JP3518886B2 - High-performance wide-angle lens - Google Patents

High-performance wide-angle lens

Info

Publication number
JP3518886B2
JP3518886B2 JP08114694A JP8114694A JP3518886B2 JP 3518886 B2 JP3518886 B2 JP 3518886B2 JP 08114694 A JP08114694 A JP 08114694A JP 8114694 A JP8114694 A JP 8114694A JP 3518886 B2 JP3518886 B2 JP 3518886B2
Authority
JP
Japan
Prior art keywords
lens
lens group
focal length
group
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08114694A
Other languages
Japanese (ja)
Other versions
JPH07270679A (en
Inventor
敏秀 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP08114694A priority Critical patent/JP3518886B2/en
Publication of JPH07270679A publication Critical patent/JPH07270679A/en
Application granted granted Critical
Publication of JP3518886B2 publication Critical patent/JP3518886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、写真レンズ特にレンズ
シャッター用カメラに適した高性能な広角レンズに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance wide-angle lens suitable for a photographic lens, particularly a camera for a lens shutter.

【0002】[0002]

【従来の技術】従来、レンズシャッターカメラに使用さ
れる広角の撮影レンズは、トリプレットタイプやテッサ
ータイプが古くから知られている。これらのタイプの写
真レンズは、レンズの枚数が少なく小型であるが、高性
能とはいえず特にサジタル像面に大きな膨らみを持つ傾
向があり非点収差が大である。
2. Description of the Related Art Conventionally, as a wide-angle photographing lens used for a lens shutter camera, a triplet type and a tesser type have been known for a long time. These types of photographic lenses have a small number of lenses and are small in size, but cannot be said to have high performance, and in particular, tend to have a large bulge on the sagittal image plane, and have large astigmatism.

【0003】従来の写真レンズの、特開昭55−105
216号公報のレンズ系は、サジタル像面が大きく膨ら
んでおり、また画面周辺にいくにしたがって非点隔差が
増大していき、又倍率の色収差も十分には補正されてい
ない。そのために、画面周辺において高性能を維持する
ことが困難である。
A conventional photographic lens is disclosed in Japanese Patent Application Laid-Open No. 55-105.
In the lens system disclosed in Japanese Patent No. 216, the sagittal image plane is greatly expanded, the astigmatic difference increases toward the periphery of the screen, and the chromatic aberration of magnification is not sufficiently corrected. Therefore, it is difficult to maintain high performance around the screen.

【0004】また、トリプレットタイプやテッサータイ
プのレンズ系は、その多くがビハインド絞りであり、そ
のために周辺光量の確保と前玉径が大にならないように
する必要がある。
Further, most of the triplet type and the tesser type lens systems are behind apertures. Therefore, it is necessary to secure the peripheral light amount and to prevent the diameter of the front lens from becoming large.

【0005】また特開昭60−121413号公報に記
載されているレンズ系は、テッサータイプのレンズ系の
像側に負のメニスカスレンズを配置したものである。こ
の従来のレンズ系のように、テッサータイプのレンズの
像面側に負レンズを付加すると、主点位置を前玉よりも
前におくことができるので、レンズ系の全長(レンズ系
の第1面から像面までの距離)の短縮のためには非常に
効果的である。特に、この負レンズを物体側のレンズか
ら離して像面位置の近くに配置すると、テレフォトタイ
プの効果が増大し、全長を短くすることが出来る。
The lens system described in Japanese Patent Application Laid-Open No. Sho 60-121413 is a lens system in which a negative meniscus lens is arranged on the image side of a Tessar type lens system. If a negative lens is added to the image plane side of a Tessar type lens as in this conventional lens system, the principal point position can be located before the front lens, so that the entire length of the lens system (first lens system) This is very effective for shortening the distance from the surface to the image plane). In particular, when the negative lens is arranged near the image plane position away from the lens on the object side, the effect of the telephoto type increases and the overall length can be shortened.

【0006】しかし、最終の負レンズを像面に近づける
と、非点収差や歪曲収差の発生が大になる。従来のレン
ズ系は、この負レンズの形状を像面側に凸面を向けたメ
ニスカスレンズにしてこの非点収差や歪曲収差の発生を
抑えるようにしている。このようにして、レンズ系の全
長を短縮することは可能であるが、この負レンズの物体
側にある程度の空気間隔を確保しなければならず、レン
ズ系の構成長(レンズ第1面から最終面までの距離)が
増大する。
However, when the final negative lens is brought closer to the image plane, the occurrence of astigmatism and distortion becomes large. In a conventional lens system, the shape of the negative lens is formed as a meniscus lens having a convex surface facing the image surface side so as to suppress occurrence of astigmatism and distortion. In this way, it is possible to shorten the overall length of the lens system, but it is necessary to secure a certain air gap on the object side of the negative lens, and the length of the lens system (from the first lens surface to the final Distance to the surface).

【0007】最近のコンパクトカメラは、携帯時にカメ
ラが薄くなるように撮影レンズを沈胴させる方式のもの
が多い。このような沈胴式カメラに使用する撮影レンズ
は、レンズ系の構成長が短い方が好ましい。
[0007] Many recent compact cameras are of a type in which a taking lens is retracted so that the camera becomes thinner when being carried. It is preferable that the photographing lens used in such a retractable camera has a short configuration length of the lens system.

【0008】特開昭60−121413号公報に記載さ
れているレンズ系は、トリプレットタイプのレンズ系の
像面側に負レンズを設けたもので、この負レンズが両凹
レンズである。このレンズ系は、ビハインド絞りのテッ
サータイプの光学系に近い構成で、テッサータイプのレ
ンズ系の接合レンズを分離した構成である。そのため
に、前述のようなテッサータイプの光学系の欠点を持っ
ており、満足な光学性能を有していない。
The lens system described in Japanese Patent Application Laid-Open No. Sho 60-121413 is a triplet type lens system in which a negative lens is provided on the image plane side, and the negative lens is a biconcave lens. This lens system has a configuration similar to a behind-the-spot type optical system of the Tessar type, in which the cemented lens of the Tessar type lens system is separated. Therefore, it has the drawbacks of the above-mentioned optical system of the Tesser type and does not have satisfactory optical performance.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、少な
いレンズ枚数の簡単な構成で、画面周辺にいたるまでの
光学性能が良好で、レンズ構成長の短い、特に沈胴式カ
メラに適した画角が60°以上の広角撮影レンズを提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a simple configuration with a small number of lenses, good optical performance up to the periphery of the screen, and a short lens configuration length, particularly an image suitable for a retractable camera. An object of the present invention is to provide a wide-angle photographing lens having an angle of 60 ° or more.

【0010】[0010]

【課題を解決するための手段】本発明の広角レンズは、
物体側より順に、非球面を有する正の第1レンズ群と、
負の第2レンズ群と、正の第3レンズ群と、像面側の面
が物体側の面よりも強い曲率の凹面である負の第4レン
ズ群とより構成されている。
The wide-angle lens according to the present invention comprises:
A positive first lens group having an aspheric surface, in order from the object side;
It is composed of a negative second lens group, a positive third lens group, and a negative fourth lens group whose image-side surface is a concave surface having a stronger curvature than the object-side surface.

【0011】本発明の広角レンズのような構成のレンズ
系において、その構成長を短くするためには、第4レン
ズ群を第3レンズ群に近づける必要がある。このように
第4レンズ群を第3レンズ群に近づけると、従来例のよ
うな第4レンズ群がメニスカス形状のレンズの場合、第
1レンズ群から第3レンズ群までの合成の主点位置と第
4レンズ群の主点位置の間隔が狭くなり、テレフォトタ
イプにしたことによる効果が少なくなり、全長が長くな
る。
In the lens system having a configuration like a wide-angle lens according to the present invention, it is necessary to bring the fourth lens group closer to the third lens group in order to shorten the configuration length. When the fourth lens group is brought closer to the third lens group in this manner, when the fourth lens group is a meniscus-shaped lens as in the conventional example, the position of the principal point of the combination from the first lens group to the third lens group is determined. The distance between the principal points of the fourth lens group is reduced, the effect of the telephoto type is reduced, and the overall length is increased.

【0012】本発明では第4レンズ群の物体側の曲率を
弱くし、像面側の曲率を負の方向へ強くすることによ
り、第4レンズ群の屈折力を保ちながらこのレンズ群の
主点位置をなるべく像面側に近づけることによって第1
レンズ群〜第3レンズ群の合成の主点位置と第4レンズ
群の主点位置との間隔が狭くならないようにして、レン
ズ系の全長が長くならないようにした。
In the present invention, the curvature of the fourth lens unit on the object side is reduced and the curvature of the fourth lens unit on the image plane side is increased in the negative direction. By bringing the position as close to the image plane as possible,
The distance between the combined principal point position of the lens group to the third lens group and the principal point position of the fourth lens group was not reduced, and the overall length of the lens system was not increased .

【0013】しかし、第4レンズ群を上記のようにする
と、第4レンズ群がアプラナティックに近い形状となる
ため、球面収差の発生量は少ないが非点収差や歪曲収差
の発生量が大になる。
However, when the fourth lens group is formed as described above, the fourth lens group has a shape close to aplanatic, so that the amount of spherical aberration is small but the amount of astigmatism and distortion is large. become.

【0014】本発明は、第1レンズ群に非球面を用いる
ことにより第4レンズ群で発生する非点収差や歪曲収差
を補正するようにした。第1レンズ群は正の屈折力を有
し、第4レンズ群は負の屈折力を有しているので、第4
レンズ群で発生する非点収差や歪曲収差を第1レンズ群
で補正することは不可能である。そのため、本発明で
は、第1レンズ群に、レンズ周辺へ行くほど負の屈折力
が強くなるような非球面を用いて、第1レンズ群で発生
する収差を負のレンズ群で発生するものと同じになるよ
うにして、第4レンズ群で発生する非点収差と歪曲収差
を非球面を持つ第1レンズ群で補正するようにした。
According to the present invention, astigmatism and distortion generated in the fourth lens group are corrected by using an aspheric surface in the first lens group. The first lens group has a positive refractive power and the fourth lens group has a negative refractive power.
It is impossible for the first lens group to correct astigmatism and distortion generated in the lens groups. For this reason, in the present invention, the first lens group uses an aspheric surface whose negative refractive power becomes stronger toward the periphery of the lens, and the aberration generated in the first lens group is generated in the negative lens group. In the same manner, astigmatism and distortion generated in the fourth lens group are corrected by the first lens group having an aspheric surface.

【0015】また、この第1レンズ群の非球面で発生す
る球面収差やコマ収差により、第3レンズ群で発生する
球面収差やコマ収差を同時に補正するようにしている。
The spherical aberration and coma generated by the third lens group are simultaneously corrected by the spherical aberration and coma generated by the aspheric surface of the first lens group.

【0016】次に、第1レンズ群を、物体側に凸面を向
けた正のメニスカスレンズとすることが好ましく、これ
により第1レンズ群の球面で発生する収差つまり正レン
ズにより発生する収差を減らすことが出来、非球面にか
かる負担を小さく出来る。
Next, it is preferable that the first lens group is a positive meniscus lens having a convex surface facing the object side, thereby reducing aberrations generated on the spherical surface of the first lens group, that is, aberrations generated by the positive lens. And the burden on the aspherical surface can be reduced.

【0017】このように第1レンズ群の非球面による球
面収差やコマ収差の発生を小さく出来、この非球面によ
る球面収差やコマ収差が補正過剰になるのを防止でき
る。
As described above, the occurrence of spherical aberration and coma due to the aspherical surface of the first lens unit can be reduced, and the spherical aberration and coma due to the aspherical surface can be prevented from being overcorrected.

【0018】又、第2レンズ群は、物体側に凸面を向け
たメニスカスレンズとすることが望ましい。第2レンズ
群を物体側に凸面を向けたメニスカスレンズにすれば、
その物体側の面で発生する球面収差,コマ収差,非点収
差の発生を抑えることが出来、第1レンズ群の非球面に
より発生するこれら収差が補正過剰になるのをおさえ、
レンズ系全体の収差のバランスをとることが出来る。ま
た第2レンズ群の偏芯による性能劣化を小さく出来る。
Preferably, the second lens group is a meniscus lens having a convex surface facing the object side. If the second lens group is a meniscus lens with the convex surface facing the object side,
The occurrence of spherical aberration, coma, and astigmatism occurring on the object-side surface can be suppressed, and these aberrations caused by the aspheric surface of the first lens unit are prevented from being overcorrected.
The aberration of the entire lens system can be balanced. Further, performance deterioration due to eccentricity of the second lens group can be reduced.

【0019】第3レンズ群は、物体側より順に、両凸レ
ンズと像面側に凸面を向けた負のメニスカスレンズにて
構成し、正レンズ(両凸レンズ)の像面側の面と負レン
ズの物体側の面で高次の球面収差を発生させ、これによ
り第2レンズ群の像面側の面で発生する高次の球面収差
とバランスをとることが出来、全体として収差を良好に
補正できる。また正レンズと負レンズとを接合して接合
面により高次の球面収差を発生させてもよい。このよう
に第3レンズ群を接合レンズにすれば、偏芯をおさえる
ことが容易になり、製造面で有利である。また、第3レ
ンズ群の最も像面側の面は、像面側に凸面を向けること
により、この面で発生する非点収差や歪曲収差を小さく
出来、又この面で発生する球面収差やコマ収差は、第1
レンズ群の非球面で補正出来、全体的にバランスよく補
正できる。
The third lens group includes, in order from the object side, a biconvex lens and a negative meniscus lens having a convex surface facing the image surface side. The image side surface of the positive lens (biconvex lens) and the negative lens surface Higher-order spherical aberration is generated on the object-side surface, whereby high-order spherical aberration generated on the image-side surface of the second lens group can be balanced, and the aberration as a whole can be favorably corrected. . In addition, the positive lens and the negative lens may be joined to generate a higher-order spherical aberration by the joint surface. If the third lens group is a cemented lens as described above, it is easy to suppress eccentricity, which is advantageous in terms of manufacturing. The most image side surface of the third lens group has a convex surface facing the image side, so that astigmatism and distortion generated on this surface can be reduced, and spherical aberration and coma generated on this surface can be reduced. Aberration is the first
Correction can be made with the aspherical surface of the lens group, and correction can be made with good balance as a whole.

【0020】更に第4レンズ群は、次の条件を満足する
ことが好ましい。
It is preferable that the fourth lens unit satisfies the following condition.

【0021】(1) 0.1<(R4a+R4b)/(R
4a−R4b)<1.5 ただし、R4aは第4レンズ群の物体側の面の曲率半径、
4bは第4レンズ群の像面側の面の曲率半径である。
(1) 0.1 <(R 4a + R 4b ) / (R
4a- R4b ) <1.5 where R4a is the radius of curvature of the object-side surface of the fourth lens unit,
R 4b is the radius of curvature of the image-side surface of the fourth lens group.

【0022】この条件(1)の下限の0.1を越えると
第4レンズ群の物体側の面の曲率が像面側の面の曲率に
対し強くなりすぎ、第4レンズ群で発生する球面収差が
大になり、第3レンズ群と第4レンズ群の間隔を拡げ第
4レンズ群を像面に近い位置に配置しなければならず、
レンズ構成長が大になり、本発明の目的を達成し得なく
なる。条件(1)の上限の1.5を越えると像面側の面
の曲率が物体側の面の曲率に対し強くなりすぎ非点収
差,歪曲収差の発生が大になりすぎ、第1レンズ群の非
球面でも補正しきれなくなる。またレンズ構成長は短く
出来るが第4レンズ群の像面側の面の外周部の光軸上に
おける位置が面頂よりもかなり像面側になるため鏡枠の
全長が大になり沈胴によるカメラの薄型化が困難にな
る。
When the lower limit of 0.1 to condition (1) is exceeded, the curvature of the object-side surface of the fourth lens unit becomes too strong with respect to the curvature of the image-side surface, and the spherical surface generated by the fourth lens unit. Aberration becomes large, the distance between the third lens unit and the fourth lens unit must be increased, and the fourth lens unit must be arranged at a position close to the image plane.
The lens configuration length becomes large, and the object of the present invention cannot be achieved. When the value exceeds the upper limit of 1.5 of the condition (1), the curvature of the image-side surface becomes too strong with respect to the curvature of the object-side surface, so that astigmatism and distortion occur too much. Can not be corrected even with an aspheric surface. Although the lens length can be shortened, the position of the outer periphery of the surface of the fourth lens group on the image plane side on the optical axis is much closer to the image plane side than the top, so that the total length of the lens barrel becomes large and the camera is collapsed. It becomes difficult to reduce the thickness.

【0023】また、第4レンズ群の焦点距離4
し、レンズ系全系の無限遠物点に合焦した時の焦点距離
をfとする時、次の条件(2)を満足することが望まし
い。
When the focal length of the fourth lens unit is f 4 and the focal length of the entire lens system when focused on an object point at infinity is f, the following condition (2) must be satisfied. Is desirable.

【0024】(2) 0.5<|f4 /f|<2.5 条件(2)の下限の0.5を越えると第4レンズ群の屈
折力が強くなりすぎるため第4レンズ群で発生する非点
収差,歪曲収差の補正が困難になるとともに物体側,像
面側の面の曲率が大になり前述の理由によりレンズ系や
鏡枠の全長が長くなる。又上限の2.5を越えると第4
レンズ群の屈折力が弱くなりすぎてしまうため主点位置
が像面側ヘ寄ってしまいレンズ系の望遠比が大になる。
このように望遠比が大になると、カメラボディーを薄く
するために沈胴量を増やさなければならずそのための機
構が難しくなりレンズ系の偏芯量が大になりやすい。ま
た、第4レンズ群は、その屈折力がペッツバール和の補
正に有効であるので、条件(2)の上限の2.5を越え
るとペッツバール和のバランスをとるのが困難になる。
(2) 0.5 <| f 4 /f|<2.5 When the lower limit of 0.5 to condition (2) is exceeded, the refractive power of the fourth lens unit becomes too strong. It becomes difficult to correct the astigmatism and distortion that occur, and the curvatures of the surfaces on the object side and the image plane side increase, and the total length of the lens system and the lens frame increases for the above-described reason. If the upper limit of 2.5 is exceeded, the fourth
Since the refracting power of the lens group becomes too weak, the principal point position is shifted to the image plane side, and the telephoto ratio of the lens system becomes large.
As described above, when the telephoto ratio becomes large, the amount of collapsing must be increased in order to make the camera body thinner, and a mechanism for that becomes difficult, and the amount of eccentricity of the lens system tends to increase. Further, since the refractive power of the fourth lens group is effective in correcting the Petzval sum, it is difficult to balance the Petzval sum if the upper limit of 2.5 of the condition (2) is exceeded.

【0025】次に本発明のレンズ系におけるフォーカシ
ング方式について述べる。
Next, the focusing method in the lens system of the present invention will be described.

【0026】一般に無限遠物点から近距離物点へのフォ
ーカシングは、レンズ系全体をくり出すことによって行
なうことが出来るが、次の方式によってもフォーカシン
グが可能であり、無限遠物点から近距離物点への全域に
わたって高性能に保ち得る。
In general, focusing from an object point at infinity to an object point at a short distance can be performed by extracting the entire lens system. However, focusing can also be performed by the following method. High performance can be maintained over the whole area to the object point.

【0027】即ち、本出願人の特許出願である特願平5
−21207号に記載した方式と同様に、第2レンズ群
と第3レンズ群との空気間隔を増加させながら無限遠物
点から近距離物点へのフォーカシングを行なう方式であ
る。
That is, the applicant's patent application, Japanese Patent Application No. Hei.
As in the method described in No. -21207, focusing is performed from an object point at infinity to an object point at a short distance while increasing the air gap between the second lens unit and the third lens unit.

【0028】本発明のレンズ系において、全体くり出し
方式によりフォーカシングを行なうと、実用的な近距離
撮影時の撮影倍率である−1/10倍程度になると、非
点収差の変動が非常に大になり性能の劣化が著しくな
る。そこでいわゆるフローティング方式を採用し、近距
離物点での光学性能を安定化させ、より近い物点へのフ
ォーカシングを可能にする。これにより全体くり出しに
よるフォーカシングの場合補正しきれない非点収差の変
動を、前記の第2レンズ群と第3レンズ群の間隔を微妙
に増大させることにより抑制出来る。
In the lens system according to the present invention, when focusing is performed by the whole hollowing-out method, the fluctuation of astigmatism becomes very large when the practical photographing magnification at the time of close-up photographing becomes about -1/10. And the performance is significantly deteriorated. Therefore, a so-called floating method is adopted to stabilize the optical performance at a short-distance object point and to enable focusing to a closer object point. As a result, fluctuations of astigmatism that cannot be completely corrected in the case of focusing by whole drawing can be suppressed by slightly increasing the distance between the second lens unit and the third lens unit.

【0029】又、近距離の物体にフォーカシングした時
の光学性能を安定させるためには、明るさ絞りが第2レ
ンズ群と第3レンズ群の間に配置されていることが好ま
しい。従来、絞りが配置されている空気間隔以外の空気
間隔を変化させてフローティングを行なうレンズ系が知
られており、このレンズ系は、基準波長についての収差
を補正することは出来るが、軸外色収差も同時に補正す
ることは困難であった。
In order to stabilize the optical performance when focusing on an object at a short distance, it is preferable that the aperture stop is disposed between the second lens unit and the third lens unit. Conventionally, there has been known a lens system that performs floating by changing an air interval other than the air interval in which the diaphragm is arranged. This lens system can correct aberrations at a reference wavelength, but has off-axis chromatic aberration. However, it was difficult to correct them at the same time.

【0030】本発明では、明るさ絞りが配置されている
空気間隔を変化させてフローティングを行なうようにし
て、近距離物体にフォーカシングした時の諸収差特に非
点収差、倍率の色収差、コマ収差の変動を極力小さくす
ることが出来る。
In the present invention, floating is performed by changing the distance between the air where the aperture stop is disposed, and various aberrations, particularly astigmatism, chromatic aberration of magnification, and coma when focusing on an object at a short distance. Fluctuations can be minimized.

【0031】ここで、近距離の物体にフォーカシングし
た時の性能を一層安定させるためには、次の条件
(3),(4)を満足することが望ましい。
Here, in order to further stabilize the performance when focusing on a short-distance object, it is desirable to satisfy the following conditions (3) and (4).

【0032】 (3) 0.01<|f34/f12|<0.25 (4) 0.01<|f/f12|<0.3 ただし、f12は第1レンズ群と第2レンズ群との合成焦
点距離、f34は第3レンズ群と第4レンズ群の合成焦点
距離である。
(3) 0.01 <| f 34 / f 12 | <0.25 (4) 0.01 <| f / f 12 | <0.3 where f 12 is the first lens group and the second lens group composite focal length of the lens group, f 34 is a composite focal length of the third lens group and the fourth lens group.

【0033】条件(3)は、フローティングを行なう空
気間隔を境にしての物体側の前群と像面側の後群との焦
点距離の比、つまり前群と後群との屈折力配分を規定し
たものである。この条件(3)の上限の0.25を越え
ると前群の屈折力が強くなりすぎて前群での諸収差量が
増大し、これを後群で補正することがむずかしくなる。
また下限の0.01を越えると無限遠物点での軸外諸収
差の補正にとっては効果的であるが、近距離物点にフォ
ーカシングした時の収差の変動が大きくなり性能が劣化
するため良好な光学性能を保ったままより近距離の物体
にフォーカシングすることが困難になる。
Condition (3) is a condition of the ratio of the focal length of the front group on the object side to the rear group on the image plane side, ie, the distribution of the refractive power between the front group and the rear group, at the boundary of the air space for floating. It is specified. When the value exceeds the upper limit of 0.25 of the condition (3), the refractive power of the front group becomes too strong, and the amount of various aberrations in the front group increases, and it becomes difficult to correct them in the rear group.
If the lower limit of 0.01 is exceeded, it is effective for correcting off-axis aberrations at an object point at infinity, but the fluctuation of aberrations when focusing on a short-distance object point increases and the performance deteriorates, which is good. It becomes difficult to focus on a closer object while maintaining excellent optical performance.

【0034】条件(4)は、レンズ系全体の焦点距離に
対する前群の焦点距離の比を規定したもので、この条件
の上限の0.3を越えると前群の屈折力が強くなりす
ぎ、前群での諸収差の発生量が大になり、これを後群で
補正することがむずかしくなる。又条件(4)の下限の
0.01を越えると後群の屈折力が相対的に強くなりす
ぎて、無限遠物点に対する諸収差の補正には効果的であ
るが、近距離物点での収差変動が大になり高い撮影倍率
を得ることが困難になる。
Condition (4) defines the ratio of the focal length of the front group to the focal length of the entire lens system. If the condition exceeds the upper limit of 0.3, the refractive power of the front group becomes too strong. The amount of occurrence of various aberrations in the front group becomes large, and it becomes difficult to correct them in the rear group. If the lower limit of 0.01 to condition (4) is exceeded, the refracting power of the rear group becomes too strong, which is effective for correcting various aberrations at an object point at infinity. Becomes large and it becomes difficult to obtain a high photographing magnification.

【0035】又、前記のように第3レンズ群を接合レン
ズで構成した時、次の条件(5),(6)を満足するよ
うにすることが望ましい。
When the third lens group is constituted by a cemented lens as described above, it is desirable to satisfy the following conditions (5) and (6).

【0036】(5) 0.2<|f・(nP −nN
/R|<1.4 (6) 5<νP −νN <20 ただしnP ,νP は夫々第3レンズ群の正レンズの屈折
率およびアッベ数、nN ,νN は夫々第3レンズ群の負
レンズの屈折率およびアッベ数である。
(5) 0.2 <| f · (n P −n N )
/R|<1.4 (6) 5 <ν P −ν N <20 where n P and ν P are the refractive index and Abbe number of the positive lens of the third lens unit, and n N and ν N are the third. These are the refractive index and Abbe number of the negative lens in the lens group.

【0037】条件(5)は、球面収差およびコマ収差を
バランス良く補正するための条件で、条件(5)の上限
の1.4を越えると接合面での高次の収差の発生量が増
大し補正過剰になる。又ペッツバールも大きくなる。下
限の0.2を越えると接合面での収差が補正不足にな
り、球面収差,コマ収差の補正が困難になる。
The condition (5) is a condition for correcting spherical aberration and coma in a well-balanced manner. If the upper limit of 1.4 of the condition (5) is exceeded, the amount of generation of higher-order aberrations at the cemented surface increases. Overcorrection. Petzval also increases. If the lower limit of 0.2 is exceeded, the aberration at the cemented surface will be undercorrected, making it difficult to correct spherical aberration and coma.

【0038】条件(6)は、軸上色収差と接合面で発生
する高次の収差とのバランスをとるための条件で、上限
の20を越えると軸上色収差が補正過剰になり、又下限
の5を越えると軸上色収差を補正するために接合面の曲
率が強くなり高次の収差が補正過剰になる。
Condition (6) is a condition for balancing axial chromatic aberration and higher-order aberrations generated at the cemented surface. If the upper limit of 20 is exceeded, axial chromatic aberration will be overcorrected, and the lower limit will be reduced. If it exceeds 5, the curvature of the cemented surface becomes strong to correct axial chromatic aberration, and high-order aberrations are overcorrected.

【0039】上記条件(1)〜(6)の範囲を下記の条
件(1’)〜(6’)に示すようにすれば、レンズ系の
小型化と高性能化にとって一層好ましい。
When the ranges of the above conditions (1) to (6) are set to the following conditions (1 ') to (6'), it is more preferable for miniaturization and high performance of the lens system.

【0040】(1’) 0.2<(R4a+R4b)/
(R4a−R4b)<1.0 (2’) 0.8<|f4 /f|<2.0 (3’) 0.04<|f34/f12|<0.15 (4’) 0.05<|f/f12|<0.18 (5’) 0.3<|f・(nP −nN )/R|<
1.0 (6’) 7<νP −νN <16
(1 ′) 0.2 <(R 4a + R 4b ) /
(R 4a -R 4b ) <1.0 (2 ′) 0.8 <| f 4 /f|<2.0 (3 ′) 0.04 <| f 34 / f 12 | <0.15 (4 ') 0.05 <| f / f 12 | <0.18 (5 ′) 0.3 <| f · (n P −n N ) / R | <
1.0 (6 ′) 7 <ν P −ν N <16

【0041】[0041]

【実施例】次に本発明の高性能な広角レンズの各実施例
を示す。 実施例1 f=35.0,F/2.86,ω=31.45 ° r1 =12.6034 d1 =4.411 n1 =1.78590 ν1 =44.19 r2 =29.9408 (非球面)d2 =0.524 r3 =35.3188 d3 =1.150 n2 =1.72825 ν2 =28.46 r4 =10.6912 d4 =3.800 (可変) r5 =∞(絞り) d5 =1.800 r6 =47.2124 d6 =3.433 n3 =1.77250 ν3 =49.60 r7 =-12.5906 d7 =1.200 n4 =1.59270 ν4 =35.30 r8 =-30.8498 d8 =1.665 r9 =-511.9636 d9 =1.000 n5 =1.51633 ν5 =64.15 r10=28.8440 非球面係数 (第2面)A4 =5.7046×10-5,A6 =-2.2546 ×10-78 =5.8917×10-9,A10=-5.1372 ×10-12 合焦間隔 無限物点 至近(40cm) d4 3.800 4.128 fB 21.782 25.575 (R4a+R4b)/(R4a−R4b)=0.89,|f4 /f|=1.51 |f34/f12|=0.11,|f/f12|=0.12 |f・(nP −nN )/R|=0.50,νP −νN =14.3
Next, embodiments of the high-performance wide-angle lens according to the present invention will be described. Example 1 f = 35.0, F / 2.86, ω = 31.45 ° r 1 = 12.6603 d 1 = 4.411 n 1 = 1.78590 ν 1 = 44.19 r 2 = 29.9408 (aspherical surface) d 2 = 0.524 r 3 = 35.3188 d 3 = 1.150 n 2 = 1.72825 v 2 = 28.46 r 4 = 10.6912 d 4 = 3.800 (variable) r 5 = ∞ (aperture) d 5 = 1.800 r 6 = 47.2124 d 6 = 3.433 n 3 = 1.77250 v 3 = 49.60 r 7 = -12.5906 d 7 = 1.200 n 4 = 1.59270 ν 4 = 35.30 r 8 = -30.8498 d 8 = 1.665 r 9 = -511.9636 d 9 = 1.000 n 5 = 1.51633 ν 5 = 64.15 r 10 = 28.8440 aspherical coefficients (second Surface) A 4 = 5.7046 × 10 -5 , A 6 = -2.2546 × 10 -7 A 8 = 5.8917 × 10 -9 , A 10 = -5.1372 × 10 -12 Focusing distance Infinite object point Closest (40cm) d 4 3.800 4.128 f B 21.782 25.575 (R 4a + R 4b) / (R 4a -R 4b) = 0.89, | f 4 /f|=1.51 | f 34 / f 12 | = 0.11, | f / f 12 | = 0.12 | f · (n P -n N) /R|=0.50,ν P -ν N = 14.3

【0042】実施例2 f=35.0,F/2.86,ω=31.36 ° r1 =12.4241 d1 =4.183 n1 =1.78590 ν1 =44.19 r2 =19.0646 (非球面)d2 =0.616 r3 =22.8606 d3 =1.150 n2 =1.72825 ν2 =28.46 r4 =10.1121 d4 =3.148 (可変) r5 =∞(絞り) d5 =1.800 r6 =31.0376 d6 =4.655 n3 =1.77250 ν3 =49.60 r7 =-9.3182 d7 =1.200 n4 =1.59270 ν4 =35.30 r8 =-26.8650 d8 =0.783 r9 =-52.4130 d9 =1.000 n5 =1.51633 ν5 =64.15 r10=26.6689 (非球面) 非球面係数 (第2面) A4 =5.6311×10-5,A6 =7.0804×10-78 =-7.7295 ×10-9,A10=1.8481×10-10 (第10面)A4 =5.0390×10-5,A6 =-7.8256 ×10-78 =1.7028×10-8,A10=-1.0165 ×10-10 合焦間隔 無限物点 至近(40cm) d4 3.148 3.248 fB 23.661 27.449 (R4a+R4b)/(R4a−R4b)=0.33,|f4 /f|=0.97 |f34/f12|=0.07,|f/f12|=0.10 |f・(nP −nN )/R|=0.68,νP −νN =14.3Example 2 f = 35.0, F / 2.86, ω = 31.36 ° r 1 = 12.4241 d 1 = 4.183 n 1 = 1.78590 ν 1 = 44.19 r 2 = 19.0646 (aspherical surface) d 2 = 0.616 r 3 = 22.8606 d 3 = 1.150 n 2 = 1.72825 ν 2 = 28.46 r 4 = 10.1121 d 4 = 3.148 ( variable) r 5 = ∞ (stop) d 5 = 1.800 r 6 = 31.0376 d 6 = 4.655 n 3 = 1.77250 ν 3 = 49.60 r 7 = -9.3182 d 7 = 1.200 n 4 = 1.59270 ν 4 = 35.30 r 8 = -26.8650 d 8 = 0.783 r 9 = -52.4130 d 9 = 1.000 n 5 = 1.51633 ν 5 = 64.15 r 10 = 26.6689 ( aspherical Aspheric coefficient (second surface) A 4 = 5.6311 × 10 -5 , A 6 = 7.0804 × 10 -7 A 8 = -7.7295 × 10 -9 , A 10 = 1.8481 × 10 -10 (tenth surface) 4 = 5.0390 x 10 -5 , A 6 = -7.8256 x 10 -7 A 8 = 1.7028 x 10 -8 , A 10 = -1.0165 x 10 -10 Focusing distance Infinite object point Closest (40cm) d 4 3.148 3.248 f B 23.661 27.449 (R 4a + R 4b) / (R 4a -R 4b) = 0.33, | f 4 / f | 0.97 | f 34 / f 12 | = 0.07, | f / f 12 | = 0.10 | f · (n P -n N) /R|=0.68,ν P -ν N = 14.3

【0043】実施例3 f=35.0,F/2.86,ω=31.29 ° r1 =12.9474 (非球面)d1 =3.369 n1 =1.80610 ν1 =40.95 r2 =60.3960 (非球面)d2 =0.753 r3 =36.0722 d3 =1.143 n2 =1.71736 ν2 =29.51 r4 =8.2184 d4 =3.220 (可変) r5 =∞(絞り) d5 =1.800 r6 =38.0541 d6 =4.249 n3 =1.77250 ν3 =49.60 r7 =-7.7743 d7 =1.500 n4 =1.58144 ν4 =40.75 r8 =-30.0205 d8 =0.102 r9 =-117.6754 d9 =1.068 n5 =1.56384 ν5 =60.70 r10=26.0596 (非球面) 非球面係数 (第1面) A4 =-4.4042 ×10-5,A6 =-5.5192 ×10-78 =-4.0919 ×10-9,A10=-7.4208 ×10-12 (第2面) A4 =-1.7360 ×10-5,A6 =-6.0721 ×10-78 =9.1256×10-9,A10=-6.6594 ×10-11 (第10面)A4 =2.8974×10-5,A6 =-1.7627 ×10-78 =6.0987×10-9,A10=-8.7232 ×10-12 合焦間隔 無限物点 至近(40cm) d4 3.220 3.230 fB 25.017 28.801 (R4a+R4b)/(R4a−R4b)=0.64,|f4 /f|=1.08 |f34/f12|=0.07,|f/f12|=0.09 |f・(nP −nN )/R|=0.86,νP −νN =8.85 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。
Example 3 f = 35.0, F / 2.86, ω = 31.29 ° r 1 = 12.9474 (aspherical surface) d 1 = 3.369 n 1 = 1.80610 ν 1 = 40.95 r 2 = 60.3960 (aspherical surface) d 2 = 0.753 r 3 = 36.0722 d 3 = 1.143 n 2 = 1.71736 ν 2 = 29.51 r 4 = 8.2184 d 4 = 3.220 (variable) r 5 = ∞ (aperture) d 5 = 1.800 r 6 = 38.0541 d 6 = 4.249 n 3 = 1.77250 ν 3 = 49.60 r 7 = -7.7743 d 7 = 1.500 n 4 = 1.58144 ν 4 = 40.75 r 8 = -30.0205 d 8 = 0.102 r 9 = -117.6754 d 9 = 1.068 n 5 = 1.56384 ν 5 = 60.70 r 10 = 26.0596 (aspherical) aspherical coefficients (first surface) A 4 = -4.4042 × 10 -5 , A 6 = -5.5192 × 10 -7 A 8 = -4.0919 × 10 -9, A 10 = -7.4208 × 10 - 12 (Second surface) A 4 = -1.7360 × 10 -5 , A 6 = -6.0721 × 10 -7 A 8 = 9.1256 × 10 -9 , A 10 = -6.6594 × 10 -11 (10th surface) A 4 = 2.8974 × 10 -5, A 6 = -1.7627 × 10 -7 A 8 = 6.0987 × 10 -9, A 10 = -8.7232 × Mu 10 -12 focusing distance Object point closest (40cm) d 4 3.220 3.230 f B 25.017 28.801 (R 4a + R 4b) / (R 4a -R 4b) = 0.64, | f 4 /f|=1.08 | f 34 / f 12 | = 0.07, | f / f 12 | = 0.09 | f · (n P −n N ) /R|=0.86, v P −v N = 8.85 where r 1 , r 2 ,...
.. , D 2 ,...
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens.

【0044】実施例1〜実施例3は、夫々図1〜図3に
示す構成のレンズ系である。又実施例1の収差状況は、
図4A,図4B,図5A,図5Bに示す通りで、図4A
は無限遠物点に対する球面収差,非点収差,倍率の色収
差,歪曲収差、図4Bは無限遠物点に対するコマ収差、
図5Aは物点距離40cmに対する球面収差,非点収
差,倍率の色収差,歪曲収差、図5Bは物点距離40c
mに対するコマ収差である。実施例2の収差状況は、図
6A,図6B,図7A,図7Bに示す通りで、図6Aは
無限遠物点に対する球面収差,非点収差,倍率の色収
差,歪曲収差、図6Bは無限遠物点に対するコマ収差、
図7Aは物点距離40cmに対する球面収差,非点収
差,倍率の色収差,歪曲収差、図7Bは物点距離40c
mに対するコマ収差である。更に実施例3の収差状況
は、図8A,図8B,図9A,図9Bに示す通りで、図
8Aは無限遠物点に対する球面収差,非点収差,倍率の
色収差,歪曲収差、図8Bは無限遠物点に対するコマ収
差、図9Aは物点距離40cmに対する球面収差,非点
収差,倍率の色収差,歪曲収差、図9Bは物点距離40
cmに対するコマ収差である。
Examples 1 to 3 are lens systems having the structures shown in FIGS. 1 to 3, respectively. The aberration situation in the first embodiment is as follows.
As shown in FIGS. 4A, 4B, 5A, and 5B, FIG.
4B shows spherical aberration, astigmatism, chromatic aberration of magnification and distortion for the object point at infinity, and FIG. 4B shows coma aberration for the object point at infinity.
5A shows spherical aberration, astigmatism, chromatic aberration of magnification, and distortion for an object point distance of 40 cm, and FIG. 5B shows an object point distance of 40c.
This is coma aberration with respect to m. 6A, 6B, 7A, and 7B show the aberration states in Example 2. FIG. 6A shows spherical aberration, astigmatism, chromatic aberration of magnification, distortion, and FIG. Coma for distant objects,
FIG. 7A shows spherical aberration, astigmatism, chromatic aberration of magnification and distortion for an object point distance of 40 cm, and FIG. 7B shows an object point distance of 40c.
This is coma aberration with respect to m. 8A, FIG. 8B, FIG. 9A, and FIG. 9B. FIG. 8A shows spherical aberration, astigmatism, chromatic aberration of magnification, and distortion with respect to an object point at infinity, and FIG. FIG. 9A shows spherical aberration, astigmatism, chromatic aberration of magnification and distortion at an object point distance of 40 cm, and FIG.
Coma aberration with respect to cm.

【0045】本発明は、特許請求の範囲に記載するもの
の他、次の各項に記載する態様レンズ系がある。 (1) 請求項1のレンズ系で、前記第3レンズ群が物
体側より順に両凸の正レンズと像面側に凸面を向けた負
のメニスカスレンズとより構成されている高性能な広角
レンズ。 (2) 請求項1のレンズ系で、前記第4レンズ群群の
物体側の曲率半径をR4a,像面側の曲率半径をR4bとす
る時、下記の条件(1)を満足する高性能な広角レン
ズ。
The present invention includes the following lens systems in addition to those described in the claims. (1) The high-performance wide-angle lens according to (1), wherein the third lens group includes, in order from the object side, a biconvex positive lens and a negative meniscus lens having a convex surface facing the image surface side. . (2) In the lens system according to claim 1, when the radius of curvature of the fourth lens group on the object side is R 4a and the radius of curvature on the image plane side is R 4b , the following condition (1) is satisfied. High-performance wide-angle lens.

【0046】(1) 0.1<(R4a+R4b)/(R
4a−R4b)<1.5 (3) 請求項2のレンズ系で、前記第1レンズ群の像
側の面が非球面である高性能な広角レンズ。 (4) (1)の項に記載されているレンズ系で、第3
レンズ群が接合レンズである高性能な広角レンズ。 (5) (2)の項に記載されているレンズ系で、第4
レンズ群の像面側の面が非球面である高性能な広角レン
ズ。 (6) 請求項2のレンズ系で第1レンズ群の両面が非
球面である高性能な広角レンズ。 (7) 請求項1のレンズ系で、第2レンズ群と第3レ
ンズ群の間に明るさ絞りが配置されている高性能な広角
レンズ。 (8) 請求項1のレンズ系で、第2レンズ群と第3レ
ンズ群との間隔を増大させることにより無限遠物点から
近距離物点へのフォーカシングを行なう高性能な広角レ
ンズ。 (9) 請求項1のレンズ系で、無限遠物点フォーカシ
ング時の全系の焦点距離をf、第4レンズ群の焦点距離
をf4 とした時、下記の条件(2)を満足する高性能な
広角レンズ。
(1) 0.1 <(R 4a + R 4b ) / (R
4a- R4b ) <1.5 (3) The high-performance wide-angle lens according to claim 2, wherein the image-side surface of the first lens group is aspheric. (4) The lens system described in (1) above,
A high-performance wide-angle lens whose lens group is a cemented lens. (5) The lens system described in (2), wherein
A high-performance wide-angle lens in which the image-side surface of the lens group is aspheric. (6) A high-performance wide-angle lens according to claim 2, wherein both surfaces of the first lens group are aspherical. (7) A high-performance wide-angle lens according to claim 1, wherein a brightness stop is arranged between the second lens group and the third lens group. (8) A high-performance wide-angle lens according to claim 1, wherein focusing from an object at infinity to an object at a short distance is performed by increasing the distance between the second lens group and the third lens group. (9) In the lens system of claim 1, when the focal length of the entire system at an infinite object point focusing f, and the focal length of the fourth lens group and the f 4, high to satisfy the following condition (2) High-performance wide-angle lens.

【0047】(2) 0.5<|f4 /f|<2.5 (10) 請求項1のレンズ系で、無限遠物点合焦時の
全系の焦点距離をf、第1レンズ群と第2レンズ群の合
成焦点距離をf12、第3レンズ群と第4レンズ群の合成
焦点距離をf34とする時、下記の条件(3),(4)を
満足する高性能な広角レンズ。
(2) 0.5 <| f 4 /f|<2.5 (10) In the lens system according to claim 1, the focal length of the entire system at the time of focusing on an object point at infinity is f, and the first lens is When the combined focal length of the first lens unit and the second lens unit is f 12 , and the combined focal length of the third and fourth lens units is f 34 , a high-performance lens satisfying the following conditions (3) and (4) Wide-angle lens.

【0048】 (3) 0.01<|f34/f12|<0.25 (4) 0.01<|f/f12|<0.3 (11) (4)の項に記載したレンズ系で、無限遠フ
ォーカシング時の全系の焦点距離をf、第4レンズ群中
の正レンズの屈折率およびアッベ数を夫々nP ,νP
負レンズの屈折率およびアッベ数を夫々nN ,νN 、接
合面の曲率半径をRとする時、下記条件(5),(6)
を満足する高性能な広角レンズ。
(3) 0.01 <| f 34 / f 12 | <0.25 (4) 0.01 <| f / f 12 | <0.3 (11) Lens described in item (4) In the system, f is the focal length of the entire system at infinity focusing, and n P and ν P are the refractive index and Abbe number of the positive lens in the fourth lens group, respectively.
When the refractive index and Abbe number of the negative lens are n N and ν N , and the radius of curvature of the joint surface is R, the following conditions (5) and (6)
High-performance wide-angle lens that satisfies the requirements.

【0049】(5) 0.2<|f・(nP −nN
/R|<1.4 (6) 5<νP −νN <20
(5) 0.2 <| f · (n P −n N )
/R|<1.4 (6) 5 <ν P −ν N <20

【0050】[0050]

【発明の効果】本発明の広角レンズは、少ないレンズ枚
数の簡単な構成であって、しかもフイルム周辺まで良好
な性能の、画角が60°以上で高性能なレンズ系であ
る。
The wide-angle lens according to the present invention is a high-performance lens system having a simple structure with a small number of lenses, good performance up to the periphery of the film, and having an angle of view of 60 ° or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例1の無限遠物点に対する収差曲
線図
FIG. 4 is an aberration curve diagram for an object point at infinity according to the first embodiment of the present invention.

【図5】本発明の実施例1の近距離物点に対する収差曲
線図
FIG. 5 is an aberration curve diagram for a short-distance object point according to the first embodiment of the present invention.

【図6】本発明の実施例2の無限遠物点に対する収差曲
線図
FIG. 6 is an aberration curve diagram for an object point at infinity according to a second embodiment of the present invention.

【図7】本発明の実施例2の近距離物点に対する収差曲
線図
FIG. 7 is an aberration curve diagram for a short-distance object point according to the second embodiment of the present invention.

【図8】本発明の実施例3の無限遠物点に対する収差曲
線図
FIG. 8 is an aberration curve diagram for an object point at infinity according to a third embodiment of the present invention.

【図9】本発明の実施例3の近距離物点に対する収差曲
線図
FIG. 9 is an aberration curve diagram for a short-distance object point according to the third embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−223408(JP,A) 特開 平4−211214(JP,A) 特開 平2−167516(JP,A) 特開 平3−138612(JP,A) 特開 平5−303036(JP,A) 特開 平5−303037(JP,A) 特開 平6−59189(JP,A) 特開 昭62−39811(JP,A) 特開 昭62−160413(JP,A) 特開 昭62−200315(JP,A) 特開 昭63−274904(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 13/00 G02B 9/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-223408 (JP, A) JP-A-4-21114 (JP, A) JP-A-2-167516 (JP, A) JP-A-3-213 138612 (JP, A) JP-A-5-303036 (JP, A) JP-A-5-303037 (JP, A) JP-A-6-59189 (JP, A) JP-A-62-39811 (JP, A) JP-A-62-160413 (JP, A) JP-A-62-200315 (JP, A) JP-A-63-274904 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 13/00 G02B 9/00

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に、非球面を有する正の第1
レンズ群と、負の第2レンズ群と、正の第3レンズ群
と、像面側の面が物体側の面よりも強い曲率の凹面であ
る負の第4レンズ群よりなり、前記第1レンズ群が物体
側に凸面を向けた正のメニスカスレンズであり、前記第
2レンズ群が物体側に凸面を向けた負のメニスカスレン
ズであり、前記第3レンズ群が物体側より順に両凸の正
レンズと像面側に凸面を向けた負のメニスカスレンズと
より構成された接合レンズであり、無限遠物点フォーカ
シング時の全系の焦点距離をf、前記第3レンズ群の正
レンズの屈折率およびアッベ数を夫々n P ,ν P 、負レ
ンズの屈折率およびアッベ数を夫々n N ,ν N 、接合面
の曲率半径をRとする時、下記条件(5)、(6)を満
足する高性能な広角レンズ。 (5) 0.2<|f・(n P −n N )/R|<1.4 (6) 5<ν P −ν N <20
1. A positive first lens having an aspheric surface in order from the object side.
A first lens unit including a second lens unit, a second negative lens unit, a third positive lens unit, and a fourth negative lens unit having a concave surface having a stronger curvature on the image side than on the object side; The lens group is a positive meniscus lens having a convex surface facing the object side, the second lens group is a negative meniscus lens having a convex surface facing the object side, and the third lens group is biconvex in order from the object side. A cemented lens consisting of a positive lens and a negative meniscus lens with the convex surface facing the image side,
The focal length of the entire system at the time of sing is f, and the positive
The refractive index and Abbe number of the lens are n P and ν P , respectively.
The refractive index and Abbe number of the lens are n N and ν N , respectively,
When the radius of curvature of R is R, the following conditions (5) and (6) are satisfied.
High-performance wide-angle lens to be added. (5) 0.2 <| f · (n P -n N) / R | <1.4 (6) 5 <ν P -ν N <20
【請求項2】前記第4レンズ群の物体側の面の曲率半径
をR4a、第4レンズ群の像面側の面の曲率半径をR4b
する時、下記の条件(1)を満足する請求項1の高性能
な広角レンズ。 (1) 0.1<(R4a+R4b)/(R4a−R4b)<1.5
2. When the radius of curvature of the object-side surface of the fourth lens group is R 4a and the radius of curvature of the image-side surface of the fourth lens group is R 4b , the following condition (1) is satisfied. The high-performance wide-angle lens according to claim 1. (1) 0.1 <( R4a + R4b ) / ( R4a- R4b ) <1.5
【請求項3】前記第1レンズ群の像側の面が非球面であ
る請求項1の高性能な広角レンズ。
3. The high-performance wide-angle lens according to claim 1, wherein an image-side surface of said first lens group is aspheric.
【請求項4】前記第4レンズ群の像面側の面が非球面で
ある請求項2の高性能な広角レンズ。
4. The high-performance wide-angle lens according to claim 2, wherein an image-side surface of said fourth lens group is aspheric.
【請求項5】前記第1レンズ群の両面が非球面である請
求項1の高性能な広角レンズ。
5. The high-performance wide-angle lens according to claim 1, wherein both surfaces of said first lens group are aspherical.
【請求項6】前記第2レンズ群と前記第3レンズ群の間
に明るさ絞りが配置されている請求項1又は2の高性能
な広角レンズ。
6. The high-performance wide-angle lens according to claim 1, wherein a brightness stop is arranged between said second lens group and said third lens group.
【請求項7】前記第2レンズ群と前記第3レンズ群との
間隔を増大させることにより無限遠物点から近距離物点
へのフォーカシングを行なう請求項1、2又は6の高性
能な広角レンズ。
7. A high-performance wide-angle lens according to claim 1, wherein focusing from an object point at infinity to an object point at a short distance is performed by increasing a distance between said second lens group and said third lens group. lens.
【請求項8】無限遠物点フォーカシング時の全系の焦点
距離をf、第4レンズ群の焦点距離をf4とした時、下
記の条件(2)を満足する請求項1、2、6又は7の高
性能な広角レンズ。 (2) 0.5<|f4 /f|<2.5
When 8. infinite object point and the focal length of the entire system during focusing f, and the focal length of the fourth lens group and the f 4, claim satisfies the following condition (2) 1,2,6 Or 7 high-performance wide-angle lens. (2) 0.5 <| f 4 /f|<2.5
【請求項9】無限遠物点合焦時の全系の焦点距離をf、
前記第1レンズ群と前記第2レンズ群の合成焦点距離を
12、前記第3レンズ群と前記第4レンズ群の合成焦点
距離をf34とした時、下記の条件(3)、(4)を満足
する請求項1、2、6又は7の高性能な広角レンズ。 (3) 0.01<|f34/f12|<0.25 (4) 0.01<|f/f12|<0.3
9. The focal length of the entire system when focusing on an object point at infinity is f,
When the composite focal length of the first lens group and the second lens group is f 12 and the composite focal length of the third lens group and the fourth lens group is f 34 , the following conditions (3) and (4) 9. The high-performance wide-angle lens according to claim 1, 2, 3, or 6, which satisfies (1). (3) 0.01 <| f 34 / f 12 | <0.25 (4) 0.01 <| f / f 12 | <0.3
【請求項10】前記第4レンズ群の物体側の曲率半径を
4a、像面側の曲率半径をR4bとする時、下記の条件
(1’)を満足する請求項1の高性能な広角レンズ。 (1’) 0.2<(R4a+R4b)/(R4a−R4b)<1.0
10. The high-performance lens according to claim 1, wherein the following condition (1 ′) is satisfied when the radius of curvature of the fourth lens group on the object side is R 4a and the radius of curvature on the image plane side is R 4b. Wide-angle lens. (1 ′) 0.2 <(R 4a + R 4b ) / (R 4a −R 4b ) <1.0
【請求項11】無限遠物点フォーカシング時の全系の焦
点距離をf、第4レンズ群の焦点距離をf4とした時、
下記の条件(2’)を満足する請求項1、2、6又は7
の高性能な広角レンズ。 (2’) 0.8<|f4 /f|<2.0
When 11. The focal length of the entire system at an infinite object point focusing f, and the focal length of the fourth lens group and the f 4,
8. The method according to claim 1, wherein the following condition (2 ') is satisfied.
High-performance wide-angle lens. (2 ′) 0.8 <| f 4 /f|<2.0
【請求項12】無限遠物点合焦時の全系の焦点距離を
f、前記第1レンズ群と前記第2レンズ群の合成焦点距
離をf12 前記第3レンズ群と前記第4レンズ群の合成
焦点距離をf34とした時、下記の条件(3’)、
(4’)を満足する請求項1、2、6又は7の高性能な
広角レンズ。 (3’) 0.04<|f34/f12|<0.15 (4’) 0.05<|f/f12|<0.18
12. The focal length of the entire system when focusing on an object point at infinity is f, the combined focal length of said first lens group and said second lens group is f 12 , said third lens group and said fourth lens. when the composite focal length of the group was f 34, the following condition (3 '),
The high-performance wide-angle lens according to claim 1, 2, 6, or 7, which satisfies (4 '). (3 ′) 0.04 <| f 34 / f 12 | <0.15 (4 ′) 0.05 <| f / f 12 | <0.18
【請求項13】無限遠物点フォーカシング時の全系の焦
点距離をf、前記第3レンズ群の正レンズの屈折率およ
びアッベ数を夫々nP ,νP 、負レンズの屈折率および
アッベ数を夫々nN ,νN 、接合面の曲率半径をRとす
る時、下記条件(5’)、(6’)を満足する請求項1
の高性能な広角レンズ。 (5’) 0.3<|f・(nP −nN )/R|<1.0 (6’) 7<νP −νN <16
13. The focal length of the entire system at the time of focusing on an object point at infinity is f, the refractive index and Abbe number of the positive lens of the third lens group are n P and ν P , respectively, and the refractive index and Abbe number of the negative lens. Where n N and v N , respectively, and the radius of curvature of the joint surface is R, the following conditions (5 ′) and (6 ′) are satisfied.
High-performance wide-angle lens. (5 ') 0.3 <| f · (n P -n N) / R | <1.0 (6') 7 <ν P -ν N <16
JP08114694A 1994-03-29 1994-03-29 High-performance wide-angle lens Expired - Fee Related JP3518886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08114694A JP3518886B2 (en) 1994-03-29 1994-03-29 High-performance wide-angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08114694A JP3518886B2 (en) 1994-03-29 1994-03-29 High-performance wide-angle lens

Publications (2)

Publication Number Publication Date
JPH07270679A JPH07270679A (en) 1995-10-20
JP3518886B2 true JP3518886B2 (en) 2004-04-12

Family

ID=13738291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08114694A Expired - Fee Related JP3518886B2 (en) 1994-03-29 1994-03-29 High-performance wide-angle lens

Country Status (1)

Country Link
JP (1) JP3518886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918891A (en) * 2011-04-29 2017-07-04 Lg伊诺特有限公司 Camera lens modules

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424216B (en) 2011-06-28 2014-01-21 Largan Precision Co Optical imaging lens assembly
JP2014041388A (en) * 2013-12-02 2014-03-06 Konica Minolta Inc Imaging lens
CN103852870B (en) * 2014-02-21 2016-07-06 襄阳锦翔光电科技股份有限公司 A kind of optical lens assembly
TWI626487B (en) * 2017-03-31 2018-06-11 大立光電股份有限公司 Optical imaging lens system, image capturing unit and electronic device
JP7243304B2 (en) * 2019-03-07 2023-03-22 株式会社リコー Imaging lens, camera and personal digital assistant
JP7415642B2 (en) 2020-02-19 2024-01-17 株式会社リコー Imaging lenses, cameras, and mobile information terminal devices
CN116594161B (en) * 2023-07-18 2023-11-14 江西联益光学有限公司 optical lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918891A (en) * 2011-04-29 2017-07-04 Lg伊诺特有限公司 Camera lens modules
CN106918891B (en) * 2011-04-29 2020-05-15 Lg伊诺特有限公司 Camera lens module

Also Published As

Publication number Publication date
JPH07270679A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US6844991B2 (en) Fisheye lens
JPH10115778A (en) Super-wide angle lens system using aspherical lens
JPH05157965A (en) Wide-angle lens
JP3302072B2 (en) High-performance shooting lens
JP3204703B2 (en) Zoom lens
JPH08313802A (en) Wide angle lens
JPH0784180A (en) Fish-eye lens in water
JPH0743606A (en) Wide angle lens
JP2001154093A (en) Small-sized high variable power wide-angle zoom lens
US4025170A (en) Retro-focus type wide angle objective lens
JP3735909B2 (en) Retro focus lens
JPH0659192A (en) Zoom lens
JP3518886B2 (en) High-performance wide-angle lens
JP3821330B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3268824B2 (en) Small two-group zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JP3346623B2 (en) High-performance shooting lens
JP2576607B2 (en) Small zoom lens
JPH0618783A (en) Small-sized zoom lens
JPH07318798A (en) Photographic lens
JP3231404B2 (en) Shooting lens
JP3744042B2 (en) Zoom lens
JP2855849B2 (en) Kepler-type zoom finder optical system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees