JPH08313802A - Wide angle lens - Google Patents

Wide angle lens

Info

Publication number
JPH08313802A
JPH08313802A JP7121633A JP12163395A JPH08313802A JP H08313802 A JPH08313802 A JP H08313802A JP 7121633 A JP7121633 A JP 7121633A JP 12163395 A JP12163395 A JP 12163395A JP H08313802 A JPH08313802 A JP H08313802A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
negative
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121633A
Other languages
Japanese (ja)
Inventor
Takanori Yamanashi
山梨隆則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7121633A priority Critical patent/JPH08313802A/en
Priority to US08/650,138 priority patent/US5805359A/en
Publication of JPH08313802A publication Critical patent/JPH08313802A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/58Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE: To provide an optical system having sufficient efficiency of aperture by improving sagittal coma aberration and the curvature of field for the problem of making a symmetric wide-angle lens a large aperture ratio. CONSTITUTION: This lens is composed of three fundamental lens groups of a first group G1 of negative refractive power, a second group G2 of positive refractive power having an aperture diaphragm and a third group G3 of negative refractive power, the second group G2 is composed of two lens groups of a front group G21 and a rear group G22 having positive refractive powers interposing the aperture diaphragm between them, the first group G1 has at least one negative meniscus lens whose convex surface confronts the object side, the front group G21 of the second group G2 has at least a set of joined lens including a positive lens and a negative lens, the rear group G22 of the second group G2 is composed of a set of joined lens including a positive lens and a negative lens, the third group G3 is composed of at least one negative meniscus lens whose convex surface confronts the image plane side and an aspherical surface is arranged in any lens group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広角レンズに関し、特
に、写真レンズや電子映像機器用光学系に好適で、画角
が広く大口径比で、比較的小型の対称型の広角レンズに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide-angle lens, and more particularly to a symmetric wide-angle lens which is suitable for a photographic lens and an optical system for electronic image equipment and has a wide angle of view and a large aperture ratio and is relatively small.

【0002】[0002]

【従来の技術】画角が72°程度以上の広角レンズにお
いて、一眼レフレックスカメラ用の結像レンズは、ミラ
ー可動空間を設ける必要がある。そのため、物体側より
負屈折力の前群と正屈折力の後群からなる逆望遠タイプ
を採用することにより、バックフォーカスを確保してい
た。このタイプの場合、開口絞りに関して非対称な屈折
力配置となり、軸外諸収差の悪化を招いていた。特に、
大口径比化に伴い、倍率色収差や像面湾曲あるいはサジ
タルコマ収差等が顕著となる傾向があった。さらに、レ
ンズ構成枚数も多くなり、透過率の低下、レンズ面のゴ
ースト像の発生の原因となっていた。
2. Description of the Related Art In a wide-angle lens having an angle of view of about 72 ° or more, an imaging lens for a single-lens reflex camera needs to have a mirror movable space. Therefore, the back focus is ensured by adopting the reverse telephoto type, which is composed of a front group having a negative refractive power and a rear group having a positive refractive power from the object side. In the case of this type, the refractive power arrangement is asymmetric with respect to the aperture stop, which causes deterioration of various off-axis aberrations. In particular,
As the aperture ratio increases, chromatic aberration of magnification, field curvature, sagittal coma and the like tend to become more prominent. In addition, the number of lenses is increased, which causes a decrease in transmittance and a ghost image on the lens surface.

【0003】一方で、レンジファイダーを有するカメラ
等では、バックフォーカスの制限が緩い。そのため、収
差補正上で有利な対称型の広角レンズが、球面系による
独自の提案として、米国特許第2,721,499号や
米国特許第2,781,695号等を代表にしてなされ
た。
On the other hand, in a camera having a range finder, the back focus is loosely limited. Therefore, a symmetrical wide-angle lens which is advantageous in correcting aberrations has been made as a unique proposal of a spherical system, such as US Pat. No. 2,721,499 and US Pat. No. 2,781,695.

【0004】[0004]

【発明が解決しようとする課題】これらの対称型の広角
レンズは、写真レンズに限らず、航空測量用にも応用さ
れた。また、一方では、複写用の光学系としても使用さ
れた。しかし、第1レンズ群が負屈折力であり、発散性
軸上光束が第2レンズ群に入射して収差補正上の負担を
大きくするために、口径比が小さいことが一般的であっ
た。
These symmetrical wide-angle lenses have been applied not only to photographic lenses but also to aerial surveying. On the other hand, it was also used as an optical system for copying. However, the first lens group has a negative refracting power, and the aperture ratio is generally small in order that the divergent on-axis light beam enters the second lens group and increases the burden on aberration correction.

【0005】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、写真レンズや電子映像機器用
光学系を対象とし、上記対称型広角レンズの大口径比化
の課題に対して、サジタルコマ収差や像面湾曲の改善を
行い、十分な開口効率を有する光学系を提供することで
ある。
The present invention has been made in view of such a situation, and its object is to deal with the problem of increasing the aperture ratio of the symmetrical wide-angle lens, which is intended for an optical system for a photographic lens or an electronic image device. Then, sagittal coma aberration and field curvature are improved, and an optical system having sufficient aperture efficiency is provided.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の広角レンズは、物体側から順に、負屈折力を有する
第1レンズ群と、開口絞りを含み、正屈折力を有する第
2レンズ群と、負屈折力を有する第3レンズ群との3つ
の基本レンズ群によって構成し、前記第2レンズ群は、
開口絞りを挟んで正屈折力の前群(G21)と後群
(G22)の2つのレンズ群にて構成し、前記第1レンズ
群は、少なくとも1枚の物体側に凸面を向けた負メニス
カスレンズを有し、前記第2レンズ群の前群は、正レン
ズと負レンズを含む接合レンズを少なくとも一組有し、
前記第2レンズ群の後群は、正レンズと負レンズを含む
接合レンズの少なくとも一組にて構成し、前記第3レン
ズ群は、少なくとも1枚の像面側に凸面を向けた負メニ
スカスレンズにて構成し、何れかのレンズ群内に非球面
を有することを特徴とするものである。
A wide-angle lens according to the present invention that achieves the above object has, in order from the object side, a first lens group having a negative refractive power and a second lens having an aperture stop and having a positive refractive power. And a third lens group having negative refracting power, the second lens group comprises
It is composed of two lens groups of a front group (G 21 ) and a rear group (G 22 ) having positive refracting power across an aperture stop, and the first lens group has a convex surface facing at least one object side. A negative meniscus lens, and the front group of the second lens group has at least one cemented lens including a positive lens and a negative lens,
The rear group of the second lens group includes at least one set of cemented lenses including a positive lens and a negative lens, and the third lens group includes at least one negative meniscus lens having a convex surface facing the image plane side. And has an aspherical surface in any one of the lens groups.

【0007】本発明のもう1つの広角レンズは、物体側
から順に、負屈折力を有する第1レンズ群と、開口絞り
を含み、正屈折力を有する第2レンズ群と、負屈折力を
有する第3レンズ群との3つの基本レンズ群によって構
成し、前記第2レンズ群は、開口絞りを挟んで正屈折力
の前群(G21)と後群(G22)の2つのレンズ群にて構
成し、前記第1レンズ群は、少なくとも1枚の物体側に
凸面を向けた負メニスカスレンズを有し、前記第2レン
ズ群の前群は、正レンズと負レンズを含む接合レンズを
少なくとも一組有し、前記第2レンズ群の後群は、正レ
ンズと負レンズを含む接合レンズの少なくとも一組にて
構成し、前記第3レンズ群は、少なくとも1枚の像面側
に凸面を向けた負メニスカスレンズにて構成し、何れか
のレンズ群内に非球面を有し、以下の条件(1)〜
(4)を満足することを特徴とするものである。 0.2<−f1 /f<30 ・・・(1) 0.15<f1 /f3 <25 ・・・(2) 0.2<f21/f22<5 ・・・(3) −3<e’/f<20 ・・・(4) ただし、f1 :第1レンズ群の焦点距離、 f3 :第3レンズ群の焦点距離、 f :全系の焦点距離、 f21:第2レンズ群の前群の焦点距離、 f22:第2レンズ群の後群の焦点距離、 e’:第1レンズ群と第2レンズ群の前群を1つのレン
ズ群とし、かつ、第2レンズ群の後群と第3レンズ群を
1つのレンズ群としたときの主点間隔、 である。
Another wide-angle lens of the present invention has, in order from the object side, a first lens group having a negative refractive power, a second lens group having an aperture stop and having a positive refractive power, and a negative refractive power. It is composed of three basic lens groups including a third lens group, and the second lens group is divided into two lens groups of a front group (G 21 ) and a rear group (G 22 ) having positive refracting power with an aperture stop interposed therebetween. The first lens group includes at least one negative meniscus lens having a convex surface directed toward the object side, and the front group of the second lens group includes at least a cemented lens including a positive lens and a negative lens. The rear group of the second lens group has at least one cemented lens including a positive lens and a negative lens, and the third lens group has at least one convex surface on the image side. A negative meniscus lens for Has a spherical surface, the following conditions (1) -
It is characterized by satisfying (4). 0.2 <-f 1 / f <30 ··· (1) 0.15 <f 1 / f 3 <25 ··· (2) 0.2 <f 21 / f 22 <5 ··· (3 ) -3 <e '/ f < 20 ··· (4) However, f 1: focal length of the first lens group, f 3: the focal length of the third lens group, f: the focal length of the entire system, f 21 the focal length of the front group of the second lens group, f 22 the focal length of the rear group of the second lens group, e ': a first lens group to the front group of the second lens group as a single lens group, and, Is the principal point spacing when the rear lens group of the second lens group and the third lens group are one lens group.

【0008】これらにおいて、例えば第1レンズ群に少
なくとも1面の非球面を使用することが望ましい。
In these, for example, it is desirable to use at least one aspherical surface for the first lens group.

【0009】[0009]

【作用】以下、本発明において上記構成をとる理由と作
用について説明する。本発明で対象とする対称型広角レ
ンズは、開口絞りを含む収斂系の前後に、ほぼコンセン
トリックに配置された負メニスカスレンズ群を有する。
この光学系は、収差補正上から考えれば非常に有利であ
り、広角系に顕著となり球面のみを使用した光学系にお
いて補正が困難とされるサジタルコマ収差の補正を容易
にし、画角の冪級数として展開される歪曲収差も、光学
系の対称性のために比較的に容易に補正することができ
る。
The reason why the above structure is adopted and the function of the present invention will be described below. The symmetrical wide-angle lens targeted by the present invention has negative meniscus lens groups arranged substantially concentrically before and after a converging system including an aperture stop.
This optical system is very advantageous from the viewpoint of aberration correction, and facilitates correction of sagittal coma aberration, which is remarkable in wide-angle systems and difficult to correct in optical systems that use only spherical surfaces, and can be used as a power series of angle of view. The developed distortion can also be relatively easily corrected due to the symmetry of the optical system.

【0010】しかしながら、写真レンズ等のように、画
面中心から周辺部まで像面が平坦であることが要求され
ることは、広角レンズにとっては困難な課題であった。
一方で、描写性を考えるときや、粒状性の細かいフィル
ムを使用する場合には、光学系が大口径であることが要
求される。従来の提案においては、画角が一定であって
も比較的に大口径とされた口径比1:3.4で画角が9
0°の提案が前記の米国特許第2,721,499号に
示されているが、第1レンズ群に2枚の負メニスカスレ
ンズを使用している。また、画角120°で口径比が
1:5.6の提案が米国特許第3,154,628号に
示されているが、第1レンズ群と第3レンズ群にそれぞ
れ3枚構成の負メニスカスレンズが使用されている。
However, it has been a difficult problem for a wide-angle lens that the image surface is required to be flat from the center of the screen to the peripheral portion like a photographic lens.
On the other hand, the optical system is required to have a large aperture when the depiction is taken into consideration or when a film having fine graininess is used. In the conventional proposal, even if the angle of view is constant, the aperture ratio is 1: 3.4, which is a relatively large aperture, and the angle of view is 9
The 0 ° proposal is shown in the aforementioned US Pat. No. 2,721,499, but uses two negative meniscus lenses in the first lens group. Further, although a proposal of an angle of view of 120 ° and an aperture ratio of 1: 5.6 is shown in US Pat. No. 3,154,628, each of the first lens group and the third lens group has a negative structure of three lenses. Meniscus lenses are used.

【0011】これらに鑑みて、現在の製造技術により、
これらの優れた光学系を改善することを意図して、非球
面レンズを効果的に使用し、歪曲収差やサジタルコマ収
差等の劣化を招かずに、大口径比化を実現したものが上
記の本発明の広角レンズである。
In view of these, the current manufacturing technology allows
With the intention of improving these excellent optical systems, an aspheric lens is effectively used, and a large aperture ratio is realized without incurring deterioration such as distortion and sagittal coma. It is a wide-angle lens of the invention.

【0012】ここで、本発明の広角レンズの内容の具体
的説明及び条件式の説明をする。
Here, the concrete contents of the wide-angle lens of the present invention and the conditional expressions will be described.

【0013】本発明の光学系は、開口絞りを有する結像
系である第2レンズ群のみでは広画角化が困難であるた
めに、物体側に負屈折力の第1レンズ群を配置すること
で、第2レンズ群への入射角度を緩めている。これによ
り、サジタルコマ収差の改善が可能となる。また、発散
性のレンズ群の配置によりバックフォーカスを長くとる
効果も有する。一方で、負屈折力の第3レンズ群を配置
することで、広角系レンズで特に大きな特徴となってい
る像面湾曲収差の補正を可能としている。以上が光学系
の基本構成からくる特性である。当然、対称性により倍
率色収差や歪曲収差の補正は極めて良好になし得る。し
かし、実際の近軸配置が異なれば、見掛け上の対称性と
は別に、歪曲収差や倍率色収差が残存することはいうま
でもない。そこで、光学系の基本的な近軸屈折力配置に
ついての条件式について説明する。
In the optical system of the present invention, since it is difficult to widen the angle of view only with the second lens group which is an image forming system having an aperture stop, the first lens group having negative refracting power is arranged on the object side. Therefore, the incident angle to the second lens group is relaxed. This makes it possible to improve sagittal coma aberration. Further, the arrangement of the divergent lens group also has the effect of lengthening the back focus. On the other hand, by disposing the third lens unit having a negative refracting power, it is possible to correct field curvature aberration, which is a particularly large feature of wide-angle lenses. The above are the characteristics derived from the basic configuration of the optical system. As a matter of course, due to the symmetry, lateral chromatic aberration and distortion can be corrected extremely well. However, if the actual paraxial arrangement is different, it goes without saying that distortion and lateral chromatic aberration remain in addition to the apparent symmetry. Therefore, a conditional expression regarding the basic paraxial refractive power arrangement of the optical system will be described.

【0014】まず、条件式(1)は、第1レンズ群の屈
折力を規定する。この条件式の下限の0.2を越える
と、小型化に有利であるが、収差補正上で多くのレンズ
構成枚数を要することとなり、好ましくない。また、上
限値30を越えると、収差補正上で非常に有利となる
が、第1レンズ群が大型化し、かつ、第3レンズ群もこ
れを補償するために大型化し、望ましくない。
First, the conditional expression (1) defines the refractive power of the first lens group. If the lower limit of 0.2 to this conditional expression is not reached, it is advantageous for downsizing, but this is not preferable because it requires a large number of lens components for aberration correction. On the other hand, if the upper limit of 30 is exceeded, it is very advantageous for aberration correction, but the first lens group becomes large and the third lens group also becomes large to compensate for this, which is not desirable.

【0015】条件式(2)は、第1レンズ群と第3レン
ズ群の屈折力の比率を示し、負レンズ群の対称性を規定
するものである。下限の0.15を越えるときに、第1
レンズ群の相対的な屈折力が大きくなり、複数のレンズ
群で構成する必要が生じることに加えて、サジタルコマ
収差の増大が顕著になり、第1レンズ群自体の大型化が
強く要求される結果となる。また、対称性の欠如により
全系の残存収差も増すので、結果として好ましくない。
上限値25を越えるとき、第3レンズ群の屈折力が相対
的に大きくなるために対称性の欠如となり、像面平坦性
や倍率色収差さらに歪曲収差の補正に支障をきたすこと
になり、好ましくない。
Conditional expression (2) represents the ratio of the refractive powers of the first lens unit and the third lens unit, and defines the symmetry of the negative lens unit. When the lower limit of 0.15 is exceeded, the first
As a result, the relative refractive power of the lens group becomes large, and it becomes necessary to form the lens group by a plurality of lens groups. In addition, the sagittal coma aberration becomes remarkable, and the size of the first lens group itself is strongly demanded. Becomes In addition, the lack of symmetry increases residual aberrations of the entire system, which is not desirable as a result.
When the value exceeds the upper limit of 25, the refractive power of the third lens group becomes relatively large, resulting in lack of symmetry, which hinders correction of image plane flatness, lateral chromatic aberration, and distortion. .

【0016】条件式(3)は、第2レンズ群の屈折力の
中の前群(G21)と後群(G22)の屈折力比を規定し、
開口絞り前後の屈折力における対称性を意味する。下限
値0.2を越えるとき、前群の相対的な屈折力が大きく
なりすぎ、球面収差補正をはじめ対称性よって補償する
ことの可能な収差の補正に支障をきたす。また、上限値
5を越えるとき、逆に、後群の相対的な屈折力が大きく
なりすぎて、球面収差以外に非点隔差の増大やメリディ
オナルコマ収差の補正に難点を生ずる傾向がでるので、
好ましくない。
Conditional expression (3) defines the refractive power ratio of the front lens group (G 21 ) and the rear lens group (G 22 ) in the refractive power of the second lens group,
It means the symmetry in the refractive power before and after the aperture stop. When the lower limit value of 0.2 is exceeded, the relative refractive power of the front group becomes too large, which hinders spherical aberration correction and aberration correction that can be compensated for by symmetry. On the other hand, when the upper limit of 5 is exceeded, on the contrary, the relative refractive power of the rear group becomes excessively large, which tends to cause difficulty in correcting astigmatic difference and meridional coma aberration in addition to spherical aberration. So
Not preferred.

【0017】次に、条件式(4)は、第1レンズ群と第
3レンズ群の主点間隔を規定するためのものである。下
限値−3を越えるときに、小型化の方向であるが第1レ
ンズ群をはじめ屈折力が大きくなる傾向となり、収差補
正上から無理が生ずる。また、上限値20を越えるとき
に、第1レンズ群と第3レンズ群の実間隔が大きくなる
ことを意味し、第1レンズ群の必要以上の大型化を招
き、望ましい状態とはならない。
Next, the conditional expression (4) is for defining the principal point interval between the first lens group and the third lens group. When the value goes below the lower limit of -3, the refracting power tends to increase, including that of the first lens group, although it tends to be compact, and it is impossible to correct aberrations. Further, when the upper limit value 20 is exceeded, it means that the actual distance between the first lens group and the third lens group becomes large, which leads to an unnecessarily large size of the first lens group, which is not a desirable state.

【0018】次に、上記の基本光学系に非球面を使用す
ることで、新たに広角化あるいは大口径比化を意図する
のが本発明の主旨である。一方で、光学系の全長短縮や
構成枚数の削減の方向も実際にはこれと同じことであ
り、非球面による面の屈折力の制御に他ならない。
Next, the purpose of the present invention is to newly aim at widening the angle or increasing the aperture ratio by using an aspherical surface in the above-mentioned basic optical system. On the other hand, the direction of shortening the total length of the optical system and reducing the number of constituent elements is actually the same, and it is nothing but the control of the refractive power of the surface by the aspherical surface.

【0019】本発明においては、より高い仕様の要求に
応えることを主目的とし、開口効率の低下を招かずに結
像性能を維持するかあるいは改善することは、全く同じ
光学系では実現できず、偏心誤差感度のみが増大するこ
とを認識している。そのため、補正すべき収差と使用す
る非球面を明確にして、上記の広角化や大口径比化を論
理的に実現するものである。
In the present invention, the main purpose is to meet the requirements of higher specifications, and maintaining or improving the image forming performance without lowering the aperture efficiency cannot be realized by the same optical system. , Recognizes that only the eccentricity error sensitivity increases. Therefore, the aberration to be corrected and the aspherical surface to be used are clarified, and the widening of the angle and the large aperture ratio are logically realized.

【0020】これについて、先ず大口径比比に伴う球面
収差の補正及び開口効率維持のため、光量の増える軸外
光束、特に周辺光束の補正を行う意図で非球面を使用す
る例を、後記に数値データを示す実施例1を通して説明
する。
In this regard, first, in order to correct spherical aberration associated with a large aperture ratio and maintain aperture efficiency, an example of using an aspherical surface for the purpose of correcting an off-axis light beam with increased light amount, especially a peripheral light beam, will be described later. This will be described through Example 1 showing data.

【0021】この実施例は、仕様から口径比は普通であ
るが結像性能の改善と全長の短縮に視点を置いている例
である。本発明の光学系のように、第1レンズ群が負屈
折力を持つ負群先行型の光学系では、第2レンズ群に球
面収差補正上の負担が増す。これは発散性の光束が第2
レンズ群に入射するからであり、第2レンズ群で球面収
差補正に寄与する面を非球面化することで、補正不足の
球面収差をフルコレクション型にすることは可能であ
る。また、広角レンズでは、像面湾曲の影響で周辺像面
が平坦でなく性能劣化に直接の関係を持つことが多い。
そこで、レンズ面で周辺像面の補正に効きやすい最終レ
ンズ群に非球面を使用することで、補正が可能である。
ここでは、収斂性レンズとは逆に、周辺光束に対して発
散性の屈折力を強めることで像面を起こしてフラットネ
スを高めるものである。
This embodiment is an example in which the aperture ratio is normal due to the specifications, but the viewpoint is focused on improving the imaging performance and shortening the overall length. In the negative group leading type optical system in which the first lens group has a negative refractive power like the optical system of the present invention, the burden on the second lens group for correcting spherical aberration increases. This is because the divergent luminous flux is the second
This is because the light is incident on the lens group, and by making the surface that contributes to spherical aberration correction in the second lens group aspherical, it is possible to make the spherical aberration that is undercorrected into a full correction type. Further, in a wide-angle lens, the peripheral image plane is not flat due to the influence of field curvature, and often has a direct relation to performance deterioration.
Therefore, it is possible to perform correction by using an aspherical surface for the final lens group that is effective for correcting the peripheral image plane on the lens surface.
Here, contrary to the converging lens, the divergent refractive power of the peripheral light flux is strengthened to raise the image plane and enhance the flatness.

【0022】次に、実施例1の光学系の作用について説
明する。この実施例のレンズ構成は、図1の断面図に示
す。第1レンズ群G1で補正過剰となる球面収差は、第
2レンズ群G2の第1面に非球面を使用することによっ
て、必要以上に補正過剰とならぬようにして、第2レン
ズ群G2の収斂作用により補正される。特に、第2レン
ズ群G2最終面の屈折面の収斂作用は強い。また、第3
レンズ群G3の発散作用で補償されて像面に到達する。
3次球面収差係数は補正不足であり、5次球面収差係数
は補正過剰となっており、全系で良好に補正される。こ
の5次球面収差係数についても、第2レンズ群G2の非
球面を使用した第1面と最終レンズ面での収差発生量が
大きく、相互に補正作用を持っている。また、7次収差
係数の作用は極めて緩い。
Next, the operation of the optical system of Example 1 will be described. The lens configuration of this embodiment is shown in the sectional view of FIG. The spherical aberration which is overcorrected in the first lens group G1 is prevented from being overcorrected more than necessary by using an aspherical surface for the first surface of the second lens group G2. Corrected by the converging effect. In particular, the converging action of the refracting surface of the final surface of the second lens group G2 is strong. Also, the third
It reaches the image plane after being compensated by the diverging action of the lens group G3.
The 3rd-order spherical aberration coefficient is undercorrected and the 5th-order spherical aberration coefficient is overcorrected, and the entire system is well corrected. With respect to this fifth-order spherical aberration coefficient, the amount of aberration generated on the first surface and the final lens surface using the aspherical surface of the second lens group G2 is large, and they have a mutual correcting effect. Further, the action of the 7th-order aberration coefficient is extremely gentle.

【0023】コマ収差係数について見ると、第1レンズ
群G1と第2レンズ群G2で補正不足になるのを第3レ
ンズ群G3によって像面を起こす作用を持つ。ここにお
いても、収差発生面が第2レンズ群G2第1面の非球面
と第2レンズ群G2最終レンズ面である。このことは、
高次収差補正係数においても同様である。
With respect to the coma aberration coefficient, the third lens group G3 has an action of causing an image plane to be caused by insufficient correction in the first lens group G1 and the second lens group G2. Also in this case, the aberration generating surfaces are the aspherical surface of the first surface of the second lens group G2 and the final lens surface of the second lens group G2. This is
The same applies to the higher-order aberration correction coefficient.

【0024】非点収差についても、群として見た場合
に、補正状況はコマ収差と似ており、第1レンズ群G1
と第2レンズ群G2とで補正不足の像面を第3レンズ群
G3で起こす作用をしている。しかし、高次収差係数の
作用においては、第3レンズ群G3の凹面に対して非球
面を使用した結果、5次収差係数が作用して像面を補正
している。また、歪曲収差に対しても、第3レンズ群G
3の非球面の作用によって補正を良好にしている。
As for the astigmatism, when viewed as a group, the correction situation is similar to coma, and the first lens group G1
And the second lens group G2 have the effect of causing the third lens group G3 to produce an image plane that is undercorrected. However, regarding the action of the higher-order aberration coefficient, as a result of using the aspherical surface for the concave surface of the third lens group G3, the fifth-order aberration coefficient acts to correct the image plane. Also, with respect to distortion, the third lens group G
The correction is made good by the action of the aspheric surface of 3.

【0025】この実施例の収差係数の数値例をレンズ群
毎に下記の表1に示す。第3レンズ群G3の非球面の作
用で発生する収差係数値に下線を付記する。 表1 SA3 SA5 CM3 CM5 AS3 AS5 DT3 DT5 G1 0.04287 0.0025 -0.0629 -0.00089-0.01766 0.0017 -0.61219 0.12823 G2 -0.09276 0.00795-0.1549 -0.06756-0.07656 0.06185-0.27615 0.13781 G3 0.03201 0.00334 0.26607 0.01467 0.19953-0.74142 1.75811-5.49181 ──────────────────────────────────── Σ -0.01789 0.01378 0.04826-0.05378 0.10532-0.67786 0.86977-5.22577 。
Numerical examples of the aberration coefficient of this embodiment are shown in Table 1 below for each lens group. An underline is added to the aberration coefficient value generated by the action of the aspherical surface of the third lens group G3. Table 1 SA 3 SA 5 CM 3 CM 5 AS 3 AS 5 DT 3 DT 5 G1 0.04287 0.0025 -0.0629 -0.00089-0.01766 0.0017 -0.61219 0.12823 G2 -0.09276 0.00795-0.1549 -0.06756-0.07656 0.06185-0.27615 0.13781 G3 0.03201 0.00334 0.26607 0.01467 0.19953 -0.74142 1.75811-5.49181 ──────────────────────────────────── Σ -0.01789 0.01378 0.04826-0.05378 0.10532 -0.67786 0.86977-5.22577.

【0026】また、高次コマ収差についても、第3レン
ズ群G3の非球面が作用している。すなわち、従来の球
面系では、大口径比化、広角化に対する軸外収差である
非点収差、歪曲収差並びにコマ収差の補正は、未だ十分
でなかったことが分かる。
The aspherical surface of the third lens group G3 also acts on the high-order coma aberration. That is, in the conventional spherical system, it is understood that the correction of off-axis aberrations such as astigmatism, distortion, and coma for increasing the aperture ratio and widening the angle has not been sufficient.

【0027】なお、上記表1で、SA3 は3次球面収差
係数、SA5 は5次球面収差係数、CM3 は3次コマ収
差係数、CM5 は5次コマ収差係数、AS3 は3次非点
収差係数、AS5 は5次非点収差係数、DT3 は3次歪
曲収差係数、DT5 は5次歪曲収差係数である。また、
Σは、各群の収差係数の緩和である。また、この例で
は、第2レンズ群G2内に空気レンズがあり、これが収
差発生面となり微妙な収差補正に関係する。ここで残留
する高次収差は、非球面によって発生する高次収差によ
りバランスし得る。
In Table 1, SA 3 is a third-order spherical aberration coefficient, SA 5 is a fifth-order spherical aberration coefficient, CM 3 is a third-order coma aberration coefficient, CM 5 is a fifth-order coma aberration coefficient, and AS 3 is 3. The astigmatism coefficient, AS 5 is the 5th astigmatism coefficient, DT 3 is the 3rd distortion coefficient, and DT 5 is the 5th distortion coefficient. Also,
Σ is the relaxation of the aberration coefficient of each group. Further, in this example, there is an air lens in the second lens group G2, which serves as an aberration generation surface and is involved in delicate aberration correction. The high-order aberration remaining here can be balanced by the high-order aberration generated by the aspherical surface.

【0028】次に、画角が90°程度で口径比が1:
2.8程度のレンズ系の場合についての効果を説明す
る。ここでは、後記の実施例5について説明する。この
実施例のレンズ構成は、図5の断面図に示すように、対
称型の非常に簡単な構成となっている。非球面は、第1
レンズ群G1、第2レンズ群G2及び第3レンズ群G3
のそれぞれに1面を使用している。すなわち、基本構成
のみでは、色収差の補正による屈折力配置が決定すると
きに、諸収差を補正しうる能力がレンズ系になければ、
高い仕様へ対応をすることが困難となる。しかしなが
ら、非球面を効果的に使用することで、結像性能を向上
することが可能となる。
Next, the angle of view is about 90 ° and the aperture ratio is 1 :.
The effect in the case of a lens system of about 2.8 will be described. Here, Example 5 described later will be described. As shown in the sectional view of FIG. 5, the lens structure of this embodiment has a symmetrical and very simple structure. The aspherical surface is the first
Lens group G1, second lens group G2, and third lens group G3
One side is used for each. That is, with only the basic configuration, if the lens system does not have the ability to correct various aberrations when the refractive power arrangement is determined by the correction of chromatic aberration,
It is difficult to meet high specifications. However, by effectively using the aspherical surface, it becomes possible to improve the imaging performance.

【0029】第1レンズ群G1の第1面は、非球面を使
用することで、軸外収差である歪曲収差の補正に直接的
に作用する。また、第2レンズ群G2へ射出する軸外光
束を緩和して、サジタルコマ収差の発生を抑える作用を
持つ。この場合、補正過剰のコマ収差を発生すること
で、逆に全系のバランスをすることを可能としている。
この作用は画角が広くなる程効果を発揮するが、球面系
のみでは、多くの負メニスカスレンズを配置することで
解決しようとしている同仕様の米国特許第3,132,
199号のものがある。しかし、このものは、要求され
る結像性能を満たすことがいかに困難かを示す例に他な
らないと言えよう。
By using an aspherical surface, the first surface of the first lens group G1 directly affects correction of off-axis aberrational distortion. Further, it has a function of relaxing the off-axis light flux emitted to the second lens group G2 and suppressing the occurrence of sagittal coma aberration. In this case, it is possible to balance the entire system by generating overcorrected coma.
This action is more effective as the angle of view becomes wider, but in the spherical system alone, the problem is solved by arranging many negative meniscus lenses.
There is one in 199. However, this is nothing but an example of how difficult it is to satisfy the required imaging performance.

【0030】次に、比較的に屈折力の大きい第2レンズ
群G2の後群G22の最終面に使用されている非球面は、
軸外メリディオナルコマ収差、非点収差、歪曲収差や像
面湾曲収差の補正を容易にしている。また、第3レンズ
群G3のメニスカスレンズの凸面に非球面を使用するこ
とによって、軸外コマ収差、歪曲収差、像面湾曲収差の
補正に寄与している。この例の各レンズ群についての収
差係数を表2に示す。また、その収差図を図12に示
す。
Next, the aspherical surface used for the final surface of the rear lens group G 22 of the second lens group G2 having a relatively large refractive power is
It facilitates correction of off-axis meridional coma, astigmatism, distortion and field curvature. Further, by using an aspherical surface for the convex surface of the meniscus lens of the third lens group G3, it contributes to correction of off-axis coma aberration, distortion aberration, and field curvature aberration. Table 2 shows the aberration coefficients for each lens group in this example. The aberration diagram is shown in FIG.

【0031】 表2 SA3 SA5 CM3 CM5 AS3 AS5 DT3 DT5 G1 0.07095 0.0067 -0.40601-0.04613 0.25962-0.03896-1.87280 0.54515 G2 -0.11656 0.04792 0.23886 0.25829-0.40952 0.11010 0.06285 0.56511 G3 0.01487 0.00115 0.15299 0.00939 0.18057-0.21544 2.14757-3.36526 ──────────────────────────────────── Σ −0.03074 0.05577−0.01416 0.22154
0.03067−0.14430 0.33762−2.25501 。
Table 2 SA 3 SA 5 CM 3 CM 5 AS 3 AS 5 DT 3 DT 5 G1 0.07095 0.0067 -0.40601-0.04613 0.25962-0.03896-1.87280 0.54515 G2 -0.11656 0.04792 0.23886 0.25829-0.40952 0.11010 0.06285 0.56511 G3 0.01487 0.00115 0.15299 0.00939 0.18057-0.21544 2.14757-3.36526 ──────────────────────────────────── Σ-0.03074 0.05577 -0.01416 0.22154
0.03067-0.14430 0.33762-2.25501.

【0032】ここで、第1レンズ群G1の第1面に使用
した非球面は、離心率が1であり、有効径付近の非球面
量は396μmと比較的大きいことで、周辺部の光束に
対する作用の大きさを表している。特に、非球面におけ
る固有面係数を示すと、以下の表3のように大きな値を
とる。 表3 SA SA5 CM3 CM5 AS3 AS5 DT3 DT5
1面 0.00129 0.00013-0.09522-0.00262 0.10555 0.00011-0.92766 0.18319 9面 -0.07110 0.05596 0.74665 0.28818-0.18588 0.03465 0.69385-0.36207 11面 -0.00831-0.00045 0.01565 0.00422 0.09016-0.19631 1.05322-2.46005 。
Here, the aspherical surface used for the first surface of the first lens group G1 has an eccentricity of 1, and the aspherical surface amount near the effective diameter is 396 μm, which is relatively large. It represents the magnitude of the action. In particular, the eigensurface coefficient of an aspherical surface has a large value as shown in Table 3 below. Table 3 SA 3 SA 5 CM 3 CM 5 AS 3 AS 5 DT 3 DT 5
1 side 0.00129 0.00013-0.09522-0.00262 0.10555 0.00011-0.92766 0.18319 9 side -0.07110 0.05596 0.74665 0.28818-0.18588 0.03465 0.69385-0.36207 11 side -0.00831-0.00045 0.01565 0.00422 0.09016-0.19631 1.05322-2.46005.

【0033】表3の非球面使用面おける収差係数によっ
て、球面収差は第2レンズ群G2、コマ収差は第1レン
ズ群G1と第2レンズ群G2の非球面の作用が大きい。
非点収差は、3次収差係数においては各レンズ群の作用
の寄与があるが、高次収差の発生状況から、第3レンズ
群G3の寄与が大きいことが分かる。また、歪曲収差に
おいても、非点収差と同様であり、第3レンズ群G3の
非球面の作用が大きいのが分かる。
Due to the aberration coefficient on the aspherical surface used in Table 3, the spherical aberration has a large effect on the second lens group G2, and the coma aberration has a large effect on the aspherical surfaces of the first lens group G1 and the second lens group G2.
Astigmatism contributes to the action of each lens group in the third-order aberration coefficient, but it can be seen from the situation of occurrence of higher-order aberrations that the third lens group G3 makes a large contribution. Further, it is understood that the distortion is similar to the astigmatism, and the action of the aspherical surface of the third lens group G3 is great.

【0034】さらに、非球面の収差補正の効果について
は、第1レンズ群G1及び第2レンズ群G2における凹
面に使用することでも、同様の効果を期待することがで
きる。これについては、後記する実施例7において示し
ている。この実施例では、画角で75°程度であるが、
この種のレンズ系では口径比1:2.08と大口径であ
り、色収差をはじめ軸外諸収差を良好に補正するのに第
1レンズ群G1の負メニスカスレンズの凹面、第2レン
ズ群G2の第1面及び第3レンズ群G3の負メニスカス
レンズの凹面に非球面を使用して、十分な開口効率と結
像性能を実現している。このレンズ構成を図7に、収差
図を図14に示してある。
Further, regarding the effect of correcting the aberration of the aspherical surface, the same effect can be expected by using the concave surface in the first lens group G1 and the second lens group G2. This is shown in Example 7 described later. In this embodiment, the angle of view is about 75 °,
This type of lens system has a large aperture ratio of 1: 2.08, and in order to satisfactorily correct chromatic aberration and various off-axis aberrations, the concave surface of the negative meniscus lens of the first lens group G1 and the second lens group G2 By using an aspherical surface for the first surface and the concave surface of the negative meniscus lens of the third lens group G3, sufficient aperture efficiency and imaging performance are realized. This lens structure is shown in FIG. 7 and the aberration diagram is shown in FIG.

【0035】[0035]

【実施例】以下、本発明の広角レンズの実施例1〜7に
ついて説明する。実施例1は、焦点距離が28.25で
口径比が1:2.85の広角レンズであり、レンズ断面
図を図1に示す。構成は、第1レンズ群G1は、物体側
に凸面を向けた負メニスカスレンズ1枚から構成し、第
2レンズ群G2の前群G21は、物体側に凸面を向けた負
メニスカスレンズと、両凸レンズと両凹レンズの接合レ
ンズとからなり、開口絞りを隔てて、第2レンズ群G2
の後群G22は、両凹レンズ、両凸レンズ及び像面側に凸
面を向けた負メニスカスレンズによる3枚接合レンズと
からなる。第3レンズ群G3は、像面側に凸面を向けた
負メニスカスレンズ1枚からなる。
EXAMPLES Examples 1 to 7 of the wide-angle lens of the present invention will be described below. Example 1 is a wide-angle lens having a focal length of 28.25 and an aperture ratio of 1: 2.85, and a lens cross-sectional view is shown in FIG. Configuration, the first lens group G1 is composed of one negative meniscus lens having a convex surface directed toward the object side, the front group G 21 of the second lens group G2 includes a negative meniscus lens having a convex surface directed toward the object side, The second lens group G2 is composed of a biconvex lens and a cemented lens of a biconcave lens and is separated by an aperture stop.
The rear group G 22 includes a biconcave lens, a biconvex lens, and a triplet cemented lens including a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 is composed of one negative meniscus lens having a convex surface directed toward the image plane side.

【0036】非球面は、第2レンズ群G2の最も物体側
の面に使用され、凸面に周辺部での非球面量が増して屈
折力をゾーナル付近まて除々に弱めて、補正不足となる
球面収差の補正を容易にしている。また、第3レンズ群
G3を構成する負メニスカスレンズの凹面に非球面が使
用され、周辺像面の平坦化に役割を持っている。この面
では非球面量は小さいが、レンズ周辺部に行くに従い面
の屈折力が強まるように構成されている。この実施例の
収差図を図8に示す。図中、(a)は球面収差、(b)
は非点収差、(c)は倍率色収差、(d)は歪曲収差を
示している。
The aspherical surface is used as the most object-side surface of the second lens group G2, and the amount of aspherical surface in the peripheral portion of the convex surface increases to gradually weaken the refractive power to the vicinity of the zonal, resulting in insufficient correction. This makes it easy to correct spherical aberration. Further, an aspherical surface is used for the concave surface of the negative meniscus lens forming the third lens group G3, which plays a role in flattening the peripheral image plane. Although the amount of aspherical surface is small on this surface, the refractive power of the surface is strengthened toward the peripheral portion of the lens. FIG. 8 shows an aberration diagram of this example. In the figure, (a) is spherical aberration, (b)
Represents astigmatism, (c) represents lateral chromatic aberration, and (d) represents distortion.

【0037】実施例2は、焦点距離が28.25で口径
比が1:2.83の広角レンズであり、レンズ断面図を
図2に示す。構成は、第1レンズ群G1は、物体側に凸
面を向けた負メニスカスレンズと物体側に凸面を向けた
正メニスカスレンズの2枚から構成し、第2レンズ群G
2の前群G21は、物体側に凸面を向けた負メニスカスレ
ンズと両凸レンズの接合レンズからなり、開口絞りを隔
てて、第2レンズ群G2の後群G22は、両凹レンズ両凸
レンズの接合レンズと、像側の面の曲率が強い両凸レン
ズから構成する。また、第3レンズ群G3は、像面側に
凸面を向けた負メニスカスレンズ1枚からなる。このレ
ンズ群構成は、フォーカシング時の収差の補償に特に留
意して決められること、さらに、色収差補正が群内で行
われることが基本的な設計思想になっている。
The second embodiment is a wide-angle lens having a focal length of 28.25 and an aperture ratio of 1: 2.83, and a lens sectional view is shown in FIG. The configuration is such that the first lens group G1 is composed of two lenses, a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the second lens group G1.
The second front group G 21 is composed of a cemented lens of a negative meniscus lens having a convex surface directed toward the object side and a biconvex lens. The rear lens group G 22 of the second lens group G 2 is a biconcave lens biconvex lens with an aperture stop therebetween. It is composed of a cemented lens and a biconvex lens whose surface on the image side has a strong curvature. The third lens group G3 is composed of one negative meniscus lens having a convex surface directed toward the image plane side. The basic design concept of this lens group structure is that it is determined with particular consideration for compensation of aberrations during focusing, and that chromatic aberration correction is performed within the group.

【0038】ここで、非球面は、第1レンズ群G1の最
終面である凹面にレンズ周辺部に行くに従って面の屈折
力が強まり、軸外収差の補正、例えばサジタルコマ収差
の微妙なバランスに寄与する。また、第3レンズ群G3
の前面である凹面に使用して、レンズ周辺部に行くに従
って面の屈折力を強めることで、像面の平坦性の向上に
寄与する。この非球面量は、有効径付近で287μmと
比較的に大きく、周辺像面への効果が大きいことを意味
している。この実施例の図8と同様な収差図を図9に示
す。この収差図から、球面収差、非点収差、倍率色収差
及び歪曲収差が良好に補正されていることが明確であ
る。
Here, the aspherical surface is a concave surface which is the final surface of the first lens group G1 and the refractive power of the surface is strengthened toward the lens peripheral portion, contributing to correction of off-axis aberrations, for example, a delicate balance of sagittal coma aberration. To do. In addition, the third lens group G3
It is used for the concave surface which is the front surface of the, and strengthens the refracting power of the surface as it goes to the peripheral portion of the lens, thereby contributing to the improvement of the flatness of the image surface. This aspherical amount is 287 μm, which is relatively large in the vicinity of the effective diameter, which means that the effect on the peripheral image plane is large. FIG. 9 shows an aberration diagram similar to that of FIG. 8 of this example. From this aberration diagram, it is clear that spherical aberration, astigmatism, lateral chromatic aberration, and distortion are well corrected.

【0039】実施例3は、焦点距離が28.25で口径
比が1:2.82の広角レンズであり、レンズ断面図を
図3に示す。構成は、第1レンズ群G1は、物体側に凸
面を向けた負メニスカスレンズ1枚から構成し、第2レ
ンズ群G2の前群G21は、物体側に凸面を向けた厚肉の
正メニスカスレンズと、両凸レンズと曲率の強い両凹レ
ンズと物体側に凸面を向けた負メニスカスレンズの3枚
接合レンズとからなり、開口絞りを隔てて、第2レンズ
群G2の後群G22は、両凹レンズと両凸レンズの接合レ
ンズと、屈折力の小さい両凹レンズと両凸レンズの接合
レンズとから構成する。また、第3レンズ群G3は、像
面側に凸面を向けた曲率の強い負メニスカスレンズ1枚
からなる。
The third embodiment is a wide-angle lens having a focal length of 28.25 and an aperture ratio of 1: 2.82. A lens sectional view is shown in FIG. Configuration, the first lens group G1 is composed of one negative meniscus lens having a convex surface directed toward the object side, the front group G 21 of the second lens group G2, a positive meniscus thick having a convex surface on the object side The rear lens group G 22 of the second lens group G 2 is composed of a lens, a biconvex lens, a biconcave lens having a strong curvature, and a triplet cemented lens of a negative meniscus lens having a convex surface directed toward the object side. It is composed of a cemented lens made up of a concave lens and a biconvex lens, and a cemented lens made up of a biconcave lens and a biconvex lens having a small refractive power. The third lens group G3 is composed of one negative meniscus lens having a strong curvature with its convex surface facing the image plane side.

【0040】非球面は、第1レンズ群G1の負メニスカ
スレンズの後面に使用され、レンズ周辺部に行くに従い
面の屈折力が強まる。これにより、サジタルコマ収差の
補正をさらに容易にすることが可能となった。また、第
2レンズ群G2の前群G21の3枚接合レンズの最も物体
側の面に使用され、レンズ面の周辺部に行くに従い収斂
性の屈折力が弱まるように作用し得る形状をとり、球面
収差の補正を容易にする。この構成により、広角化と大
口径比化をさらに進めることができることを確認した。
この実施例の図8と同様な収差図を図10に示す。この
収差図から明らかなように、球面収差、倍率色収差、歪
曲収差共に極めて良好に補正し得た。歪曲収差はほとん
どゼロである。
The aspherical surface is used for the rear surface of the negative meniscus lens of the first lens group G1, and the refracting power of the surface becomes stronger toward the peripheral portion of the lens. As a result, it becomes possible to more easily correct sagittal coma aberration. In addition, it is used as the most object-side surface of the triplet cemented lens of the front group G 21 of the second lens group G2, and has a shape capable of acting so as to weaken the convergent refractive power toward the peripheral portion of the lens surface. , Facilitates correction of spherical aberration. It was confirmed that this configuration can further increase the wide angle and the large aperture ratio.
FIG. 10 shows an aberration diagram similar to that of FIG. 8 of this example. As is clear from this aberration diagram, spherical aberration, lateral chromatic aberration, and distortion could be corrected very well. The distortion is almost zero.

【0041】実施例4は、焦点距離が28.2で口径比
が1:2.88の広角レンズであり、レンズ断面図を図
4に示す。全長については、望遠比は2.3であり、小
型化されている。構成は、第1レンズ群G1は、物体側
に凸面を向けた負メニスカスレンズ1枚から構成し、第
2レンズ群G2の前群G21は、両凸レンズと両凹レンズ
の接合レンズからなり、開口絞りを隔てて、第2レンズ
群G2の後群G22は、像側に曲率の強い凹面を向けた両
凹レンズと両凸レンズの接合レンズからなる。また、第
3レンズ群G3は、像面側に凸面を向けた負メニスカス
レンズ1枚からなる。特に、第2レンズ群G2の後群G
22が厚肉の負レンズを含むことは大きな特徴となってい
る。
The fourth embodiment is a wide-angle lens having a focal length of 28.2 and an aperture ratio of 1: 2.88, and a lens sectional view is shown in FIG. As for the full length, the telephoto ratio is 2.3, which is compact. Configuration, the first lens group G1 is composed of one negative meniscus lens having a convex surface directed toward the object side, the front group G 21 of the second lens group G2 is composed of a biconvex lens and a biconcave lens of the cemented lens, aperture at a stop, the group G 22 after the second lens group G2 is composed of a biconcave lens and a cemented lens of a biconvex lens having a stronger curvature concave surface facing the image side. The third lens group G3 is composed of one negative meniscus lens having a convex surface directed toward the image plane side. In particular, the rear group G of the second lens group G2
It is a major feature that 22 includes a thick negative lens.

【0042】非球面は、第2レンズ群G2の後群G22
最も像側面に使用されている。非球面形状は、レンズ外
周部に行くに従い収斂性が弱まる屈折力を持ち、像面平
坦性を補正するのに寄与する。非球面量は、有効径付近
で56μm程度である。この実施例の図8と同様な収差
図を図11に示す。この収差図から、実施例3と同様、
歪曲収差はほとんどゼロであることが分かる。
The aspherical surface is used on the most image side surface of the rear group G 22 of the second lens group G2. The aspherical surface has a refracting power that is less convergent toward the outer peripheral portion of the lens, and contributes to correction of image plane flatness. The amount of aspherical surface is about 56 μm near the effective diameter. FIG. 11 shows an aberration diagram similar to that of FIG. 8 of this example. From this aberration diagram, as in Example 3,
It can be seen that the distortion aberration is almost zero.

【0043】実施例5は、焦点距離が21.15で口径
比が1:2.85の広角レンズであり、レンズ断面図を
図5に示す。このレンズ系は、実施例4と似た6枚の構
成である。しかし、画角が90°を越え、かつ、大口径
比である。構成は、第1レンズ群G1は、物体側に凸面
を向けた負メニスカスレンズ1枚から構成し、第2レン
ズ群G2の前群G21は、両凸レンズと像面側に凸面を向
けた負メニスカスレンズの接合レンズからなり、開口絞
りを隔てて、第2レンズ群G2の後群G22は、両凹レン
ズと両凸レンズの接合レンズからなる。また、第3レン
ズ群G3は、像面側に凸面を向けた負メニスカスレンズ
1枚からなる。
The fifth embodiment is a wide-angle lens having a focal length of 21.15 and an aperture ratio of 1: 2.85, and a lens sectional view is shown in FIG. This lens system has a six-element configuration similar to that of the fourth embodiment. However, the angle of view exceeds 90 ° and the aperture ratio is large. Configuration, the first lens group G1 is composed of a negative meniscus lens one having a convex surface facing the object side, the front group G 21 of the second lens group G2 includes a negative having a convex surface directed toward the biconvex lens and the image plane side a cemented lens of a meniscus lens, at a aperture stop, the group G 22 after the second lens group G2 is composed of a biconcave lens and a cemented lens of a biconvex lens. The third lens group G3 is composed of one negative meniscus lens having a convex surface directed toward the image plane side.

【0044】非球面は、第1レンズ群G1の物体側面で
ある第1面と、第2レンズ群G2の最終面と、第3レン
ズ群G3の像側面すなわち最終面に使用する。第1面の
非球面は、負メニスカスレンズの凸面に使用し、周縁部
に行くに従い急激に非球面量が大きくなるような形状を
持ち、周辺光束へのサジタルコマ収差等の補正に効果的
に作用する。また、第2レンズ群G2の最終面に使用さ
れた非球面は、コマ収差補正や非点隔差の補正に有効に
作用する。また、第3レンズ群G3の負メニスカスレン
ズの凸面に使用されてている非球面は、レンズ周辺部に
おける面の屈折力を弱めており、像面の平坦性の改善に
効果的に作用する。このときの有効径付近での非球面量
は1013μmである。この実施例の図8と同様な収差
図を図12に示す。この実施例により、望遠比が2.6
で極めて像面性の良いレンズ系が得られた。
The aspherical surfaces are used for the first surface, which is the object side surface of the first lens group G1, the final surface of the second lens group G2, and the image side surface or the final surface of the third lens group G3. The aspherical surface of the first surface is used for the convex surface of the negative meniscus lens, and has a shape in which the aspherical surface amount increases sharply toward the peripheral edge, and it effectively acts to correct sagittal coma aberration etc. to the peripheral light flux. To do. Further, the aspherical surface used as the final surface of the second lens group G2 effectively acts on coma aberration correction and astigmatism correction. Further, the aspherical surface used as the convex surface of the negative meniscus lens of the third lens group G3 weakens the refractive power of the surface at the lens peripheral portion and effectively acts to improve the flatness of the image surface. At this time, the amount of aspherical surface near the effective diameter is 1013 μm. FIG. 12 shows an aberration diagram similar to that of FIG. 8 of this example. According to this embodiment, the telephoto ratio is 2.6.
Thus, a lens system having an extremely good image plane was obtained.

【0045】実施例6は、焦点距離が28.25で口径
比が1:2.08の広角レンズであり、レンズ断面図を
図6に示す。構成は、第1レンズ群G1は、物体側に凸
面を向けた厚肉の負メニスカスレンズ1枚から構成し、
第2レンズ群G2の前群G21は、物体側に凸面を向けた
正メニスカスレンズと、両凸レンズと両凹レンズの接合
レンズとからなり、開口絞りを隔てて、第2レンズ群G
2の後群G22は、物体側に凸面を向けた負メニスカスレ
ンズと両凸レンズと像面側に凸面を向けた負メニスカス
レンズとの3枚接合レンズからなる。また、第3レンズ
群G3は、像面側に凸面を向けた負メニスカスレンズ1
枚からなる。なお、第3レンズ群G3の負レンズは、バ
ックフォーカスの制限により、両凹レンズとなることは
知られているが、これは周辺性能向上にとって得策でな
いことは明らかである。また、第2レンズ群G2の最も
物体側のレンズは、第1レンズ群G1自体に分散の小さ
い硝種を選ぶことで決定づけられた。場合により、第1
レンズ群G1内の色収差補正に使用するときに、第1レ
ンズ群G1として使用されることはある。
The sixth embodiment is a wide-angle lens having a focal length of 28.25 and an aperture ratio of 1: 2.08, and a lens sectional view is shown in FIG. The first lens group G1 is composed of one thick negative meniscus lens having a convex surface facing the object side,
Front group G 21 of the second lens group G2 includes a positive meniscus lens having a convex surface directed toward the object side and a double-convex lens and a double-concave lens, at a aperture stop, the second lens group G
The second rear group G 22 includes a triplet cemented lens including a negative meniscus lens having a convex surface directed toward the object side, a biconvex lens, and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 is a negative meniscus lens 1 having a convex surface facing the image plane side.
It consists of pieces. The negative lens of the third lens group G3 is known to be a biconcave lens due to the limitation of back focus, but it is clear that this is not a good idea for improving peripheral performance. The most object-side lens of the second lens group G2 was determined by selecting a glass type having a small dispersion for the first lens group G1 itself. In some cases, the first
When used for correcting chromatic aberration in the lens group G1, it may be used as the first lens group G1.

【0046】非球面は、第2レンズ群G2の最も物体側
の凸面に使用され、レンズ周辺部に行くに従い面の屈折
力が弱まる形状をとり、コマ収差、球面収差を補正する
のに効果的に作用する。特に、大口径の場合には有効に
作用する。有効径付近での非球面量は、951μmと作
用は大きいことが分かる。また、第3レンズ群G3の凹
面に非球面を使用し、像面の平坦性の補正に使用され
る。口径比が大きいときに、開口効率の維持をするため
に周辺光束が大きくなるため、非球面量も増加し、有効
径付近で128μmを有する。この実施例の図8と同様
な収差図を図13に示す。歪曲収差に高次収差の残存が
認められるものの、非常に良好な補正が可能となった。
The aspherical surface is used as the most object-side convex surface of the second lens group G2, and has a shape in which the refracting power of the surface becomes weaker toward the periphery of the lens and is effective in correcting coma aberration and spherical aberration. Act on. In particular, it works effectively when the diameter is large. It can be seen that the aspheric amount near the effective diameter is 951 μm, which is a large effect. Further, an aspherical surface is used for the concave surface of the third lens group G3, which is used for correcting the flatness of the image surface. When the aperture ratio is large, the marginal luminous flux becomes large in order to maintain the aperture efficiency, so that the amount of aspherical surface also increases, and it has 128 μm near the effective diameter. FIG. 13 shows an aberration diagram similar to that of FIG. 8 of this example. Although high-order aberration remains in the distortion, very good correction is possible.

【0047】実施例7は、焦点距離が28.24で口径
比が1:2.08の広角レンズであり、レンズ断面図を
図7に示す。構成は、第1レンズ群G1は、物体側に凸
面を向けた2枚の負メニスカスレンズと、空気レンズを
隔てて物体側に強い曲率を有する正メニスカスレンズと
から構成し、第2レンズ群G2の前群G21は、物体側に
凸面を向けた負メニスカスレンズと正メニスカスレンズ
の接合レンズからなり、開口絞りを隔てて、第2レンズ
群G2の後群G22は、両凹レンズと両凸レンズの接合レ
ンズと、両凸レンズとからなる。また、第3レンズ群G
3は、像面側に凸面を向けた負メニスカスレンズ1枚か
らなる。
The seventh embodiment is a wide-angle lens having a focal length of 28.24 and an aperture ratio of 1: 2.08, and a lens sectional view is shown in FIG. The first lens group G1 is composed of two negative meniscus lenses each having a convex surface facing the object side, and a positive meniscus lens having a strong curvature on the object side across an air lens, and the second lens group G2. The front group G 21 of the above is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens. The rear group G 22 of the second lens group G 2 is a biconcave lens and a biconvex lens with an aperture stop. It consists of a cemented lens and a biconvex lens. In addition, the third lens group G
3 is composed of one negative meniscus lens having a convex surface facing the image plane side.

【0048】非球面は、第1レンズ群G1の第1メニス
カスレンズの凹面に採用し、レンズの周辺部に行くに従
い発散性の屈折力が強まる形状をとり、周辺像面に対し
て残留しがちなサジタルコマ収差の補正に大きな効果を
有する。また、歪曲収差の補正にも効果を有する。ま
た、第2レンズ群G2の最も物体側に使用し、球面収差
補正に大きな効果を発揮する。このことは、大口径比化
にとり重要である。また、第3レンズ群G3の負メニス
カスレンズの凹面に使用することで、軸外像面の平坦性
を良好にするのに効果を発揮する。この実施例の図8と
同様な収差図を図14に示す。何れの収差についても、
極めて良好に補正されている。
The aspherical surface is adopted as the concave surface of the first meniscus lens of the first lens group G1, and has a shape in which the divergent refracting power becomes stronger toward the peripheral portion of the lens, and remains on the peripheral image plane. It has a great effect on correction of sagittal coma aberration. It also has an effect on correction of distortion. Further, it is used on the most object side of the second lens group G2, and exerts a great effect on spherical aberration correction. This is important for increasing the aperture ratio. Further, by being used for the concave surface of the negative meniscus lens of the third lens group G3, it is effective in improving the flatness of the off-axis image surface. FIG. 14 shows an aberration diagram similar to that of FIG. 8 of this example. For any aberration,
Very well corrected.

【0049】なお、何れの場合にも、メリディオナル及
びサジタルコマ収差の補正は良好である点で、従来の球
面のみにより大型化するレンズ系や逆望遠タイプより
も、大幅な改善が見られている。
In all cases, the meridional and sagittal coma aberrations are well corrected, and a great improvement is seen over the conventional lens system and the reverse telephoto type, which are increased in size by only the spherical surface.

【0050】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、FNOはFナン
バー、ωは半画角、r1 、r2 …は各レンズ面の曲率半
径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2
は各レンズのd線の屈折率、νd1、νd2…は各レンズの
アッベ数である。なお、非球面形状は、xを光の進行方
向を正とした光軸とし、yを光軸と直行する方向にとる
と、下記の式にて表される。 x=(y2 /r)/[1+{1−P(y/
r)2 1/2 ]+A44 +A66 +A88 + A1010 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6
A8、A10 はそれぞれ4次、6次、8次、10次の非球面
係数である。
Numerical data of each of the above-mentioned examples will be shown below. In addition to the above, the symbols are f, the focal length of the entire system, F NO is the F number, ω is the half angle of view, r 1 , r 2 ... The curvature radii of the lens surfaces, d 1 , d 2 ... Are the intervals between the lens surfaces, n d1 , n d2 .
Is the d-line refractive index of each lens, and ν d1 , ν d2 ... Is the Abbe number of each lens. The aspherical shape is expressed by the following equation, where x is an optical axis with the traveling direction of light being positive and y is a direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1-P (y /
r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 However, r is a paraxial radius of curvature, P is a conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients of the 4th, 6th, 8th and 10th orders, respectively.

【0051】実施例1 f=28.25 ,FNO=2.85,ω=37.55 ° r1 = 45.7477 d1 = 2.000 nd1 =1.52249 νd1 =59.79 r2 = 20.2273 d2 =13.505 r3 = 31.8802(非球面) d3 = 2.200 nd2 =1.77250 νd2 =49.60 r4 = 17.3560 d4 = 0.626 r5 = 17.9470 d5 = 5.000 nd3 =1.77250 νd3 =49.60 r6 = -18.0589 d6 = 0.850 nd4 =1.58267 νd4 =46.33 r7 = 61.2202 d7 = 3.461 r8 = ∞(絞り) d8 = 3.460 r9 = -175.6281 d9 = 2.000 nd5 =1.62364 νd5 =36.54 r10= 30.8634 d10= 5.362 nd6 =1.74400 νd6 =44.79 r11= -10.2656 d11= 2.749 nd7 =1.80518 νd7 =25.43 r12= -21.9822 d12=12.771 r13= -12.5639(非球面) d13= 1.650 nd8 =1.48749 νd8 =70.21 r14= -28.6432 非球面係数 第3面 P = 1.0000 A4 =-0.20326×10-4 A6 =-0.97541×10-7 A8 = 0.18268×10-9 A10=-0.19504×10-11 第13面 P = 1.0208 A4 =-0.53251×10-4 A6 = 0.10680×10-5 A8 =-0.10632×10-7 A10= 0.48187×10-10
Example 1 f = 28.25, F NO = 2.85, ω = 37.55 ° r 1 = 45.7477 d 1 = 2.000 n d1 = 1.52249 ν d1 = 59.79 r 2 = 20.2273 d 2 = 13.505 r 3 = 31.8802 (aspherical surface) ) D 3 = 2.200 n d2 = 1.77250 ν d2 = 49.60 r 4 = 17.3560 d 4 = 0.626 r 5 = 17.9470 d 5 = 5.000 n d3 = 1.77250 ν d3 = 49.60 r 6 = -18.0589 d 6 = 0.850 n d4 = 1.58267 ν d4 = 46.33 r 7 = 61.2202 d 7 = 3.461 r 8 = ∞ (aperture) d 8 = 3.460 r 9 = -175.6281 d 9 = 2.000 n d5 = 1.62364 ν d5 = 36.54 r 10 = 30.8634 d 10 = 5.362 n d6 = 1.74400 ν d6 = 44.79 r 11 = -10.2656 d 11 = 2.749 n d7 = 1.80518 ν d7 = 25.43 r 12 = -21.9822 d 12 = 12.771 r 13 = -12.5639 (aspherical surface) d 13 = 1.650 n d8 = 1.48749 ν d8 = 70.21 r 14 = -28.6432 Aspherical surface third surface P = 1.0000 A 4 = -0.20326 × 10 -4 A 6 = -0.97541 × 10 -7 A 8 = 0.18268 × 10 -9 A 10 = -0.19504 × 10 -11 thirteenth surface P = 1.0208 A 4 = -0.53251 × 10 -4 A 6 = 0.10680 × 10 -5 A 8 = -0.10632 × 10 -7 A 10 = 0.48187 × 10 -Ten
.

【0052】実施例2 f=28.25 ,FNO=2.83,ω=37.66 ° r1 = 71.8061 d1 = 1.850 nd1 =1.48749 νd1 =70.21 r2 = 16.8902 d2 = 3.578 r3 = 24.6507 d3 = 5.296 nd2 =1.84666 νd2 =23.88 r4 = 25.6113(非球面) d4 = 5.443 r5 = 20.1463 d5 = 5.645 nd3 =1.80518 νd3 =25.43 r6 = 9.7186 d6 = 5.253 nd4 =1.56965 νd4 =49.33 r7 = -48.8544 d7 = 0.515 r8 = ∞(絞り) d8 = 1.714 r9 = -19.9631 d9 = 2.200 nd5 =1.60323 νd5 =42.32 r10= 18.6011 d10= 4.544 nd6 =1.77250 νd6 =49.60 r11= -24.3183 d11= 4.349 r12= 261.7147 d12= 2.898 nd7 =1.69680 νd7 =55.53 r13= -34.6477 d13=11.664 r14= -13.5483(非球面) d14= 0.900 nd8 =1.48749 νd8 =70.21 r15= -70.3472 非球面係数 第4面 P = 1.0000 A4 = 0.35387×10-5 A6 = 0.15947×10-7 A8 = 0.13970×10-10 A10=-0.20336×10-12 第14面 P = 1.0818 A4 =-0.41008×10-4 A6 = 0.61779×10-6 A8 =-0.57324×10-8 A10= 0.22400×10-10
Example 2 f = 28.25, F NO = 2.83, ω = 37.66 ° r 1 = 71.8061 d 1 = 1.850 n d1 = 1.48749 ν d1 = 70.21 r 2 = 16.8902 d 2 = 3.578 r 3 = 24.6507 d 3 = 5.296 n d2 = 1.84666 ν d2 = 23.88 r 4 = 25.6113 (aspherical surface) d 4 = 5.443 r 5 = 20.1463 d 5 = 5.645 n d3 = 1.80518 ν d3 = 25.43 r 6 = 9.7186 d 6 = 5.253 n d4 = 1.56965 ν d4 = 49.33 r 7 = -48.8544 d 7 = 0.515 r 8 = ∞ (aperture) d 8 = 1.714 r 9 = -19.9631 d 9 = 2.200 n d5 = 1.60323 ν d5 = 42.32 r 10 = 18.6011 d 10 = 4.544 n d6 = 1.77250 ν d6 = 49.60 r 11 = -24.3183 d 11 = 4.349 r 12 = 261.7147 d 12 = 2.898 n d7 = 1.69680 ν d7 = 55.53 r 13 = -34.6477 d 13 = 11.664 r 14 = -13.5483 ( aspherical) d 14 = 0.900 n d8 = 1.48749 ν d8 = 70.21 r 15 = -70.3472 aspherical coefficients fourth surface P = 1.0000 A 4 = 0.35387 × 10 -5 A 6 = 0.15947 × 10 -7 A 8 = 0.13970 × 10 -10 A 10 = -0.20336 x 10 -12 14th surface P = 1.0818 A 4 = -0.41008 x 10 -4 A 6 = 0.61779 x 10 -6 A 8 = -0 .57324 × 10 -8 A 10 = 0.22400 × 10 -10
.

【0053】実施例3 f=28.25 ,FNO=2.82,ω=37.503° r1 = 41.3997 d1 = 3.200 nd1 =1.61700 νd1 =62.80 r2 = 14.7518(非球面) d2 = 7.344 r3 = 21.6666 d3 = 7.110 nd2 =1.66680 νd2 =33.04 r4 = 35.1779 d4 = 3.117 r5 = 40.7851(非球面) d5 = 4.192 nd3 =1.79500 νd3 =45.29 r6 = -18.7082 d6 = 1.200 nd4 =1.62045 νd4 =38.12 r7 = 10.2699 d7 = 3.974 nd5 =1.49700 νd5 =81.61 r8 = 62.8082 d8 = 0.808 r9 = ∞(絞り) d9 = 0.583 r10= -212.1168 d10= 1.500 nd6 =1.58313 νd6 =59.38 r11= 14.3300 d11= 4.556 nd7 =1.74100 νd7 =52.65 r12= -19.3044 d12= 0.150 r13= -67.0967 d13= 1.000 nd8 =1.67270 νd8 =32.10 r14= 52.4027 d14= 1.982 nd9 =1.77250 νd9 =49.60 r15= -304.9685 d15=14.384 r16= -11.5442 d16= 1.200 nd10=1.65830 νd10=57.33 r17= -18.3544 非球面係数 第2面 P = 1.0000 A4 = 0.32710×10-5 A6 =-0.48022×10-7 A8 = 0.40963×10-9 A10=-0.12681×10-11 第5面 P = 1.0000 A4 =-0.32015×10-4 A6 =-0.16426×10-6 A8 = 0.56575×10-9 A10=-0.52037×10-11
Example 3 f = 28.25, F NO = 2.82, ω = 37.503 ° r 1 = 41.3997 d 1 = 3.200 n d1 = 1.61700 ν d1 = 62.80 r 2 = 14.7518 (aspherical surface) d 2 = 7.344 r 3 = 21.6666 d 3 = 7.110 n d2 = 1.66680 ν d2 = 33.04 r 4 = 35.1779 d 4 = 3.117 r 5 = 40.7851 ( aspherical) d 5 = 4.192 n d3 = 1.79500 ν d3 = 45.29 r 6 = -18.7082 d 6 = 1.200 n d4 = 1.62045 ν d4 = 38.12 r 7 = 10.2699 d 7 = 3.974 n d5 = 1.49700 ν d5 = 81.61 r 8 = 62.8082 d 8 = 0.808 r 9 = ∞ (diaphragm) d 9 = 0.583 r 10 = -212.1168 d 10 = 1.500 n d6 = 1.58313 ν d6 = 59.38 r 11 = 14.3300 d 11 = 4.556 n d7 = 1.74100 ν d7 = 52.65 r 12 = -19.3044 d 12 = 0.150 r 13 = -67.0967 d 13 = 1.000 n d8 = 1.67270 ν d8 = 32.10 r 14 = 52.4027 d 14 = 1.982 n d9 = 1.77250 ν d9 = 49.60 r 15 = -304.9685 d 15 = 14.384 r 16 = -11.5442 d 16 = 1.200 n d10 = 1.65830 ν d10 = 57.33 r 17 = -18.3544 non Spherical coefficient 2nd surface P = 1.0000 A 4 = 0.32710 × 10 -5 A 6 = -0.48022 × 10 -7 A 8 = 0.40963 × 10 -9 A 10 = -0.12681 × 10 -11 Fifth surface P = 1.0000 A 4 = -0.32015 × 10 -4 A 6 = -0.16426 × 10 -6 A 8 = 0.56575 × 10 -9 A 10 = -0.52037 × 10 -11
.

【0054】実施例4 f=28.2 ,FNO=2.88,ω=37.462° r1 = 18.5447 d1 = 3.693 nd1 =1.67790 νd1 =55.33 r2 = 11.9475 d2 =15.687 r3 = 24.4378 d3 = 2.610 nd2 =1.77250 νd2 =49.60 r4 = -88.4690 d4 = 0.800 nd3 =1.63636 νd3 =35.37 r5 = 55.1463 d5 = 1.163 r6 = ∞(絞り) d6 = 0.850 r7 =-64133.6418 d7 =10.197 nd4 =1.71736 νd4 =29.51 r8 = 15.3380 d8 = 4.279 nd5 =1.77250 νd5 =49.60 r9 = -27.1236(非球面) d9 =16.764 r10= -14.2958 d10= 1.650 nd6 =1.48749 νd6 =70.21 r11= -40.8089 非球面係数 第9面 P = 1.0000 A4 = 0.19710×10-4 A6 = 0.68681×10-7 A8 =-0.73357×10-9 A10= 0.78900×10-11
Example 4 f = 28.2, F NO = 2.88, ω = 37.462 ° r 1 = 18.5447 d 1 = 3.693 nd 1 = 1.67790 ν d1 = 55.33 r 2 = 11.9475 d 2 = 15.687 r 3 = 24.4378 d 3 = 2.610 n d2 = 1.77250 ν d2 = 49.60 r 4 = -88.4690 d 4 = 0.800 n d3 = 1.63636 ν d3 = 35.37 r 5 = 55.1463 d 5 = 1.163 r 6 = ∞ (aperture) d 6 = 0.850 r 7 = -64133.6418 d 7 = 10.197 n d4 = 1.71736 ν d4 = 29.51 r 8 = 15.3380 d 8 = 4.279 n d5 = 1.77250 ν d5 = 49.60 r 9 = -27.1236 (aspheric) d 9 = 16.764 r 10 = -14.2958 d 10 = 1.650 n d6 = 1.48749 ν d6 = 70.21 r 11 = -40.8089 aspherical coefficients ninth surface P = 1.0000 A 4 = 0.19710 × 10 -4 A 6 = 0.68681 × 10 -7 A 8 = -0.73357 × 10 -9 A 10 = 0.78900 x 10 -11
.

【0055】実施例5 f=21.15 ,FNO=2.85,ω=45.811° r1 = 21.9601(非球面) d1 = 2.000 nd1 =1.65160 νd1 =58.52 r2 = 11.8035 d2 =18.104 r3 = 21.5082 d3 = 2.824 nd2 =1.78590 νd2 =44.19 r4 = -34.1116 d4 = 0.800 nd3 =1.58267 νd3 =46.33 r5 = -413.1548 d5 = 1.063 r6 = ∞(絞り) d6 = 1.271 r7 = -31.4484 d7 = 2.200 nd4 =1.72151 νd4 =29.24 r8 = 13.9583 d8 = 3.058 nd5 =1.75500 νd5 =52.33 r9 = -20.9744(非球面) d9 =15.141 r10= -10.1789 d10= 1.650 nd6 =1.48749 νd6 =70.21 r11= -16.2012(非球面) 非球面係数 第1面 P = 1.0000 A4 =-0.56299×10-5 A6 =-0.14684×10-7 A8 =-0.64865×10-10 A10= 0.18261×10-12 第9面 P = 1.0000 A4 = 0.32302×10-4 A6 = 0.84780×10-6 A8 =-0.27757×10-7 A10= 0.33334×10-9 第11面 P = 1.0000 A4 = 0.64096×10-4 A6 =-0.25094×10-6 A8 = 0.11385×10-8 A10= 0.92702×10-12
Example 5 f = 21.15, F NO = 2.85, ω = 45.811 ° r 1 = 21.9601 (aspherical surface) d 1 = 2.000 n d1 = 1.65160 ν d1 = 58.52 r 2 = 11.8035 d 2 = 18.104 r 3 = 21.5082 d 3 = 2.824 n d2 = 1.78590 ν d2 = 44.19 r 4 = -34.1116 d 4 = 0.800 n d3 = 1.58267 ν d3 = 46.33 r 5 = -413.1548 d 5 = 1.063 r 6 = ∞ (aperture) d 6 = 1.271 r 7 = -31.4484 d 7 = 2.200 n d4 = 1.72151 ν d4 = 29.24 r 8 = 13.9583 d 8 = 3.058 n d5 = 1.75500 ν d5 = 52.33 r 9 = -20.9744 (aspherical surface) d 9 = 15.141 r 10 =- 10.1789 d 10 = 1.650 n d6 = 1.48749 ν d6 = 70.21 r 11 = -16.2012 ( aspherical) aspherical coefficients first surface P = 1.0000 A 4 = -0.56299 × 10 -5 A 6 = -0.14684 × 10 -7 A 8 = -0.64865 × 10 -10 A 10 = 0.18261 × 10 -12 9th surface P = 1.0000 A 4 = 0.32302 × 10 -4 A 6 = 0.84780 × 10 -6 A 8 = -0.27757 × 10 -7 A 10 = 0.33334 × 10 -9 11th surface P = 1.0000 A 4 = 0.64096 × 10 -4 A 6 = -0.25094 × 10 -6 A 8 = 0.11385 × 10 -8 A 10 = 0.92702 × 10 -12
.

【0056】実施例6 f=28.25 ,FNO=2.08,ω=37.685° r1 = 140.9251 d1 =10.040 nd1 =1.48749 νd1 =70.21 r2 = 19.3851 d2 = 3.175 r3 = 29.6952(非球面) d3 = 2.000 nd2 =1.74100 νd2 =52.65 r4 = 63.4375 d4 = 6.529 r5 = 63.0315 d5 = 4.280 nd3 =1.77250 νd3 =49.60 r6 = -15.6267 d6 = 0.800 nd4 =1.58215 νd4 =42.09 r7 = 57.7250 d7 = 1.372 r8 = ∞(絞り) d8 = 1.475 r9 = 123.0481 d9 = 2.524 nd5 =1.62364 νd5 =36.54 r10= 16.4456 d10= 4.405 nd6 =1.77250 νd6 =49.60 r11= -19.3728 d11= 2.200 nd7 =1.84666 νd7 =23.88 r12= -31.8861 d12=11.576 r13= -23.4321(非球面) d13= 3.073 nd8 =1.48749 νd8 =70.21 r14= -961.4600 非球面係数 第3面 P = 1.0000 A4 =-0.26049×10-4 A6 =-0.15919×10-6 A8 = 0.20286×10-9 A10=-0.34506×10-11 第13面 P = 2.8226 A4 =-0.74032×10-4 A6 = 0.16831×10-6 A8 =-0.19821×10-8 A10= 0
Example 6 f = 28.25, F NO = 2.08, ω = 37.685 ° r 1 = 140.9251 d 1 = 10.040 n d1 = 1.48749 ν d1 = 70.21 r 2 = 19.3851 d 2 = 3.175 r 3 = 29.6952 (aspherical surface) ) D 3 = 2.000 n d2 = 1.74100 ν d2 = 52.65 r 4 = 63.4375 d 4 = 6.529 r 5 = 63.0315 d 5 = 4.280 n d3 = 1.77250 ν d3 = 49.60 r 6 = -15.6267 d 6 = 0.800 n d4 = 1.58215 ν d4 = 42.09 r 7 = 57.7250 d 7 = 1.372 r 8 = ∞ (aperture) d 8 = 1.475 r 9 = 123.0481 d 9 = 2.524 n d5 = 1.62364 ν d5 = 36.54 r 10 = 16.4456 d 10 = 4.405 n d6 = 1.77250 ν d6 = 49.60 r 11 = -19.3728 d 11 = 2.200 n d7 = 1.84666 ν d7 = 23.88 r 12 = -31.8861 d 12 = 11.576 r 13 = -23.4321 (aspherical surface) d 13 = 3.073 n d8 = 1.48749 ν d8 = 70.21 r 14 = -961.4600 aspherical coefficients third surface P = 1.0000 A 4 = -0.26049 × 10 -4 A 6 = -0.15919 × 10 -6 A 8 = 0.20286 × 10 -9 A 10 = -0.34506 × 10 - 11th surface P = 2.8226 A 4 = -0.74032 × 10 -4 A 6 = 0.16831 × 10 -6 A 8 = -0.19821 × 10 -8 A 10 = 0
.

【0057】実施例7 f=28.24 ,FNO=2.08,ω=37.548° r1 = 67.0467 d1 = 1.850 nd1 =1.60717 νd1 =40.26 r2 = 22.8105(非球面) d2 = 6.695 r3 = 128.5307 d3 = 1.300 nd2 =1.49700 νd2 =81.61 r4 = 26.7744 d4 = 2.025 r5 = 29.0729 d5 = 5.227 nd3 =1.80100 νd3 =34.97 r6 = 4926.3414 d6 =10.616 r7 = 28.5297(非球面) d7 = 4.687 nd4 =1.80518 νd4 =25.43 r8 = 11.2876 d8 = 7.334 nd5 =1.60300 νd5 =65.48 r9 = 300.5721 d9 = 1.000 r10= ∞(絞り) d10= 1.550 r11= -45.7434 d11= 1.943 nd6 =1.54041 νd6 =51.00 r12= 15.6189 d12= 4.014 nd7 =1.77250 νd7 =49.60 r13= -144.5286 d13= 0.221 r14= 80.4465 d14= 2.496 nd8 =1.79500 νd8 =45.29 r15= -44.4001 d15=12.595 r16= -14.5662(非球面) d16= 1.650 nd9 =1.62045 νd9 =38.12 r17= -39.6495 非球面係数 第2面 P = 1.3864 A4 = 0.31056×10-5 A6 =-0.18594×10-7 A8 = 0.91239×10-10 A10=-0.19778×10-12 第7面 P = 1.0000 A4 = 0.12792×10-5 A6 =-0.52811×10-7 A8 = 0.56840×10-9 A10=-0.24022×10-11 第16面 P = 1.5704 A4 =-0.27588×10-4 A6 = 0.22412×10-6 A8 =-0.35098×10-8 A10= 0.14958×10-10
Example 7 f = 28.24, F NO = 2.08, ω = 37.548 ° r 1 = 67.0467 d 1 = 1.850 n d1 = 1.60717 ν d1 = 40.26 r 2 = 22.8105 (aspherical surface) d 2 = 6.695 r 3 = 128.5307 d 3 = 1.300 n d2 = 1.49700 ν d2 = 81.61 r 4 = 26.7744 d 4 = 2.025 r 5 = 29.0729 d 5 = 5.227 n d3 = 1.80100 ν d3 = 34.97 r 6 = 4926.3414 d 6 = 10.616 r 7 = 28.5297 ( aspherical) d 7 = 4.687 n d4 = 1.80518 ν d4 = 25.43 r 8 = 11.2876 d 8 = 7.334 n d5 = 1.60300 ν d5 = 65.48 r 9 = 300.5721 d 9 = 1.000 r 10 = ∞ ( stop) d 10 = 1.550 r 11 = -45.7434 d 11 = 1.943 n d6 = 1.54041 ν d6 = 51.00 r 12 = 15.6189 d 12 = 4.014 n d7 = 1.77250 ν d7 = 49.60 r 13 = -144.5286 d 13 = 0.221 r 14 = 80.4465 d 14 = 2.496 n d8 = 1.79500 ν d8 = 45.29 r 15 = -44.4001 d 15 = 12.595 r 16 = -14.5662 (aspherical surface) d 16 = 1.650 n d9 = 1.62045 ν d9 = 38.12 r 17 = -39.6495 aspherical surface second surface P = 1.3864 A 4 = 0.31056 × 10 -5 A 6 = -0.18594 × 10 -7 A 8 = 0.9 1239 x 10 -10 A 10 = -0.1977 8 x 10 -12 7th surface P = 1.0000 A 4 = 0.12792 x 10 -5 A 6 = -0.528 11 x 10 -7 A 8 = 0.56840 x 10 -9 A 10 = -0.24022 × 10 -11 16th surface P = 1.5704 A 4 = -0.27588 × 10 -4 A 6 = 0.22412 × 10 -6 A 8 = -0.35098 × 10 -8 A 10 = 0.14958 × 10 -10
.

【0058】次に、上記各実施例の前記条件(1)〜
(4)に関する値を次の表に示す。
Next, the above conditions (1)-
The values for (4) are shown in the following table.

【0059】 [0059]

【0060】以上の本発明の広角レンズは、例えば次の
ように構成することができる。 〔1〕 物体側から順に、負屈折力を有する第1レンズ
群と、開口絞りを含み、正屈折力を有する第2レンズ群
と、負屈折力を有する第3レンズ群との3つの基本レン
ズ群によって構成し、前記第2レンズ群は、開口絞りを
挟んで正屈折力の前群(G21)と後群(G22)の2つの
レンズ群にて構成し、前記第1レンズ群は、少なくとも
1枚の物体側に凸面を向けた負メニスカスレンズを有
し、前記第2レンズ群の前群は、正レンズと負レンズを
含む接合レンズを少なくとも一組有し、前記第2レンズ
群の後群は、正レンズと負レンズを含む接合レンズの少
なくとも一組にて構成し、前記第3レンズ群は、少なく
とも1枚の像面側に凸面を向けた負メニスカスレンズに
て構成し、何れかのレンズ群内に非球面を有することを
特徴とする広角レンズ。
The wide-angle lens of the present invention described above can be constructed, for example, as follows. [1] Three basic lenses, in order from the object side, a first lens group having negative refractive power, a second lens group including an aperture stop and having positive refractive power, and a third lens group having negative refractive power. The second lens group is composed of two lens groups, a front lens group (G 21 ) and a rear lens group (G 22 ), each having a positive refractive power with an aperture stop interposed therebetween, and the first lens group is A negative meniscus lens having a convex surface directed toward the object side, the front group of the second lens group includes at least one cemented lens including a positive lens and a negative lens, and the second lens group The rear group is composed of at least one set of cemented lenses including a positive lens and a negative lens, and the third lens group is composed of at least one negative meniscus lens having a convex surface facing the image side, A wide-angle lens characterized by having an aspherical surface in any lens group. .

【0061】〔2〕 物体側から順に、負屈折力を有す
る第1レンズ群と、開口絞りを含み、正屈折力を有する
第2レンズ群と、負屈折力を有する第3レンズ群との3
つの基本レンズ群によって構成し、前記第2レンズ群
は、開口絞りを挟んで正屈折力の前群(G21)と後群
(G22)の2つのレンズ群にて構成し、前記第1レンズ
群は、少なくとも1枚の物体側に凸面を向けた負メニス
カスレンズを有し、前記第2レンズ群の前群は、正レン
ズと負レンズを含む接合レンズを少なくとも一組有し、
前記第2レンズ群の後群は、正レンズと負レンズを含む
接合レンズの少なくとも一組にて構成し、前記第3レン
ズ群は、少なくとも1枚の像面側に凸面を向けた負メニ
スカスレンズにて構成し、何れかのレンズ群内に非球面
を有し、以下の条件(1)〜(4)を満足することを特
徴とする広角レンズ。
[2] The first lens group having negative refracting power, the second lens group including an aperture stop and having positive refracting power, and the third lens group having negative refracting power in order from the object side.
The first lens group is composed of two basic lens groups, and the second lens group is composed of two lens groups of a front group (G 21 ) and a rear group (G 22 ) having positive refracting power across an aperture stop. The lens group includes at least one negative meniscus lens having a convex surface directed toward the object side, and the front group of the second lens group includes at least one cemented lens including a positive lens and a negative lens,
The rear group of the second lens group includes at least one set of cemented lenses including a positive lens and a negative lens, and the third lens group includes at least one negative meniscus lens having a convex surface facing the image plane side. And a wide-angle lens having an aspherical surface in any lens group and satisfying the following conditions (1) to (4).

【0062】 0.2<−f1 /f<30 ・・・(1) 0.15<f1 /f3 <25 ・・・(2) 0.2<f21/f22<5 ・・・(3) −3<e’/f<20 ・・・(4) ただし、f1 :第1レンズ群の焦点距離、 f3 :第3レンズ群の焦点距離、 f :全系の焦点距離、 f21:第2レンズ群の前群の焦点距離、 f22:第2レンズ群の後群の焦点距離、 e’:第1レンズ群と第2レンズ群の前群を1つのレン
ズ群とし、かつ、第2レンズ群の後群と第3レンズ群を
1つのレンズ群としたときの主点間隔、 である。
0.2 <-f 1 / f <30 (1) 0.15 <f 1 / f 3 <25 (2) 0.2 <f 21 / f 22 <5 ... · (3) -3 <e ' / f <20 ··· (4) However, f 1: focal length of the first lens group, f 3: the focal length of the third lens group, f: the focal length of the entire system F 21 : focal length of front group of second lens group, f 22 : focal length of rear group of second lens group, e ′: front group of first lens group and second lens group as one lens group And the principal point spacing when the rear lens group of the second lens group and the third lens group are one lens group.

【0063】〔3〕 前記第1レンズ群に少なくとも1
面の非球面を使用したことを特徴とする上記〔1〕又は
〔2〕記載の広角レンズ。
[3] At least 1 in the first lens group
The wide-angle lens according to the above [1] or [2], wherein an aspherical surface is used.

【0064】〔4〕 前記第2レンズ群に少なくとも1
面の非球面を使用したことを特徴とする上記〔1〕又は
〔2〕記載の広角レンズ。
[4] At least 1 in the second lens group
The wide-angle lens according to the above [1] or [2], wherein an aspherical surface is used.

【0065】〔5〕 前記第3レンズ群に少なくとも1
面の非球面を使用したことを特徴とする上記〔1〕又は
〔2〕記載の広角レンズ。
[5] At least 1 in the third lens group
The wide-angle lens according to the above [1] or [2], wherein an aspherical surface is used.

【0066】〔6〕 前記第1レンズ群及び前記第2レ
ンズ群のそれぞれに少なくとも1面の非球面を使用した
ことを特徴とする上記〔1〕又は〔2〕記載の広角レン
ズ。
[6] The wide-angle lens described in [1] or [2], wherein at least one aspherical surface is used for each of the first lens group and the second lens group.

【0067】〔7〕 前記第2レンズ群及び前記第3レ
ンズ群のそれぞれに少なくとも1面の非球面を使用した
ことを特徴とする上記〔1〕又は〔2〕記載の広角レン
ズ。
[7] The wide-angle lens described in [1] or [2], wherein at least one aspherical surface is used for each of the second lens group and the third lens group.

【0068】〔8〕 前記第1レンズ群及び前記第3レ
ンズ群のそれぞれに少なくとも1面の非球面を使用した
ことを特徴とする上記〔1〕又は〔2〕記載の広角レン
ズ。
[8] The wide-angle lens described in [1] or [2], wherein at least one aspherical surface is used for each of the first lens group and the third lens group.

【0069】[0069]

〔9〕 前記第1レンズ群、前記第2レン
ズ群及び前記第3レンズ群のそれぞれに少なくとも1面
の非球面を使用したことを特徴とする上記〔1〕又は
〔2〕記載の広角レンズ。
[9] The wide-angle lens according to [1] or [2], wherein at least one aspherical surface is used for each of the first lens group, the second lens group, and the third lens group.

【0070】[0070]

【発明の効果】以上の説明から明らかなように、本発明
で対象とする開口絞りを含む対称性のある収斂レンズ群
の前側と後側に負レンズ群を配置した広角レンズにおい
て、サジタルコマ収差というこのタイプの広角レンズ
(特に、画角が大きくなる場合)に特有のフレアを改善
するために、第1レンズ群のメニスカスレンズに非球面
を使用する。また、球面収差の補正に第2レンズ群の物
体側の面に、さらに、軸外の非点収差の補正に第2レン
ズ群の像側の面に非球面を使用する。さらに、像面の平
坦性を改善するのに、第3レンズ群に非球面を使用する
と大きな効果があり、レンズ系の広角化あるいは大口径
比に大きな効果を持たせることが可能である。また、少
ない構成枚数で良好なレンズ系を提供することが可能で
あることは言うまでもない。以上により、本発明による
と、従来にない広角で大口径比を有する広角レンズを、
比較的小型のレンズ系として提供することができる。
As is clear from the above description, in the wide-angle lens in which the negative lens group is arranged on the front side and the rear side of the symmetrical converging lens group including the aperture stop, which is the object of the present invention, sagittal coma aberration is called. In order to improve the flare peculiar to this type of wide-angle lens (especially when the angle of view becomes large), an aspherical surface is used for the meniscus lens of the first lens group. Further, an aspherical surface is used on the object side surface of the second lens group for correcting spherical aberration, and on the image side surface of the second lens group for correcting off-axis astigmatism. Furthermore, in order to improve the flatness of the image plane, the use of an aspherical surface in the third lens group has a great effect, and it is possible to give a large effect to the wide angle of the lens system or the large aperture ratio. It goes without saying that it is possible to provide a good lens system with a small number of constituent elements. As described above, according to the present invention, a wide-angle lens having a wide-angle and a large aperture ratio which has never been obtained is provided.
It can be provided as a relatively small lens system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の広角レンズの断面図であ
る。
FIG. 1 is a sectional view of a wide-angle lens according to a first embodiment of the present invention.

【図2】本発明の実施例2の広角レンズの断面図であ
る。
FIG. 2 is a sectional view of a wide-angle lens according to a second embodiment of the present invention.

【図3】本発明の実施例3の広角レンズの断面図であ
る。
FIG. 3 is a sectional view of a wide-angle lens according to a third embodiment of the present invention.

【図4】本発明の実施例4の広角レンズの断面図であ
る。
FIG. 4 is a sectional view of a wide-angle lens of Example 4 of the present invention.

【図5】本発明の実施例5の広角レンズの断面図であ
る。
FIG. 5 is a sectional view of a wide-angle lens of Example 5 of the present invention.

【図6】本発明の実施例6の広角レンズの断面図であ
る。
FIG. 6 is a sectional view of a wide-angle lens according to Example 6 of the present invention.

【図7】本発明の実施例7の広角レンズの断面図であ
る。
FIG. 7 is a sectional view of a wide-angle lens according to Example 7 of the present invention.

【図8】実施例1の球面収差(a)、非点収差(b)、
倍率色収差(c)、歪曲収差(d)を示す収差図であ
る。
FIG. 8 shows spherical aberration (a), astigmatism (b) of Example 1,
FIG. 6 is an aberration diagram showing chromatic aberration of magnification (c) and distortion (d).

【図9】実施例2の図8と同様な収差図である。FIG. 9 is an aberration diagram similar to FIG. 8 of Example 2.

【図10】実施例3の図8と同様な収差図である。FIG. 10 is an aberration diagram similar to FIG. 8 of Example 3.

【図11】実施例4の図8と同様な収差図である。FIG. 11 is an aberration diagram similar to FIG. 8 of Example 4.

【図12】実施例5の図8と同様な収差図である。FIG. 12 is an aberration diagram similar to FIG. 8 of Example 5.

【図13】実施例6の図8と同様な収差図である。FIG. 13 is an aberration diagram similar to FIG. 8 of Example 6.

【図14】実施例7の図8と同様な収差図である。FIG. 14 is an aberration diagram similar to FIG. 8 of Example 7.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G21…第2レンズ群の前群 G22…第2レンズ群の後群G1 ... rear group of the front group G 22 ... second lens group of the first lens group G2 ... the second lens group G3 ... third lens group G 21 ... the second lens group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負屈折力を有する第1
レンズ群と、開口絞りを含み、正屈折力を有する第2レ
ンズ群と、負屈折力を有する第3レンズ群との3つの基
本レンズ群によって構成し、前記第2レンズ群は、開口
絞りを挟んで正屈折力の前群(G21)と後群(G22)の
2つのレンズ群にて構成し、 前記第1レンズ群は、少なくとも1枚の物体側に凸面を
向けた負メニスカスレンズを有し、 前記第2レンズ群の前群は、正レンズと負レンズを含む
接合レンズを少なくとも一組有し、 前記第2レンズ群の後群は、正レンズと負レンズを含む
接合レンズの少なくとも一組にて構成し、 前記第3レンズ群は、少なくとも1枚の像面側に凸面を
向けた負メニスカスレンズにて構成し、 何れかのレンズ群内に非球面を有することを特徴とする
広角レンズ。
1. A first lens element having a negative refractive power in order from the object side.
The second lens group includes a lens group, a second lens group including an aperture stop and having a positive refractive power, and a third lens group having a negative refractive power, and the second lens group is an aperture stop. It is composed of two lens groups, a front lens group (G 21 ) and a rear lens group (G 22 ), each having positive refractive power, and the first lens group is at least one negative meniscus lens having a convex surface directed toward the object side. The front group of the second lens group has at least one cemented lens including a positive lens and a negative lens, and the rear group of the second lens group includes a cemented lens including a positive lens and a negative lens. The third lens group is composed of at least one set, and the third lens group is composed of at least one negative meniscus lens having a convex surface facing the image plane side, and has an aspherical surface in any one of the lens groups. Wide-angle lens that does.
【請求項2】 物体側から順に、負屈折力を有する第1
レンズ群と、開口絞りを含み、正屈折力を有する第2レ
ンズ群と、負屈折力を有する第3レンズ群との3つの基
本レンズ群によって構成し、前記第2レンズ群は、開口
絞りを挟んで正屈折力の前群(G21)と後群(G22)の
2つのレンズ群にて構成し、 前記第1レンズ群は、少なくとも1枚の物体側に凸面を
向けた負メニスカスレンズを有し、 前記第2レンズ群の前群は、正レンズと負レンズを含む
少なくとも一組の接合レンズを有し、 前記第2レンズ群の後群は、正レンズと負レンズを含む
少なくとも一組の接合レンズにて構成し、 前記第3レンズ群は、少なくとも1枚の像面側に凸面を
向けた負メニスカスレンズにて構成し、 何れかのレンズ群内に非球面を有し、 以下の条件(1)〜(4)を満足することを特徴とする
広角レンズ。 0.2<−f1 /f<30 ・・・(1) 0.15<f1 /f3 <25 ・・・(2) 0.2<f21/f22<5 ・・・(3) −3<e’/f<20 ・・・(4) ただし、f1 :第1レンズ群の焦点距離、 f3 :第3レンズ群の焦点距離、 f :全系の焦点距離、 f21:第2レンズ群の前群の焦点距離、 f22:第2レンズ群の後群の焦点距離、 e’:第1レンズ群と第2レンズ群の前群を1つのレン
ズ群とし、かつ、第2レンズ群の後群と第3レンズ群を
1つのレンズ群としたときの主点間隔、 である。
2. A first lens element having a negative refractive power in order from the object side.
The second lens group includes a lens group, a second lens group including an aperture stop and having a positive refractive power, and a third lens group having a negative refractive power, and the second lens group is an aperture stop. It is composed of two lens groups, a front lens group (G 21 ) and a rear lens group (G 22 ), each having positive refractive power, and the first lens group is at least one negative meniscus lens having a convex surface directed toward the object side. And a front group of the second lens group includes at least one cemented lens including a positive lens and a negative lens, and a rear group of the second lens group includes at least one of a positive lens and a negative lens. The third lens group is composed of at least one negative meniscus lens having a convex surface facing the image plane side, and has an aspherical surface in any one of the following lens groups: Wide-angle lens characterized by satisfying conditions (1) to (4) 0.2 <-f 1 / f <30 ··· (1) 0.15 <f 1 / f 3 <25 ··· (2) 0.2 <f 21 / f 22 <5 ··· (3 ) -3 <e '/ f < 20 ··· (4) However, f 1: focal length of the first lens group, f 3: the focal length of the third lens group, f: the focal length of the entire system, f 21 the focal length of the front group of the second lens group, f 22 the focal length of the rear group of the second lens group, e ': a first lens group to the front group of the second lens group as a single lens group, and, Is the principal point spacing when the rear lens group of the second lens group and the third lens group are one lens group.
【請求項3】 前記第1レンズ群に少なくとも1面の非
球面を使用したことを特徴とする請求項1又は2記載の
広角レンズ。
3. The wide-angle lens according to claim 1, wherein at least one aspherical surface is used for the first lens group.
JP7121633A 1995-05-19 1995-05-19 Wide angle lens Pending JPH08313802A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7121633A JPH08313802A (en) 1995-05-19 1995-05-19 Wide angle lens
US08/650,138 US5805359A (en) 1995-05-19 1996-05-17 Wide-angle lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121633A JPH08313802A (en) 1995-05-19 1995-05-19 Wide angle lens

Publications (1)

Publication Number Publication Date
JPH08313802A true JPH08313802A (en) 1996-11-29

Family

ID=14816102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121633A Pending JPH08313802A (en) 1995-05-19 1995-05-19 Wide angle lens

Country Status (1)

Country Link
JP (1) JPH08313802A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012162A1 (en) * 2007-07-05 2009-01-07 Fujinon Corporation Imaging lens and imaging device
JP2009216858A (en) * 2008-03-10 2009-09-24 Fujinon Corp Imaging lens and imaging apparatus
CN102375225A (en) * 2010-08-20 2012-03-14 索尼公司 Zoom lens and imaging apparatus
CN102388331A (en) * 2009-04-24 2012-03-21 株式会社理光 Wide angle lens and imaging device
JP2013250534A (en) * 2012-06-04 2013-12-12 Ricoh Co Ltd Image forming lens, camera, and portable information terminal device
EP2708930A1 (en) 2012-09-18 2014-03-19 Ricoh Company Ltd. Imaging lens
EP2749924A1 (en) 2012-12-27 2014-07-02 Ricoh Company Ltd. Imaging optical system, camera device and mobile information terminal device
WO2014129149A1 (en) * 2013-02-19 2014-08-28 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
JP2014160106A (en) * 2013-02-19 2014-09-04 Nikon Corp Optical system, optical device, and method for manufacturing optical system
JP2014160107A (en) * 2013-02-19 2014-09-04 Nikon Corp Optical system, optical device, and method for manufacturing optical system
CN104122669A (en) * 2014-08-07 2014-10-29 张家港鹏博光电科技有限公司 Symmetrical double telecentric projection optical system and photoetching apparatus
CN104252031A (en) * 2013-06-25 2014-12-31 三星电机株式会社 Lens module
CN104297905A (en) * 2014-09-22 2015-01-21 青岛歌尔声学科技有限公司 Wide-angle lens
CN105068253A (en) * 2015-09-15 2015-11-18 厦门灵境信息科技有限公司 Head-mounted display device and optical lens system thereof
CN106461918A (en) * 2014-08-04 2017-02-22 大族激光科技产业集团股份有限公司 Optical lens
CN110389423A (en) * 2018-04-18 2019-10-29 三星电机株式会社 Optical imaging system
CN111830668A (en) * 2019-04-16 2020-10-27 宁波舜宇车载光学技术有限公司 Optical lens and imaging apparatus
US10845572B2 (en) 2017-10-19 2020-11-24 Ricoh Company, Ltd. Imaging optical system, imaging device, and portable information terminal device
US10948683B2 (en) 2017-11-22 2021-03-16 Ricoh Company, Ltd. Imaging lens, camera, and portable information terminal device
CN114911042A (en) * 2022-05-26 2022-08-16 辽宁中蓝光电科技有限公司 Vehicle-mounted zooming optical system
CN117289436A (en) * 2023-11-27 2023-12-26 武汉墨光科技有限公司 Small ultra-wide angle large aperture vehicle-mounted lens
WO2024151088A1 (en) * 2023-01-12 2024-07-18 엘지이노텍 주식회사 Optical system and camera module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279815A (en) * 1985-06-05 1986-12-10 Nippon Kogaku Kk <Nikon> Wide angle lens
JPH03500582A (en) * 1987-10-09 1991-02-07 イーストマン・コダック・カンパニー wide angle zoom lens
JPH05188291A (en) * 1992-01-07 1993-07-30 Dainippon Screen Mfg Co Ltd Zoom lens
JPH06300972A (en) * 1993-04-14 1994-10-28 Canon Inc Zoom lens with wide field angle
JPH06324264A (en) * 1993-05-13 1994-11-25 Nikon Corp Wide angle lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279815A (en) * 1985-06-05 1986-12-10 Nippon Kogaku Kk <Nikon> Wide angle lens
JPH03500582A (en) * 1987-10-09 1991-02-07 イーストマン・コダック・カンパニー wide angle zoom lens
JPH05188291A (en) * 1992-01-07 1993-07-30 Dainippon Screen Mfg Co Ltd Zoom lens
JPH06300972A (en) * 1993-04-14 1994-10-28 Canon Inc Zoom lens with wide field angle
JPH06324264A (en) * 1993-05-13 1994-11-25 Nikon Corp Wide angle lens

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684127B2 (en) 2007-07-05 2010-03-23 Fujinon Corporation Imaging lens and imaging device
EP2012162A1 (en) * 2007-07-05 2009-01-07 Fujinon Corporation Imaging lens and imaging device
JP2009216858A (en) * 2008-03-10 2009-09-24 Fujinon Corp Imaging lens and imaging apparatus
CN102388331A (en) * 2009-04-24 2012-03-21 株式会社理光 Wide angle lens and imaging device
CN102375225A (en) * 2010-08-20 2012-03-14 索尼公司 Zoom lens and imaging apparatus
JP2013250534A (en) * 2012-06-04 2013-12-12 Ricoh Co Ltd Image forming lens, camera, and portable information terminal device
US9134507B2 (en) 2012-06-04 2015-09-15 Ricoh Company, Ltd. Imaging lens, camera, and portable information terminal device
US9104010B2 (en) 2012-09-18 2015-08-11 Ricoh Company, Ltd. Imaging lens, imaging apparatus, and information device
EP2708930A1 (en) 2012-09-18 2014-03-19 Ricoh Company Ltd. Imaging lens
JP2014059466A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Imaging lens, image capturing device, and information device
EP2749924A1 (en) 2012-12-27 2014-07-02 Ricoh Company Ltd. Imaging optical system, camera device and mobile information terminal device
US9465192B2 (en) 2012-12-27 2016-10-11 Ricoh Company, Ltd. Imaging optical system, camera device and mobile information terminal device
WO2014129149A1 (en) * 2013-02-19 2014-08-28 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
JP2014160106A (en) * 2013-02-19 2014-09-04 Nikon Corp Optical system, optical device, and method for manufacturing optical system
US10481370B2 (en) 2013-02-19 2019-11-19 Nikon Corporation Optical system, optical apparatus, and method for manufacturing the optical system
JP2014160107A (en) * 2013-02-19 2014-09-04 Nikon Corp Optical system, optical device, and method for manufacturing optical system
US9791667B2 (en) 2013-06-25 2017-10-17 Samsung Electro-Mechanics Co., Ltd. Lens module
CN104252031A (en) * 2013-06-25 2014-12-31 三星电机株式会社 Lens module
CN106461918A (en) * 2014-08-04 2017-02-22 大族激光科技产业集团股份有限公司 Optical lens
JP2017520798A (en) * 2014-08-04 2017-07-27 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Optical lens
CN104122669A (en) * 2014-08-07 2014-10-29 张家港鹏博光电科技有限公司 Symmetrical double telecentric projection optical system and photoetching apparatus
CN104297905A (en) * 2014-09-22 2015-01-21 青岛歌尔声学科技有限公司 Wide-angle lens
CN107589528A (en) * 2015-09-15 2018-01-16 陈国栋 Using the head-mounted display apparatus and its optical lens system of six chip lens
CN107703629A (en) * 2015-09-15 2018-02-16 陈国栋 A kind of head-mounted display apparatus and its optical lens system
CN105068253A (en) * 2015-09-15 2015-11-18 厦门灵境信息科技有限公司 Head-mounted display device and optical lens system thereof
US10845572B2 (en) 2017-10-19 2020-11-24 Ricoh Company, Ltd. Imaging optical system, imaging device, and portable information terminal device
US10948683B2 (en) 2017-11-22 2021-03-16 Ricoh Company, Ltd. Imaging lens, camera, and portable information terminal device
CN110389423A (en) * 2018-04-18 2019-10-29 三星电机株式会社 Optical imaging system
US11092789B2 (en) 2018-04-18 2021-08-17 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110389423B (en) * 2018-04-18 2021-08-27 三星电机株式会社 Optical imaging system
US11914126B2 (en) 2018-04-18 2024-02-27 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN111830668A (en) * 2019-04-16 2020-10-27 宁波舜宇车载光学技术有限公司 Optical lens and imaging apparatus
CN114911042A (en) * 2022-05-26 2022-08-16 辽宁中蓝光电科技有限公司 Vehicle-mounted zooming optical system
CN114911042B (en) * 2022-05-26 2024-03-08 辽宁中蓝光电科技有限公司 Vehicle-mounted zoom optical system
WO2024151088A1 (en) * 2023-01-12 2024-07-18 엘지이노텍 주식회사 Optical system and camera module
CN117289436A (en) * 2023-11-27 2023-12-26 武汉墨光科技有限公司 Small ultra-wide angle large aperture vehicle-mounted lens
CN117289436B (en) * 2023-11-27 2024-02-13 武汉墨光科技有限公司 Small ultra-wide angle large aperture vehicle-mounted lens

Similar Documents

Publication Publication Date Title
US5805359A (en) Wide-angle lens system
US7161746B2 (en) Fisheye lens
JPH08313803A (en) Wide angle lens
JPH08313802A (en) Wide angle lens
JP3368611B2 (en) Zoom lens
JPH05157965A (en) Wide-angle lens
JP3204703B2 (en) Zoom lens
JPH08313804A (en) Wide angle lens
JP3306129B2 (en) Standard lens
JPH06235858A (en) High performance photographic lens
JPH06300965A (en) Wide-angle lens
JPH0812326B2 (en) Reverse telephoto wide-angle lens
JP3821330B2 (en) Zoom lens
JPH07120678A (en) Focusing method of three-group zoom lens
JP3029148B2 (en) Rear focus zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JPH06230284A (en) Focusing system for zoom lens
JP3234618B2 (en) Large aperture medium telephoto lens
JPH05127082A (en) Small-sized zoom lens
JP3518886B2 (en) High-performance wide-angle lens
JPH11211978A (en) Retro-focus type lens
JPH07104183A (en) Bright triplet lens
JPH07333494A (en) Photographing lens
JP2001004920A (en) Zoom lens
JP2997026B2 (en) Wide conversion lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040128