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.438 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-1.73 ,f1(1)/ f=-0.860, R2C/ f=r11/ f=0.465 ,ν2P−ν2N=ν6 −ν5 =27.6 , f12/ f=2.02 ,f3 / f=1.84 , (R1R+|R2F|)/ 2f=(r8+|r10|)/ 2f=0.578 Example 3 f = 1, F / 2.06, 2ω = 51.8 °, f B = 0.83 r 1 = -1.6622 d 1 = 0.0330 n 1 = 1.54072 ν 1 = 47.20 r 2 = 0.6503 d 2 = 0.0858 r 3 = 0.7019 d 3 = 0.1345 n 2 = 1.79952 ν 2 = 42.24 r 4 = -1.9054 d 4 = 0.0029 r 5 = 0.6818 d 5 = 0.0980 n 3 = 1.83400 ν 3 = 37.16 r 6 = 1.4453 d 6 = 0.0240 r 7 = 5.5065 d 7 = 0.0311 n 4 = 1.60342 v 4 = 38.01 r 8 = 0.6051 d 8 = 0.0793 r 9 = ∞ (aperture) d 9 = 0.0724 r 10 = -0.5510 d 10 = 0.0301 n 5 = 1.75520 v 5 = 27.51 r 11 = 0.4653 d 11 = 0.0899 n 6 = 1.66524 v 6 = 55.12 r 12 = -2.3890 (aspheric surface) d 12 = 0.0056 r 13 = 1.5790 d 13 = 0.1098 n 7 = 1.80400 v 7 = 46.57 r 14 =-1.2056 d 14 = 0.0255 r 15 = -8.9143 d 15 = 0.0651 n 8 = 1.83400 ν 8 = 37.16 r 16 = -0.7196 d 16 = 0.0029 r 17 = 2.4047 d 17 = 0.0621 n 9 = 1.49831 ν 9 = 65.03 r 18 = 0.6449 non Spherical coefficient P = 1.0000 E = 0.19658 × 10, F = 0.87501 × 10, G = -0.10099 × 10 3 H = 0.63155 × 10 3 D 23 = 0.028 (r b + r a) / (r b -r a) = (r 2 + r 1 ) / (r 2 -r 1 ) =-0.438, (r d + r c ) / (r d -r c ) = (r 18 + r 17 ) / (r 18 -r 17 ) =-1.73, f 1 (1) / f = -0.860 , R 2C / f = r 11 / f = 0.465, ν 2P -ν 2N = ν 6 -ν 5 = 27.6, f 12 / f = 2.02, f 3 / f = 1.84, (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) /2f=0.578

【0042】実施例4 f=1 ,F/2.05 ,2ω=51.8°,fB =0.77 r1 =-1.5710 d1 =0.0321 n1 =1.54814 ν1 =45.78 r2 =0.5855 d2 =0.0286 r3 =0.6275 d3 =0.1246 n2 =1.78590 ν2 =44.18 r4 =-1.7335 d4 =0.0049 r5 =0.5143 d5 =0.0833 n3 =1.78590 ν3 =44.18 r6 =0.7883 d6 =0.0283 r7 =2.1444 d7 =0.0350 n4 =1.66446 ν4 =35.81 r8 =0.4575 d8 =0.0965 r9 =∞(絞り) d9 =0.0469 r10=-1.7938 (非球面)d10=0.0301 n5 =1.68893 ν5 =31.08 r11=0.4762 d11=0.0822 n6 =1.78590 ν6 =44.18 r12=2.3183 d12=0.0636 r13=-1.9971 (非球面)d13=0.0787 n7 =1.71300 ν7 =53.84 r14=-0.5697 d14=0.0029 r15=1.1813 d15=0.1028 n8 =1.79952 ν8 =42.24 r16=-0.9785 d16=0.0051 r17=3.2217 d17=0.0544 n9 =1.67270 ν9 =32.10 r18=0.5174 非球面係数 (第10面) P=1.0000,E=-0.56407×10 ,F=-0.23973×102 ,G=0.25284 ×103 , H=-0.23013×104 (第13面) P=1.0000,E=0.18444 ×10 ,F=-0.27704×10 ,G=-0.37345×102 , H=-0.56361×10223=0.019 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.457 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-1.38 ,f1(1)/ f=-0.774 , R2C/ f=r11/ f=0.476 ,ν2P−ν2N=ν6 −ν5 =13.1 , f12/ f=1.92 ,f3 / f=2.03 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=1.13Example 4 f = 1, F / 2.05, 2ω = 51.8 °, f B = 0.77 r 1 = −1.5710 d 1 = 0.0321 n 1 = 1.54814 ν 1 = 45.78 r 2 = 0.5855 d 2 = 0.0286 r 3 = 0.6275 d 3 = 0.1246 n 2 = 1.78590 ν 2 = 44.18 r 4 = -1.7335 d 4 = 0.0049 r 5 = 0.5143 d 5 = 0.0833 n 3 = 1.78590 ν 3 = 44.18 r 6 = 0.7883 d 6 = 0.0283 r 7 = 2.1444 d 7 = 0.0350 n 4 = 1.66446 ν 4 = 35.81 r 8 = 0.4575 d 8 = 0.0965 r 9 = ∞ (aperture) d 9 = 0.0469 r 10 = -1.7938 (aspherical surface) d 10 = 0.0301 n 5 = 1.68893 ν 5 = 31.08 r 11 = 0.4762 d 11 = 0.0822 n 6 = 1.78590 ν 6 = 44.18 r 12 = 2.3183 d 12 = 0.0636 r 13 = -1.9971 ( aspherical) d 13 = 0.0787 n 7 = 1.71300 ν 7 = 53.84 r 14 = -0.5697 d 14 = 0.0029 r 15 = 1.1813 d 15 = 0.1028 n 8 = 1.79952 ν 8 = 42.24 r 16 = -0.9785 d 16 = 0.0051 r 17 = 3.2217 d 17 = 0.0544 n 9 = 1.67270 ν 9 = 32.10 r 18 = 0.5174 Aspheric coefficient (Tenth surface) P = 1.0000, E = -0.56407 × 10, F = −0.23973 × 10 2 , G = 0.25284 × 10 3 , H = −0.23013 × 10 4 (Thirteenth surface) P = 1.0000, E = 0.84444 × 10, F = −0.27704 × 10, G = −0.37345 × 10 2 , H = −0.56361 × 10 2 D 23 = 0.019 (r b + r a ) / (r b -r a ) = (r 2 + r 1 ) / (r 2 -r 1 ) =-0.457, (r d + r c ) / (r d -r c ) = (r 18 + r 17 ) / (r 18 -r 17 ) =-1.38, f 1 (1) / f = -0.774 , R 2C / f = r 11 / f = 0.476, ν 2P -ν 2N = ν 6 -ν 5 = 13.1, f 12 / f = 1.92, f 3 / f = 2.03, (R 1R + | R 2F | ) / 2f = (r 8 + | r 10 |) / 2f = 1.13

【0043】実施例5 f=1 ,F/2.05 ,2ω=51.8°,fB =0.77 r1 =-10.4298 d1 =0.0359 n1 =1.54072 ν1 =47.20 r2 =0.6912 d2 =0.0322 r3 =0.8351 d3 =0.1001 n2 =1.83481 ν2 =42.72 r4 =-2.8965 d4 =0.0049 r5 =0.5054 d5 =0.0889 n3 =1.83481 ν3 =42.72 r6 =0.9600 d6 =0.0255 r7 =3.2381 d7 =0.0350 n4 =1.67270 ν4 =32.10 r8 =0.4101 d8 =0.0942 r9 =∞(絞り) d9 =0.0734 r10=-0.8578 (非球面)d10=0.0310 n5 =1.71736 ν5 =29.51 r11=0.7969 d11=0.1237 n6 =1.83481 ν6 =42.72 r12=-0.7299 d12=0.1197 n7 =1.51823 ν7 =58.96 r13=-0.8642 d13=0.0243 r14=-10.9232 d14=0.0668 n8 =1.80400 ν8 =46.57 r15=-0.6481 d15=0.0027 r16=4.7977 d16=0.0544 n9 =1.69895 ν9 =30.12 r17=0.9446 非球面係数 P=1.0000,E=-0.19514×10 ,F=-0.44053×102 ,G=0.10468 ×104 , H=-0.11789×10523=0.040 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.876 , (rd+rc)/(rd-rc) =(r17+r16)/(r17-r16) =-1.49 ,f1(1)/ f=-1.120 , R2C/ f=r11/ f=0.797 ,ν2P−ν2N=ν6 −ν5 =13.2 , f12/ f=2.04 ,f3 / f=1.64 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.634 Example 5 f = 1, F / 2.05, 2ω = 51.8 °, f B = 0.77 r 1 -10.4298 d 1 = 0.0359 n 1 = 1.54072 ν 1 = 47.20 r 2 = 0.6912 d 2 = 0.0322 r 3 = 0.8351 d 3 = 0.1001 n 2 = 1.83481 ν 2 = 42.72 r 4 = -2.8965 d 4 = 0.0049 r 5 = 0.5054 d 5 = 0.0889 n 3 = 1.83481 ν 3 = 42.72 r 6 = 0.9600 d 6 = 0.0255 r 7 = 3.2381 d 7 = 0.0350 n 4 = 1.67270 v 4 = 32.10 r 8 = 0.4101 d 8 = 0.0942 r 9 = ∞ (aperture) d 9 = 0.0734 r 10 = -0.8578 (aspherical surface) d 10 = 0.0310 n 5 = 1.71736 v 5 = 29.51 r 11 = 0.7969 d 11 = 0.1237 n 6 = 1.83481 ν 6 = 42.72 r 12 = -0.7299 d 12 = 0.1197 n 7 = 1.51823 ν 7 = 58.96 r 13 = -0.8642 d 13 = 0.0243 r 14 = -10.9232 d 14 = 0.0668 n 8 = 1.80400 ν 8 = 46.57 r 15 = -0.6481 d 15 = 0.0027 r 16 = 4.7977 d 16 = 0.0544 n 9 = 1.69895 ν 9 = 30.12 r 17 = 0.9446 aspherical coefficient P = 1.0000, E = -0.19514 × 10, F = -0. 44053 × 10 2 , G = 0.10468 × 10 4 , H = −0.11789 × 10 5 D 23 = 0.040 (r b + r a ) / (r b -r a ) = (r 2 + r 1 ) / (r 2 -r 1 ) =-0.876, (r d + r c ) / (r d -r c ) = (r 17 + r 16 ) / (r 17 -r 16 ) =-1.49, f 1 (1) / f = -1.120, R 2C / f = r 11 / f = 0.797, ν 2P -ν 2N = ν 6 -ν 5 = 13.2, f 12 / f = 2.04, f 3 / f = 1.64, (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) / 2f = 0.634

【0044】実施例6 f=1 ,F/2.06 ,2ω=50.0°,fB =0.856 r1 =-1.9093 d1 =0.0367 n1 =1.51602 ν1 =56.80 r2 =0.7123 d2 =0.1061 r3 =0.9353 d3 =0.1184 n2 =1.77250 ν2 =49.66 r4 =-1.5354 d4 =0.0032 r5 =0.6328 d5 =0.1257 n3 =1.77250 ν3 =49.66 r6 =1.6125 d6 =0.0230 r7 =22.5335 d7 =0.0367 n4 =1.61293 ν4 =37.00 r8 =0.5741 d8 =0.0793 r9 =∞(絞り) d9 =0.0912 r10=-0.4852 d10=0.0351 n5 =1.69895 ν5 =30.12 r11=0.8006 d11=0.1113 n6 =1.77250 ν6 =49.66 r12=-1.1803 d12=0.0052 r13=7.7749 d13=0.0636 n7 =1.68893 ν7 =31.08 r14=-1.0482 (非球面)d14=0.0081 r15=-13.3429 d15=0.0813 n8 =1.83481 ν8 =42.72 r16=-0.6910 d16=0.0032 r17=-6.4450 d17=0.0351 n9 =1.71736 ν9 =29.51 r18=1.3063 非球面係数 P=1.0000,E=0.14274 ×10 ,F=0.29763 ×10 ,G=-0.26645×102 , H=0.18021 ×10323=0.025 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.457 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-0.663 ,f1(1)/ f=-1.001, R2C/ f=r11/ f=0.801 ,ν2P−ν2N=ν6 −ν5 =19.5 , f12/ f=1.82 ,f3 / f=2.00 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.530 Embodiment 6 f = 1, F / 2.06, 2ω = 50.0 °, f B = 0.856 r 1 = -1.9093 d 1 = 0.0367 n 1 = 1.51602 ν 1 = 56.80 r 2 = 0.7123 d 2 = 0.1061 r 3 = 0.9353 d 3 = 0.1184 n 2 = 1.77250 ν 2 = 49.66 r 4 = -1.5354 d 4 = 0.0032 r 5 = 0.6328 d 5 = 0.1257 n 3 = 1.77250 ν 3 = 49.66 r 6 = 1.6125 d 6 = 0.0230 r 7 = 22.5335 d 7 = 0.0367 n 4 = 1.61293 ν 4 = 37.00 r 8 = 0.5741 d 8 = 0.0793 r 9 = ∞ (aperture) d 9 = 0.0912 r 10 = -0.4852 d 10 = 0.0351 n 5 = 1.69895 ν 5 = 30.12 r 11 = 0.8006 d 11 = 0.1113 n 6 = 1.77250 ν 6 = 49.66 r 12 = -1.1803 d 12 = 0.0052 r 13 = 7.7749 d 13 = 0.0636 n 7 = 1.68893 ν 7 = 31.08 r 14 = -1.0482 ( aspherical) d 14 = 0.0081 r 15 = -13.3429 d 15 = 0.0813 n 8 = 1.83481 ν 8 = 42.72 r 16 = -0.6910 d 16 = 0.0032 r 17 = -6.4450 d 17 = 0.0351 n 9 = 1.71736 ν 9 = 29.51 r 18 = 1.3063 Aspherical surface coefficient P = 1.00 00, E = 0.14274 × 10, F = 0.29763 × 10, G = −0.26645 × 10 2 , H = 0.18021 × 10 3 D 23 = 0.025 (r b + r a ) / (r b -r a ) = (r 2 + r 1 ) / (r 2 -r 1 ) = -0.457, (r d + r c ) / (r d -r c ) = (r 18 + r 17 ) / (r 18 -r 17 ) =- 0.663, f 1 (1) / f = -1.001, R 2C / f = r 11 / f = 0.801, ν 2P -ν 2N = ν 6 -ν 5 = 19.5, f 12 / f = 1.82, f 3 / f = 2.00, (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) / 2f = 0.530

【0045】実施例7 f=1 ,F/2.05 ,2ω=50.0°,fB =0.848 r1 =-2.4360 d1 =0.0367 n1 =1.51742 ν1 =52.41 r2 =0.7027 d2 =0.0913 r3 =0.9814 d3 =0.0994 n2 =1.77250 ν2 =49.66 r4 =-1.5784 d4 =0.0029 r5 =0.6788 d5 =0.1283 n3 =1.77250 ν3 =49.66 r6 =1.3709 d6 =0.0281 r7 =-15.8784 d7 =0.0367 n4 =1.56444 ν4 =43.78 r8 =0.6879 d8 =0.0859 r9 =∞(絞り) d9 =0.1127 r10=-0.5252 d10=0.0367 n5 =1.69895 ν5 =30.12 r11=0.6292 d11=0.1099 n6 =1.78590 ν6 =44.18 r12=-1.3779 d12=0.0032 r13=-10.7690 d13=0.0659 n7 =1.78590 ν7 =43.90 r14=-1.0524 (非球面)d14=0.0081 r15=-35.6603 d15=0.0852 n8 =1.78590 ν8 =44.18 r16=-0.6559 d16=0.0032 r17=-2.5685 d17=0.0367 n9 =1.62004 ν9 =36.25 r18=1.7204 非球面係数 P=1.0023,E=0.12162 ×10 ,F=0.32914 ×10 ,G=-0.22817×102 , H=0.17658 ×10323=0.024 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.552 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-0.198 ,f1(1)/ f=-1.050, R2C/ f=r11/ f=0.629 ,ν2P−ν2N=ν6 −ν5 =14.1 , f12/ f=2.08 ,f3 / f=1.71 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.607 Example 7 f = 1, F / 2.05, 2ω = 50.0 °, f B = 0.848 r 1 = −2.4360 d 1 = 0.0367 n 1 = 1.51742 ν 1 = 52.41 r 2 = 0.7027 d 2 = 0.0913 r 3 = 0.9814 d 3 = 0.0994 n 2 = 1.77250 ν 2 = 49.66 r 4 = -1.5784 d 4 = 0.0029 r 5 = 0.6788 d 5 = 0.1283 n 3 = 1.77250 ν 3 = 49.66 r 6 = 1.3709 d 6 = 0.0281 r 7 = -15.8784 d 7 = 0.0367 n 4 = 1.56444 ν 4 = 43.78 r 8 = 0.6879 d 8 = 0.0859 r 9 = ∞ (aperture) d 9 = 0.1127 r 10 = -0.5252 d 10 = 0.0367 n 5 = 1.69895 ν 5 = 30.12 r 11 = 0.6292 d 11 = 0.1099 n 6 = 1.78590 ν 6 = 44.18 r 12 = -1.3779 d 12 = 0.0032 r 13 = -10.7690 d 13 = 0.0659 n 7 = 1.78590 ν 7 = 43.90 r 14 = -1.0524 ( aspherical ) d 14 = 0.0081 r 15 = -35.6603 d 15 = 0.0852 n 8 = 1.78590 ν 8 = 44.18 r 16 = -0.6559 d 16 = 0.0032 r 17 = -2.5685 d 17 = 0.0367 n 9 = 1.62004 ν 9 = 36.25 r 18 = 1.7204 Aspherical surface coefficient P = 1 .0023, E = 0.12162 x 10, F = 0.32914 x 10, G = -0.22817 x 10 2 , H = 0.17658 x 10 3 D 23 = 0.024 (r b + r a ) / (r b -r a ) = ( r 2 + r 1 ) / (r 2 -r 1 ) =-0.552, (r d + r c ) / (r d -r c ) = (r 18 + r 17 ) / (r 18 -r 17 ) = -0.198, f 1 (1) / f = -1.050, R 2C / f = r 11 / f = 0.629, ν 2P -ν 2N = ν 6 -ν 5 = 14.1, f 12 / f = 2.08, f 3 / f = 1.71, (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) / 2f = 0.607

【0046】実施例8 f=1 ,F/2.05 ,2ω=50.0°,fB =0.854 r1 =-1.9972 d1 =0.0367 n1 =1.54814 ν1 =45.78 r2 =0.7352 d2 =0.1045 r3 =0.9411 d3 =0.1191 n2 =1.77250 ν2 =49.66 r4 =-1.6247 d4 =0.0032 r5 =0.6619 d5 =0.1258 n3 =1.77250 ν3 =49.66 r6 =1.4523 d6 =0.0237 r7 =6.2158 d7 =0.0367 n4 =1.51112 ν4 =60.48 r8 =0.5767 d8 =0.0863 r9 =∞(絞り) d9 =0.0966 r10=-0.4796 d10=0.0367 n5 =1.68893 ν5 =31.08 r11=0.6057 d11=0.1099 n6 =1.77250 ν6 =49.66 r12=-1.1992 d12=0.0032 r13=16.2099 d13=0.0637 n7 =1.66524 ν7 =55.12 r14=-1.0324 (非球面)d14=0.0086 r15=-5.6658 d15=0.0795 n8 =1.78590 ν8 =44.18 r16=-0.6516 d16=0.0032 r17=-3.1496 d17=0.0367 n9 =1.54814 ν9 =45.78 r18=1.3421 非球面係数 P=1.0000,E=0.15445 ×10 ,F=0.29928 ×10 ,G=-0.12397×102 , H=0.87032 ×10223=0.026 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.462 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-0.402 ,f1(1)/ f=-0.976, R2C/ f=r11/ f=0.606 ,ν2P−ν2N=ν6 −ν5 =18.6 , f12/ f=1.80 ,f3 / f=2.00 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.528 Embodiment 8 f = 1, F / 2.05, 2ω = 50.0 °, f B = 0.854 r 1 = -1.9972 d 1 = 0.0367 n 1 = 1.54814 ν 1 = 45.78 r 2 = 0.7352 d 2 = 0.1045 r 3 = 0.9411 d 3 = 0.1191 n 2 = 1.77250 ν 2 = 49.66 r 4 = -1.6247 d 4 = 0.0032 r 5 = 0.6619 d 5 = 0.1258 n 3 = 1.77250 ν 3 = 49.66 r 6 = 1.4523 d 6 = 0.0237 r 7 = 6.2158 d 7 = 0.0367 n 4 = 1.51112 ν 4 = 60.48 r 8 = 0.5767 d 8 = 0.0863 r 9 = ∞ (aperture) d 9 = 0.0966 r 10 = -0.4796 d 10 = 0.0367 n 5 = 1.68893 ν 5 = 31.08 r 11 = 0.6057 d 11 = 0.1099 n 6 = 1.77250 ν 6 = 49.66 r 12 = -1.1992 d 12 = 0.0032 r 13 = 16.2099 d 13 = 0.0637 n 7 = 1.66524 ν 7 = 55.12 r 14 = -1.0324 ( aspherical) d 14 = 0.0086 r 15 = -5.6658 d 15 = 0.0795 n 8 = 1.78590 ν 8 = 44.18 r 16 = -0.6516 d 16 = 0.0032 r 17 = -3.1496 d 17 = 0.0367 n 9 = 1.54814 ν 9 = 45.78 r 18 = 1.3421 Aspherical surface coefficient P = 1.000 0, E = 0.15445 × 10, F = 0.29928 × 10, G = -0.12397 × 10 2 , H = 0.87032 × 10 2 D 23 = 0.026 (r b + r a ) / (r b -r a ) = (r 2 + r 1 ) / (r 2 -r 1 ) = -0.462, (r d + r c ) / (r d -r c ) = (r 18 + r 17 ) / (r 18 -r 17 ) =- 0.402, f 1 (1) / f = -0.976, R 2C / f = r 11 / f = 0.606, ν 2P -ν 2N = ν 6 -ν 5 = 18.6, f 12 / f = 1.80, f 3 / f = 2.00, (R 1R + | R 2F |) / 2f = (r 8 + | r 10 |) / 2f = 0.528

【0047】実施例9 f=1,F/2.06 ,2ω=50.0°,fB =0.85 r1 =-2.3633 d1 =0.0432 n1 =1.56732 ν1 =42.83 r2 =0.7542 d2 =0.1154 r3 =0.9661 d3 =0.1332 n2 =1.83481 ν2 =42.72 r4 =-1.8007 d4 =0.0032 r5 =0.6562 d5 =0.1190 n3 =1.83481 ν3 =42.72 r6 =1.8546 d6 =0.0189 r7 =21.1328 d7 =0.0324 n4 =1.63636 ν4 =35.37 r8 =0.5692 d8 =0.0961 r9 =∞(絞り) d9 =0.1213 r10=-0.5440 d10=0.0442 n5 =1.71736 ν5 =29.51 r11=0.7493 d11=0.1122 n6 =1.77250 ν6 =49.66 r12=-1.3459 d12=0.0059 r13=∞ d13=0.0678 n7 =1.68893 ν7 =31.08 r14=-1.2132 (非球面)d14=0.0108 r15=-16.9861 d15=0.0765 n8 =1.83481 ν8 =42.72 r16=-0.7368 d16=0.0032 r17=-16.0531 d17=0.0337 n9 =1.74077 ν9 =27.79 r18=1.8424 非球面係数 P=1.0000,E=0.11115 ×10 ,F=0.89669 ,G=0.12796 ×10 D23=0.032 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.516 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-0.794 ,f1(1)/ f=-1.003, R2C/ f=r11/ f=0.749 ,ν2P−ν2N=ν6 −ν5 =20.2 , f12/ f=2.33 ,f3 / f=1.55 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.557 Example 9 f = 1, F / 2.06, 2ω = 50.0 °, f B = 0.85 r 1 = −2.3633 d 1 = 0.0432 n 1 = 1.56732 ν 1 = 42.83 r 2 = 0.7542 d 2 = 0.1154 r 3 = 0.9661 d 3 = 0.1332 n 2 = 1.83481 ν 2 = 42.72 r 4 = -1.8007 d 4 = 0.0032 r 5 = 0.6562 d 5 = 0.1190 n 3 = 1.83481 ν 3 = 42.72 r 6 = 1.8546 d 6 = 0.0189 r 7 = 21.1328 d 7 = 0.0324 n 4 = 1.63636 ν 4 = 35.37 r 8 = 0.5692 d 8 = 0.0961 r 9 = ∞ (aperture) d 9 = 0.1213 r 10 = -0.5440 d 10 = 0.0442 n 5 = 1.71736 ν 5 = 29.51 r 11 = 0.7493 d 11 = 0.1122 n 6 = 1.77250 v 6 = 49.66 r 12 = -1.3459 d 12 = 0.0059 r 13 = d d 13 = 0.0678 n 7 = 1.68893 v 7 = 31.08 r 14 = -1.2132 (aspherical surface) d 14 = 0.0108 r 15 = -16.9861 d 15 = 0.0765 n 8 = 1.83481 ν 8 = 42.72 r 16 = -0.7368 d 16 = 0.0032 r 17 = -16.0531 d 17 = 0.0337 n 9 = 1.74077 ν 9 = 27.79 r 18 = 1.8424 Aspherical coefficient P = 1. 0000, E = 0.111 15 × 10, F = 0.89669, G = 0.12796 × 10 D 23 = 0.032 (r b + r a ) / (r b -r a ) = (r 2 + r 1 ) / (r 2 -r 1) = -0.516, (r d + r c) / (r d -r c) = (r 18 + r 17) / (r 18 -r 17) = -0.794, f 1 (1) / f = - 1.003, R 2C / f = r 11 / f = 0.749, ν 2P -ν 2N = ν 6 -ν 5 = 20.2, f 12 / f = 2.33, f 3 / f = 1.55, (R 1R + | R 2F | ) / 2f = (r 8 + | r 10 |) / 2f = 0.557

【0048】実施例10 f=1,F/2.06 ,2ω=50.0°,fB =0.85 r1 =-2.4014 d1 =0.0432 n1 =1.56732 ν1 =42.83 r2 =0.7613 d2 =0.1152 r3 =0.9686 d3 =0.1347 n2 =1.83481 ν2 =42.72 r4 =-1.8248 d4 =0.0032 r5 =0.6561 d5 =0.1191 n3 =1.83481 ν3 =42.72 r6 =1.8625 d6 =0.0188 r7 =21.1363 d7 =0.0324 n4 =1.63636 ν4 =35.37 r8 =0.5658 d8 =0.1029 r9 =∞(絞り) d9 =0.1221 r10=-0.5436 d10=0.0441 n5 =1.71736 ν5 =29.51 r11=0.7453 d11=0.1122 n6 =1.77250 ν6 =49.66 r12=-1.4147 d12=0.0057 r13=∞ d13=0.0678 n7 =1.67270 ν7 =32.10 r14=-1.2176 (非球面)d14=0.0108 r15=-22.3691 d15=0.0766 n8 =1.83481 ν8 =42.72 r16=-0.7387 d16=0.0032 r17=-41.0093 d17=0.0337 n9 =1.74077 ν9 =27.79 r18=1.9045 非球面係数 P=1.0000,E=0.11102 ×10 ,F=0.81520 ,G=0.16924 ×10 D23=0.032 (rb+ra)/(rb-ra) =(r2+r1)/(r2-r1) =-0.519 , (rd+rc)/(rd-rc) =(r18+r17)/(r18-r17) =-0.909 ,f1(1)/ f=-1.014, R2C/ f=r11/ f=0.745 ,ν2P−ν2N=ν6 −ν5 =20.2 , f12/ f=2.59 ,f3 / f=1.44 , (R1R+|R2F|)/ 2f=(r8 +|r10|)/ 2f=0.555 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数、fB はバックフォーカス、D23
は撮影倍率(β)が−0.2の時の第2群と第3群の間
隔である。
Example 10 f = 1, F / 2.06, 2ω = 50.0 °, f B = 0.85 r 1 = −2.4014 d 1 = 0.0432 n 1 = 1.67732 ν 1 = 42.83 r 2 = 0.7613 d 2 = 0.1152 r 3 = 0.9686 d 3 = 0.1347 n 2 = 1.83481 ν 2 = 42.72 r 4 = -1.8248 d 4 = 0.0032 r 5 = 0.6561 d 5 = 0.1191 n 3 = 1.83481 ν 3 = 42.72 r 6 = 1.8625 d 6 = 0.0188 r 7 = 21.1363 d 7 = 0.0324 n 4 = 1.63636 ν 4 = 35.37 r 8 = 0.5658 d 8 = 0.1029 r 9 = (aperture) d 9 = 0.1221 r 10 = -0.5436 d 10 = 0.0441 n 5 = 1.71736 ν 5 = 29.51 r 11 = 0.7453 d 11 = 0.1122 n 6 = 1.77250 ν 6 = 49.66 r 12 = -1.4147 d 12 = 0.0057 r 13 = ∞ d 13 = 0.0678 n 7 = 1.67270 ν 7 = 32.10 r 14 = -1.2176 ( aspherical) d 14 = 0.0108 r 15 = -22.3691 d 15 = 0.0766 n 8 = 1.83481 ν 8 = 42.72 r 16 = -0.7387 d 16 = 0.0032 r 17 = -41.0093 d 17 = 0.0337 n 9 = 1.74077 ν 9 = 27.79 r 18 = 1.9045 Aspheric coefficient P 1.0000, E = 0.11102 × 10, F = 0.81520, G = 0.16924 × 10 D 23 = 0.032 (r b + r a) / (r b -r a) = (r 2 + r 1) / (r 2 -r 1) = -0.519, (r d + r c) / (r d -r c) = (r 18 + r 17) / (r 18 -r 17) = -0.909, f 1 (1) / f = - 1.014, R 2C / f = r 11 / f = 0.745, ν 2P -ν 2N = ν 6 -ν 5 = 20.2, f 12 / f = 2.59, f 3 / f = 1.44, (R 1R + | R 2F | ) / 2f = (r 8 + | r 10 |) / 2f = 0.555 However r 1, r 2, ··· the radius of curvature of each lens surface, d
.. , D 2 ,...
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
The Abbe number of each lens, f B is the back focus, D 23
Is the distance between the second and third units when the imaging magnification (β) is -0.2.

【0049】上記実施例1乃至実施例4は夫々、図1乃
至図4に又実施例6乃至実施例8は夫々図6乃至図8に
示す通りのレンズ構成である。即ち正の屈折力の第1群
1と、絞りと、第2群G2と、正の屈折力の第3群G3
とよりなる。そして第1群G1は最も物体側と最も像側
とに負レンズを配置しそのうち、最も像側の負レンズは
像側の面を凹面にしたことが特徴である。又第2群G2
は全体として正の屈折力を有している。更に第3群G3
はその最も像側に配置したレンズが像側が凹面である負
レンズである。そして前記の各条件を満足している。こ
れら実施例は、いずれも、レンズ周辺に向かって正の屈
折力が弱くなる非球面を有するものである。したがって
非球面を凸面に用いた場合、レンズ周辺に向かって曲率
半径が大になり、又凹面に用いた場合、レンズ周辺に向
かって曲率半径が小になる。この非球面は主として球面
収差、コマ収差の補正を行なうためのものである。
The first to fourth embodiments have lens configurations as shown in FIGS. 1 to 4, respectively, and the sixth to eighth embodiments have lens configurations as shown in FIGS. 6 to 8, respectively. That is, the first group G 1 having a positive refractive power, the stop, the second group G 2, and the third group G 3 having a positive refractive power.
And The first group G 1 is the most object side of the most places the negative lens on the image side of which, the most negative lens on the image side is characterized by that the surface on the image side concave surface. Second group G 2
Has a positive refractive power as a whole. Third group G 3
Is a negative lens whose most image-side lens is concave on the image side. The above conditions are satisfied. Each of these embodiments has an aspheric surface whose positive refractive power becomes weaker toward the periphery of the lens. Therefore, when the aspherical surface is used for the convex surface, the radius of curvature increases toward the lens periphery, and when the aspherical surface is used for the concave surface, the radius of curvature decreases toward the lens periphery. This aspherical surface is mainly for correcting spherical aberration and coma.

【0050】又実施例5は、図5に示す通りの構成であ
る。前記の実施例1等は第2群が最も物体側に物体側か
ら順に両凹レンズと正レンズとを接合させた接合レンズ
を配置しているが、実施例5はこの両凹レンズと正レン
ズとの接合レンズの更に像側に凸面を像側に向けた負レ
ンズを接合さている。
The fifth embodiment has a configuration as shown in FIG. In the first embodiment and the like, the cemented lens in which the second group is cemented with the biconcave lens and the positive lens in the order from the object side to the second group is arranged from the object side. In the fifth embodiment, the biconcave lens and the positive lens are combined. A negative lens having a convex surface facing the image side is further cemented to the image side of the cemented lens.

【0051】更に、実施例9,10は、夫々図9,図1
0に示す構成で、実施例1等と類似する構成であるが、
第2群が全体として負の屈折力を有している点で異なっ
ている。
Further, Embodiments 9 and 10 correspond to FIGS. 9 and 1 respectively.
0, which is similar to the first embodiment, etc.
The difference is that the second group has a negative refractive power as a whole.

【0052】実施例中、非球面の形状は、光軸上、光の
進行方向にx軸、光軸と直交する方向にy軸をとったと
き、以下の式で表わす。 但し、rは近軸曲率半径、P,E,F,G,H,・・・
は非球面係数である。
In the embodiments, the shape of the aspherical surface is represented by the following equation when the x-axis is taken along the optical axis and the y-axis is taken in the direction perpendicular to the optical axis. Where r is the paraxial radius of curvature, P, E, F, G, H,.
Is an aspheric coefficient.

【0053】[0053]

【発明の効果】本発明のレンズ系は、一眼レフカメラ用
の標準レンズであって、焦点距離がフィルム対角長近く
で、Fナンバーが2.0程度と明るく、全画面にわたっ
て極めて良好な性能を有している。
The lens system of the present invention is a standard lens for a single-lens reflex camera, has a focal length near the diagonal of the film, an F-number of about 2.0, and is very good in performance over the entire screen. have.

【0054】又本発明のレンズ系は、適切なフローティ
ング機構を採用することによって撮影倍率が0〜−1/
5 倍程度の範囲で良好な性能を維持している。
The lens system according to the present invention has a photographing magnification of 0 to -1 / 1 / by adopting an appropriate floating mechanism.
Good performance is maintained in the range of about 5 times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例4の断面図FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の実施例5の断面図FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】本発明の実施例6の断面図FIG. 6 is a sectional view of a sixth embodiment of the present invention.

【図7】本発明の実施例7の断面図FIG. 7 is a sectional view of a seventh embodiment of the present invention.

【図8】本発明の実施例8の断面図FIG. 8 is a sectional view of Embodiment 8 of the present invention.

【図9】本発明の実施例9の断面図FIG. 9 is a sectional view of Embodiment 9 of the present invention.

【図10】本発明の実施例10の断面図FIG. 10 is a sectional view of Embodiment 10 of the present invention.

【図11】本発明の実施例1の無限遠物点に対する収差
曲線図
FIG. 11 is an aberration curve diagram for an object point at infinity according to the first embodiment of the present invention.

【図12】本発明の実施例1の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 12 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the first embodiment of the present invention.

【図13】本発明の実施例2の無限遠物点に対する収差
曲線図
FIG. 13 is an aberration curve diagram for an object point at infinity according to the second embodiment of the present invention.

【図14】本発明の実施例2の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 14 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the second embodiment of the present invention.

【図15】本発明の実施例3の無限遠物点に対する収差
曲線図
FIG. 15 is an aberration curve diagram for an object point at infinity according to a third embodiment of the present invention.

【図16】本発明の実施例3の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 16 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the third embodiment of the present invention.

【図17】本発明の実施例4の無限遠物点に対する収差
曲線図
FIG. 17 is an aberration curve diagram for an object point at infinity according to a fourth embodiment of the present invention.

【図18】本発明の実施例4の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 18 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the fourth embodiment of the present invention.

【図19】本発明の実施例5の無限遠物点に対する収差
曲線図
FIG. 19 is an aberration curve diagram for an object point at infinity according to a fifth embodiment of the present invention.

【図20】本発明の実施例5の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 20 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the fifth embodiment of the present invention.

【図21】本発明の実施例6の無限遠物点に対する収差
曲線図
FIG. 21 is an aberration curve diagram for an object point at infinity according to a sixth embodiment of the present invention.

【図22】本発明の実施例6の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 22 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the sixth embodiment of the present invention.

【図23】本発明の実施例7の無限遠物点に対する収差
曲線図
FIG. 23 is an aberration curve diagram for an object point at infinity according to a seventh embodiment of the present invention.

【図24】本発明の実施例7の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 24 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the seventh embodiment of the present invention.

【図25】本発明の実施例8の無限遠物点に対する収差
曲線図
FIG. 25 is an aberration curve diagram for an object point at infinity according to the eighth embodiment of the present invention.

【図26】本発明の実施例8の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 26 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the eighth embodiment of the present invention.

【図27】本発明の実施例9の無限遠物点に対する収差
曲線図
FIG. 27 is an aberration curve diagram for an object point at infinity according to a ninth embodiment of the present invention.

【図28】本発明の実施例9の撮影倍率−0.2の近距
離物点に対する収差曲線図
FIG. 28 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the ninth embodiment of the present invention.

【図29】本発明の実施例10の無限遠物点に対する収
差曲線図
FIG. 29 is an aberration curve diagram for an object point at infinity according to a tenth embodiment of the present invention.

【図30】本発明の実施例10の撮影倍率−0.2の近
距離物点に対する収差曲線図
FIG. 30 is an aberration curve diagram for a short-distance object point at a photographing magnification of −0.2 according to the tenth embodiment of the present invention.

フロントページの続き (56)参考文献 特開 平1−145617(JP,A) 特開 平5−80252(JP,A) 特開 平3−208004(JP,A) 特開 昭59−152414(JP,A) 特開 昭51−148421(JP,A) 特開 平2−285313(JP,A) 特開 平1−214812(JP,A) 特開 昭37−5536(JP,A) 特開 昭55−35322(JP,A) 特開 昭55−59216(JP,A) 特開 昭63−205625(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 Continuation of the front page (56) References JP-A-1-145617 (JP, A) JP-A-5-80252 (JP, A) JP-A-3-208004 (JP, A) JP-A-59-152414 (JP) JP-A-51-148421 (JP, A) JP-A-2-285313 (JP, A) JP-A-1-214812 (JP, A) JP-A-37-5536 (JP, A) 55-35322 (JP, A) JP-A-55-59216 (JP, A) JP-A-63-205625 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 9/00 -17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に、正の屈折力の第1群と、
絞りと、第2群と、正の屈折力の第3群とよりなり、前
記第1群は負レンズを最も物体側に又像側に凹面を向け
た負レンズを最も像側に配置したものであり、第2群
は、物体側より順に両凹レンズと正レンズとを接合した
2枚接合レンズまたは物体側より順に両凹レンズと正レ
ンズとレンズとを接合した3枚接合レンズの接合レンズ
成分を配置したものであり、第3群は像側に凹面を向け
た負レンズを最も像側に配置したものであり、次の条件
(1)乃至(3)を満足する撮影レンズ。 (1) −2<(rb+ra)/(rb-ra) <0 (2) −3<(rd+rc)/(rd-rc) <0 (3) −1.6<f1(1)/f<−0.6 fは全系の焦点距離、f1(1) は第1群の最も物体側に配
置された負レンズの焦点距離、ra,rbは第1群の最も物
体側に配置された負レンズの物体側の面および像側の面
の曲率半径、rc,rdは第3群の最も像側に配置された負
レンズの物体側の面および像側の面の曲率半径である。
1. A first group having a positive refractive power, in order from the object side,
An aperture stop, a second unit, and a third unit having a positive refractive power, wherein the first unit has a negative lens arranged closest to the object side and a negative lens arranged concave toward the image side arranged closest to the image side. In the second group, the biconcave lens and the positive lens are cemented in order from the object side.
Double cemented lens or biconcave lens and positive lens in order from the object side
Lens of three cemented lenses in which lens and lens are joined
Is obtained by placing the components, the third group are those arranged on the most image side negative lens having a concave surface on the image side, the imaging lens satisfying the following conditions (1) to (3). (1) −2 <(r b + r a ) / (r b −r a ) <0 (2) −3 <(r d + r c ) / (r d −r c ) <0 (3) − 1.6 <f 1 (1) /f<-0.6 f is the focal length of the entire system, f 1 (1) is the focal length of the negative lens disposed on the most object side of the first group, r a, r b is the radius of curvature of the object-side surface and image side surface of the negative lens disposed on the most object side of the first group radius, r c, r d is the negative lens disposed on the most image side of the third group This is the radius of curvature of the object-side surface and the image-side surface.
【請求項2】物体側から順に、正の屈折力の第1群と、
絞りと、第2群と、正の屈折力の第3群とよりなり、前
記第3群は像側に凹面を向けた負レンズを最も像側に配
置したもので、第1群と絞りと第2群とを一体で物体側
へ繰り出すと共に第3群を第2群との間隔が増大するよ
うに物体側ヘ繰り出して近距離物体に合焦するもので、
次の条件(7),(8)を満足する撮影レンズ。 (7) 1.2<f12/f<3 (8) 1.2<f3/ f<3 ただしfは全系の焦点距離、f12 は第1群と第2群の合
成焦点距離、f3は第3群の焦点距離である。
2. A first group having a positive refractive power, in order from the object side,
An aperture, a second unit, and a third unit having a positive refractive power. The third unit is a unit in which a negative lens having a concave surface facing the image side is disposed closest to the image side. The second lens unit and the second lens unit are unified to the object side, and the third lens unit is extended to the object side so as to increase the distance between the second lens unit and the second lens unit to focus on a short-distance object.
A photographing lens satisfying the following conditions (7) and (8). (7) 1.2 <f 12 / f <3 (8) 1.2 <f 3 / f <3 where f is the focal length of the entire system, f 12 is the combined focal length of the first and second groups, f 3 is the focal length of the third group.
【請求項3】次の条件(4),(5),(6)を満足す
ることを特徴とする請求項1の撮影レンズ。 (4) 0.3<R2C/f<1.2 (5) 8<ν2P−ν2N<40 (6) 0.4<(R1R+|R2F|)/2f<2 , R2F
<0 ただしR1R は第1群の最も像側の負レンズの像側の面の
曲率半径、R2F は第2群の最も物体側の負レンズの物体
側の面の曲率半径、R2C は第2群の接合レンズの物体側
に凸の接合面の曲率半径、ν2N,ν2Pは夫々第2群の接
合レンズの最も物体側の前記両凹レンズおよびそれに接
合される前記正レンズのアッベ数である。
3. The photographing lens according to claim 1, wherein the following conditions (4), (5), and (6) are satisfied. (4) 0.3 <R 2C /f<1.2 (5) 8 <ν 2P −ν 2N <40 (6) 0.4 <(R 1R + | R 2F |) / 2f <2, R 2F
<0 where R 1R is the radius of curvature of the image side surface of the negative lens closest to the image side of the first group, R 2F is the radius of curvature of the object side surface of the negative lens closest to the object side of the second group, and R 2C is The radii of curvature of the cemented surfaces convex to the object side of the cemented lens of the second group, ν 2N and ν 2P, are the most object side biconcave lens of the cemented lens of the second group and the tangent thereto, respectively.
The Abbe number of the positive lens to be combined .
【請求項4】次の条件(9)を満足することを特徴とす
る請求項2の撮影レンズ。 (9) −3<(rd+rc)/(rd−rc) <0 ただしrc ,rd は夫々第3群の最も像側に配置された
負レンズの物体側の面および像側の面の曲率半径であ
る。
4. The photographing lens according to claim 2, wherein the following condition (9) is satisfied. (9) -3 <(r d + r c) / (r d -r c) <0 However r c, r d is the object-side surface of the negative lens disposed respectively closest to the image side of the third group and the image The radius of curvature of the side surface.
JP19583492A 1992-03-26 1992-07-01 Shooting lens Expired - Fee Related JP3231404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19583492A JP3231404B2 (en) 1992-03-26 1992-07-01 Shooting lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-98553 1992-03-26
JP9855392 1992-03-26
JP19583492A JP3231404B2 (en) 1992-03-26 1992-07-01 Shooting lens

Publications (2)

Publication Number Publication Date
JPH05323184A JPH05323184A (en) 1993-12-07
JP3231404B2 true JP3231404B2 (en) 2001-11-19

Family

ID=14222883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19583492A Expired - Fee Related JP3231404B2 (en) 1992-03-26 1992-07-01 Shooting lens

Country Status (1)

Country Link
JP (1) JP3231404B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061226A1 (en) * 2012-10-15 2014-04-24 株式会社ニコン Image-capturing lens, optical device having said lens and method for manufacturing said lens
JP2014081429A (en) * 2012-10-15 2014-05-08 Nikon Corp Imaging lens, optical device having imaging lens and manufacturing method of imaging lens
JP2014081431A (en) * 2012-10-15 2014-05-08 Nikon Corp Imaging lens, optical device having imaging lens and manufacturing method of imaging lens
CN112014953B (en) * 2020-10-13 2021-01-01 瑞泰光学(常州)有限公司 Image pickup optical lens
CN112014951B (en) * 2020-10-13 2020-12-29 瑞泰光学(常州)有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
JPH05323184A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP4612766B2 (en) Zoom lens and optical apparatus using the same
JP2006084829A (en) Zoom lens and imaging apparatus having the same
JPH05157965A (en) Wide-angle lens
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JP3652179B2 (en) Zoom lens
JP3254239B2 (en) Large aperture medium telephoto lens
JP3710352B2 (en) Zoom lens and optical apparatus using the same
JP2002287031A (en) Zoom lens and optical equipment using the same
JP3536128B2 (en) Zoom lens with anti-vibration function
JP2003161877A (en) Macro lens and camera equipped with the same
JP4624744B2 (en) Wide angle zoom lens
JP3184581B2 (en) Zoom lens
JP4098586B2 (en) Zoom lens
JP4838899B2 (en) Zoom lens and optical apparatus using the same
JP3268824B2 (en) Small two-group zoom lens
JP2001290076A (en) Variable focal length lens system
JP3234618B2 (en) Large aperture medium telephoto lens
JP3231404B2 (en) Shooting lens
JPH0527163A (en) Telephoto lens
JP3454992B2 (en) Viewfinder optical system
JP3331228B2 (en) Bright wide-angle lens
JP3706827B2 (en) Zoom lens and optical apparatus having the same
JP4027343B2 (en) Zoom lens and imaging apparatus using the same
JPH0476087B2 (en)
JPH073503B2 (en) Wide-angle lens with long back focus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees