JP2001004920A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2001004920A
JP2001004920A JP11171405A JP17140599A JP2001004920A JP 2001004920 A JP2001004920 A JP 2001004920A JP 11171405 A JP11171405 A JP 11171405A JP 17140599 A JP17140599 A JP 17140599A JP 2001004920 A JP2001004920 A JP 2001004920A
Authority
JP
Japan
Prior art keywords
lens
zoom lens
lens group
end state
aspherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11171405A
Other languages
Japanese (ja)
Other versions
JP4453120B2 (en
Inventor
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17140599A priority Critical patent/JP4453120B2/en
Publication of JP2001004920A publication Critical patent/JP2001004920A/en
Application granted granted Critical
Publication of JP4453120B2 publication Critical patent/JP4453120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens including a large angle of view that the maximum angle of view exceeds 76 deg., having an aperture ratio that an F number in a wide-angle end state is about F3.3 and having a large variable power ratio by specifying the constituting condition of a 1st lens group and an aspherical surface. SOLUTION: This zoom lens performs variable power by changing an air distance between 1st and 2nd lens groups G1 and G2. The 1st lens group G1 is composed of a negative lens component L11 having the aspherical surface on a concave side and a positive lens component L12. The aspherical surface satisfies the condition 1×10-7<=|C3|<=1×10-2 when a distance (sag amount) along an optical axis direction from the tangential plane of the apex of each aspherical surface at the height (y) in a perpendicular direction from an optical axis is defined as S(y), the paraxial radius of curvature is defined as R, a conical coefficient is defined as k, n-th order aspherical surface coefficient is defined as Cn and they are expressed by a following aspherical surface expression; S(y)=(y2/R)/[1+(1-k.y2/R2)1/2]+C3.|y|3+C4.y4+C5.|y|5+C6.y6+C8.y8+C 10.y10+C12.y12+C14.y14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負先行型ズームレン
ズ、特に、超小型の2群ズームレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative leading type zoom lens, and more particularly to an ultra-compact two-unit zoom lens.

【0002】[0002]

【従来の技術】従来、負・正群からはじまる所謂標準ズ
ームレンズにおいて、小型化と低コスト化とを目的とし
たズームレンズは多数提案されている。特に、第1レン
ズ群を2枚のレンズのみで構成し、小型化、低コスト化
と高性能化とを両立させたズームレンズとして、本発明
と同一出願人の出願による特開平5−88084号公
報、特開平5−249376号公報等に開示されたレン
ズ、また、構成枚数は多いが更に小型化した例として特
開平8−334694号公報等に開示されたレンズが知
られている。また、3次の非球面項を有する非球面レン
ズを設けた例に、本発明と同一出願人の出願による特開
平10−325923号公報に開示されたレンズがあ
る。
2. Description of the Related Art Conventionally, as a so-called standard zoom lens starting from a negative / positive group, many zoom lenses aiming at miniaturization and cost reduction have been proposed. In particular, as a zoom lens in which the first lens group is composed of only two lenses and achieves both miniaturization, low cost, and high performance, Japanese Patent Application Laid-Open No. Hei 5-88084 filed by the same applicant as the present invention. A lens disclosed in Japanese Patent Application Laid-Open No. Hei 5-249376 and a lens disclosed in Japanese Patent Application Laid-Open No. Hei 8-334694 are known as examples in which the number of components is large but the size is further reduced. Further, as an example in which an aspherical lens having a third-order aspherical term is provided, there is a lens disclosed in Japanese Patent Application Laid-Open No. Hei 10-325923 filed by the same applicant as the present invention.

【0003】しかしながら、大きな画角及び大きな変倍
比を有する標準ズームレンズにおいて、更なる極限まで
のダウンサイジング(小型化)、コストダウン(低価格
化)、及び高性能な画質の実現が望まれている。
However, in a standard zoom lens having a large angle of view and a large zoom ratio, further downsizing (miniaturization), cost reduction (cost reduction), and realization of high-performance image quality are desired. ing.

【0004】[0004]

【発明が解決しようとする課題】特開平5−88084
号公報に記載されたズームレンズにおいては、負の第1
群中の第1負レンズに非球面を設けて、主として広角側
の歪曲収差を中心として収差補正を行なっている。しか
しながら、広角端状態の画角、変倍比、大きさ、明るさ
の観点から、これらスペックの更なる向上が必要であ
る。
Problems to be Solved by the Invention Japanese Patent Laid-Open No. 5-88084
In the zoom lens described in Japanese Patent Laid-Open Publication No.
An aspherical surface is provided for the first negative lens in the group, and aberration correction is performed mainly on distortion on the wide-angle side. However, in view of the angle of view, zoom ratio, size, and brightness in the wide-angle end state, these specifications need to be further improved.

【0005】また、特開平5−249376号公報に記
載されたズームレンズにおいては広角端状態の画角、変
倍比、明るさの点では進歩しているが、ダウンサイジン
グという点では更なる向上が必要である。また、収差に
関しても小型化による球面収差の変動、及び非点収差、
歪曲収差、倍率色収差等の諸収差の補正の更なる向上が
必要である。
The zoom lens described in Japanese Patent Application Laid-Open No. 5-249376 has advanced in view angle, zoom ratio, and brightness at the wide-angle end, but further improved in downsizing. is necessary. Also, regarding aberration, fluctuation of spherical aberration due to miniaturization, astigmatism,
It is necessary to further improve the correction of various aberrations such as distortion and chromatic aberration of magnification.

【0006】また、特開平8−334694号公報に記
載されたズームレンズにおいては、広角端状態の画角、
変倍比、大きさ、明るさの点では進歩しているが、構成
枚数が多くコストダウンに対して不利である。極限まで
コストダウンする目的からすると、更なる構成枚数の削
減が必要である。
In the zoom lens described in Japanese Patent Application Laid-Open No. 8-334694, the angle of view at the wide-angle end state,
Although the zoom ratio, size, and brightness have advanced, the number of components is large, which is disadvantageous for cost reduction. For the purpose of cost reduction to the utmost, further reduction in the number of components is necessary.

【0007】また、特開平10−325923号公報に
記載されたズームレンズにおいては、負の第1群中の第
1負レンズに非球面を設けて諸収差を良好に補正してい
るが、本発明の目的である極限までのダウンサイジン
グ、コストダウン、及び高性能な画質の維持から大きく
外れ、大型で、構成枚数の多い超広角ズームレンズにな
っている。従って、かなりのダウンサイジングが必要に
なり、この従来技術の延長線上で本願の目的を達成する
ことは不可能である。
In the zoom lens described in JP-A-10-325923, various aberrations are satisfactorily corrected by providing an aspherical surface on the first negative lens in the negative first group. The ultra-wide-angle zoom lens has a large size and a large number of components, largely deviating from the object of the invention, namely, downsizing, cost reduction, and maintaining high-performance image quality. Therefore, considerable downsizing is required, and it is impossible to achieve the object of the present application on an extension of the prior art.

【0008】本発明は、上記問題に鑑みてなされたもの
であり、最大画角が76°を越える大画角を含み、広角
端状態のFナンバーがF3.3程度の口径比を有し、約
2.7倍程度の比較的大きい変倍比を有する高性能で超
小型のズームレンズを提供することを目的とする。
The present invention has been made in view of the above problems, and has a large angle of view having a maximum angle of view exceeding 76 °, an F-number in a wide-angle end state having an aperture ratio of about F3.3, It is an object of the present invention to provide a high-performance, ultra-compact zoom lens having a relatively large zoom ratio of about 2.7 times.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、物体側から順に、負の屈折力を有する第1
レンズ群G1と、正の屈折力を有する第2レンズ群G2
とを有し、該第1レンズ群G1と該第2レンズ群G2と
の空気間隔を変化させることにより変倍するズームレン
ズにおいて、前記第1レンズ群G1は凹面側に非球面を
有する負のレンズ成分L11と正のレンズ成分L12と
からなり、前記非球面は光軸から垂直方向の高さyにお
ける各非球面の頂点の接平面から光軸方向に沿った距離
(サグ量)をS(y)、近軸曲率半径をR、円錐係数を
κ、n次の非球面係数をCnとし、以下の非球面式、 S(y)=(y2/R)/〔1+(1−κ・y2/R2
1/2〕+C3・|y|3+C4・y4+C5・|y|5+C6
・y6+C8・y8+C10・y10+C12・y12+C14・y
14 で表現したとき、 (1) 1×10-7≦|C3|≦1×10-2 の条件を満足することを特徴とするズームレンズを提供
する。
In order to solve the above problems, the present invention provides, in order from the object side, a first lens having a negative refractive power.
A lens group G1 and a second lens group G2 having a positive refractive power
Wherein the first lens group G1 is a negative lens having an aspherical surface on the concave surface side in a zoom lens that changes magnification by changing the air gap between the first lens group G1 and the second lens group G2. The aspheric surface includes a lens component L11 and a positive lens component L12, and the distance (sag amount) along the optical axis direction from the tangent plane of the apex of each aspheric surface at a height y in the vertical direction from the optical axis is S ( y), a paraxial radius of curvature R, the conical coefficient kappa, the n-th order aspherical coefficient is Cn, the following aspheric expression, S (y) = (y 2 / R) / [1+ (1-κ · y 2 / R 2)
1/2 ] + C3 · | y | 3 + C4 · y 4 + C5 · | y | 5 + C6
· Y 6 + C8 · y 8 + C10 · y 10 + C12 · y 12 + C14 · y
When expressed in 14, (1) 1 × 10 -7 ≦ | provide a zoom lens which satisfies the ≦ 1 × 10 -2 conditions | C3.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態について
添付図面を用いて説明する。まず、本発明の実施形態に
かかるズームレンズの基本的なレンズ構成を説明する。
本発明は基本的に負・正2群を有するズームレンズタイ
プの極限までの小型化、構成枚数の削減による極限まで
のコストダウンと大画角化、高変倍化を実現し、かつ著
しい小型化とコストダウンを実現した上で、さらに高性
能な画質を維持するズームレンズを提供することを特徴
としている。特に、同じクラスのズームレンズに比較し
て、非常に小型で、構成枚数が少ない光学系であるにも
かかわらず、歪曲収差、コマフレアー、望遠端状態側の
球面収差が非常に良好に補正されていることが大きな特
徴である。この特徴は、負の第1レンズ群G1中のレン
ズ成分L11に導入した非球面に対して従来技術では全
く知られていなかった収差補正効果を持たせたことによ
り実現できたものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a basic lens configuration of a zoom lens according to an embodiment of the present invention will be described.
The present invention basically realizes miniaturization of a zoom lens type having two negative and positive lens groups to the limit, cost reduction to the limit by reducing the number of components, a large angle of view, and high zoom ratio, and extremely small size. A feature of the present invention is to provide a zoom lens that achieves higher image quality while realizing high performance and cost reduction. In particular, distortion, coma flare, and spherical aberration at the telephoto end state are corrected very well, despite the fact that the optical system is very small and has a small number of components compared to zoom lenses of the same class. Is a major feature. This feature can be realized by giving the aspherical surface introduced to the lens component L11 in the negative first lens group G1 an aberration correction effect which was not known at all in the prior art.

【0011】通常、このクラスの2群ズームレンズの場
合、よりコンパクトにするためには第1レンズ群と第2
レンズ群との相互のパワー(屈折力)を極端に強める必
要がある。この時に、球面収差の変倍による変動と望遠
端状態側の球面収差の逆向きの補正形状とが収差を補正
する上で特に問題になる。すなわち、レンズに要求され
る明るさ(Fナンバーを大きくすること)に対し、レン
ズ設計能力が不足しているのである。本発明では、主と
して上記球面収差の補正を良好に保ちつつ、今までの最
小構成枚数で、現在までに無いほどダウンサイジングさ
れたズームレンズを達成できている。
Usually, in the case of a two-unit zoom lens of this class, the first lens unit and the second
It is necessary to extremely increase the mutual power (refractive power) with the lens group. At this time, the variation due to zooming of the spherical aberration and the corrected shape of the spherical aberration at the telephoto end in the opposite direction pose a particular problem in correcting the aberration. That is, the lens design ability is insufficient for the brightness (increase the F number) required for the lens. According to the present invention, it is possible to achieve a zoom lens that has been downsized as never before, with the minimum number of components so far, while maintaining the above-described spherical aberration correction favorably.

【0012】次に、非球面、特に奇数次項の非球面係数
と収差補正の関係とについて説明する。一般に非球面は
光学系が回転対称なので、偶数次項の級数の和で表現さ
れている。しかしながら、本発明ではこの級数に奇数次
項を導入し、収差補正に更に有効に活用している。非球
面をメリジオナル面内で考えると、奇数次項では像高Y
の符号によってサグ量Xの値が異なり対称性が成立しな
いようにみえる。しかし、光軸をX軸とする直交座標系
(X,Y,Z)をρ=(Y2+Z21/2で考えれば符号
が一致するので対称性が成立する。
Next, the relationship between the aspherical surface, in particular, the aspherical surface coefficient of the odd-order term and the aberration correction will be described. Generally, an aspherical surface is represented by the sum of a series of even-order terms because the optical system is rotationally symmetric. However, in the present invention, an odd-order term is introduced into this series, which is more effectively used for aberration correction. When the aspherical surface is considered in the meridional plane, the image height Y
It seems that the value of the sag amount X differs depending on the sign of, and no symmetry is established. However, if the orthogonal coordinate system (X, Y, Z) with the optical axis as the X axis is considered as ρ = (Y 2 + Z 2 ) 1/2 , the symmetry is established because the signs match.

【0013】3次収差は、球面系においても、偶数次項
の非球面係数を有する非球面においても、屈折面が次式
(A)、 (A) X=C2・ρ2+C4・ρ4+C6・ρ6+… で示すようにρの偶数次項であるために発生するので、
屈折面が奇数次項を含むということは、従来存在しない
2次収差、4次収差等の偶数次の収差が発生することに
なる。また、単一曲面でかつ非球面の場合を想定する
と、球面収差はまさに非球面係数に対応する。従って、
奇数次項の非球面係数を導入することで、球面系、さら
には3次の非球面項が存在しない非球面では得られない
収差補正効果を得ることができる。
[0013] 3-order aberration, even in spherical system, even in the aspherical surface having an aspherical surface coefficients of the even order terms, refracting surface following formulas (A), (A) X = C2 · ρ 2 + C4 · ρ 4 + C6 · Since it is an even order term of ρ as shown by ρ 6 +.
The fact that the refraction surface includes odd-order terms means that even-order aberrations such as second-order aberrations and fourth-order aberrations which do not exist in the past occur. Also, assuming a single curved surface and an aspherical surface, the spherical aberration exactly corresponds to the aspherical coefficient. Therefore,
By introducing an odd-order aspherical coefficient, it is possible to obtain an aberration correction effect that cannot be obtained with a spherical system and further with an aspherical surface having no third-order aspherical term.

【0014】また、一般的には、Xは次式(B)のよう
に表すこともできる。 (B) X=ρ2・1/2r+C4・ρ4+C6・ρ6+… 式(B)に3次項C3と5次項C5とを加えることで次式
(C)が得られる。 (C) X=ρ2・1/2r+C3・ρ3+C4・ρ4+C5
・ρ5+C6・ρ6+… 例えば、2次の球面収差を導出すると、次式(D)のよ
うになる。
In general, X can also be represented by the following equation (B). (B) X = ρ 2 · 1 / 2r + C4 · ρ 4 + C6 · ρ 6 +... The following equation (C) is obtained by adding the third-order term C3 and the fifth-order term C5 to the equation (B). (C) X = ρ 2 · 1 / 2r + C3 · ρ 3 + C4 · ρ 4 + C5
Ρ 5 + C 6 ρ 6 +... For example, when a second-order spherical aberration is derived, the following equation (D) is obtained.

【0015】ここで、nは屈折率、uは光軸とのなす角
度、C3iは各面における非球面係数の3次項、hは入射
高、Rは入射瞳半径をそれぞれ表している。3次の球面
収差が入射高の4乗に比例し、瞳半径の3乗に比例する
のに対し、2次の球面収差は入射高の3乗に比例し、瞳
半径の2乗に比例している。従って、非球面係数の3次
項を導入することにより、従来は補正することが困難で
あった低次の収差を補正できるので、更なるスペックの
向上と高性能化とを達成することができる。以上球面収
差について説明したが、歪曲収差やコマ収差等の他の収
差についても同様に補正することができる。
Here, n is the refractive index, u is the angle formed with the optical axis, C3i is the cubic term of the aspherical coefficient on each surface, h is the entrance height, and R is the entrance pupil radius. Third-order spherical aberration is proportional to the fourth power of the entrance height and proportional to the third power of the pupil radius, whereas second-order spherical aberration is proportional to the third power of the entrance height and proportional to the second power of the pupil radius. ing. Therefore, by introducing the third-order term of the aspherical coefficient, it is possible to correct a low-order aberration which has conventionally been difficult to correct, so that it is possible to further improve specifications and achieve higher performance. Although the spherical aberration has been described above, other aberrations such as distortion and coma can be similarly corrected.

【0016】特に、本発明のようにズームレンズの負の
第1レンズ群G1中のレンズ成分L11に上記非球面を
用いると、広角側の低次の負の歪曲収差の補正能力が高
くなる。このため、従来では歪曲収差の像高に対する傾
き(微分値)が大きく、所謂陣笠形状をしていたが、3
次項の導入により格段に改善することができる。また、
コマ収差および球面収差も同様に、低次の収差がより補
正できるため、例えば口径を大きくすることによって生
じる入射高の比較的低い部分の負の収差を補正し、最小
錯乱円を小さくすることができる。特に望遠側で効果的
であり、大口径化が可能になる。また、本発明において
は望遠側の軸上平行光線(軸上無限遠物点から射出され
た最も開口数の大きい光線)に対する偏角αが大きい面
に上記非球面を導入すると、その効果が大きいため、像
面側に凹面を向けた面に上記非球面を導入することが望
ましい。この効果を上述したような更なるダウンサイジ
ングの際の設計能力の向上に振り分けることによって、
従来のズームレンズ以上の光学性能を得ることができ
る。
In particular, when the aspheric surface is used for the lens component L11 in the negative first lens group G1 of the zoom lens as in the present invention, the ability to correct low-order negative distortion on the wide-angle side increases. For this reason, in the past, the inclination (differential value) of the distortion with respect to the image height was large, and a so-called jinkasa shape was used.
The introduction of the next section can improve the situation significantly. Also,
Similarly, coma and spherical aberrations can be corrected for lower-order aberrations more, so it is possible to correct the negative aberration of a relatively low incident height caused by, for example, increasing the aperture, and reduce the circle of least confusion. it can. This is particularly effective on the telephoto side, and enables a large aperture. In the present invention, when the aspherical surface is introduced on a surface having a large declination α with respect to an axially parallel ray on the telephoto side (a ray having the largest numerical aperture emitted from an object point on the axis at infinity), the effect is great. Therefore, it is desirable to introduce the above-mentioned aspherical surface on the surface with the concave surface facing the image surface side. By distributing this effect to the improvement of the design ability at the time of further downsizing as described above,
Optical performance higher than that of a conventional zoom lens can be obtained.

【0017】次に、条件式(1)について説明する。条
件式(1)は前記負の第1レンズ群G1中のレンズ成分
L11に導入した非球面の3次項の非球面係数の適切な
範囲を規定している。本発明で指定された上記非球面式
で表現された非球面において、3次項の適切な条件設定
を行うことで、広角側では歪曲収差とコマ収差との補
正、望遠側では球面収差とコマ収差との補正を良好に行
なうことができる。
Next, conditional expression (1) will be described. Conditional expression (1) defines an appropriate range of the aspherical coefficient of the third order term of the aspherical surface introduced into the lens component L11 in the negative first lens group G1. Correction of distortion and coma on the wide-angle side and correction of spherical aberration and coma on the telephoto side by setting appropriate conditions of the third-order terms on the aspheric surface expressed by the above-mentioned aspheric expression specified in the present invention. Can be satisfactorily corrected.

【0018】条件式(1)の上限値を上回る場合、非球
面係数の3次項が非常に大きくなることを意味し、特に
2次の球面収差の影響で入射高の比較的低い部分の球面
収差(低次の球面収差)が大きく変位し、結果的に球面
収差の傾き(微分値)が大きくなり、所謂うねりが顕著
になり性能が低下し好ましくない。また、前記のように
コマ収差、歪曲収差等の諸収差も補正過多となり、逆に
悪化する結果になる。なお、条件式(1)の上限値を1
×10-3以下に設定するとより良い収差補正を行うことが
できる。さらに好ましくは、条件式(1)の上限値を5
×10-4以下に設定すると本発明の効果を最大限に発揮で
きるので好ましい。
When the value exceeds the upper limit of the conditional expression (1), it means that the third order term of the aspherical coefficient becomes very large. In particular, the spherical aberration of the portion where the incident height is relatively low due to the influence of the second order spherical aberration. (Lower-order spherical aberration) is greatly displaced, and as a result, the slope (differential value) of the spherical aberration becomes large, so-called undulation becomes remarkable, and the performance deteriorates, which is not preferable. Further, as described above, various aberrations such as coma aberration and distortion are also overcorrected, which results in worsening. Note that the upper limit of conditional expression (1) is set to 1
If the value is set to × 10 −3 or less, better aberration correction can be performed. More preferably, the upper limit value of conditional expression (1) is set to 5
It is preferable to set the value to × 10 −4 or less because the effects of the present invention can be maximized.

【0019】逆に、条件式(1)の下限値を下回る場
合、前記のような各収差の補正効果が薄れ、本発明の効
果が十分に生かせなくなってしまう。なお、条件式
(1)の下限値を5×10-6以上に設定するとより良い収
差補正を行うことができる。さらに好ましくは、条件式
(1)の下限値を1×10-6以上に設定すると本発明の効
果を最大限に発揮できるので好ましい。また、非球面が
本発明で指定された上記非球面式で表現された時、3次
の非球面項C3がκ(円錐係数)の符号と逆符号の値を
とることが、収差補正の観点から好ましい。
Conversely, if the lower limit of conditional expression (1) is not reached, the effect of correcting each aberration as described above will be weakened, and the effect of the present invention will not be able to be fully utilized. If the lower limit of conditional expression (1) is set to 5 × 10 −6 or more, better aberration correction can be performed. It is more preferable to set the lower limit of conditional expression (1) to 1 × 10 −6 or more, since the effects of the present invention can be maximized. Further, when the aspherical surface is represented by the aspherical expression specified in the present invention, the third-order aspherical surface term C3 takes a value opposite to the sign of κ (cone coefficient), which is a viewpoint of aberration correction. Is preferred.

【0020】また、本発明は、前記非球面式で表現した
前記非球面の円錐係数κが、 (2) −1 < κ < 1 の条件を満足することが望ましい。
In the present invention, it is preferable that the conic coefficient κ of the aspherical surface expressed by the aspherical surface formula satisfies the following condition: (2) −1 <κ <1.

【0021】条件式(2)は、前記負の第1レンズ群G
1中のレンズ成分L11に導入した非球面のκ(円錐係
数)の適切な範囲を規定している。非球面が本発明で定
義された非球面式で表現されたとき、3次項の適切値に
加えてκの項を最適化することで更に良好な収差補正を
行うことができる。本発明の場合、κ(円錐係数)を球
面以外の2次曲面をベースにした非球面を使用すること
によって、特に広角側の歪曲収差の補正、コマ収差の補
正を助けている。
Conditional expression (2) satisfies the negative first lens group G
1 defines an appropriate range of κ (cone coefficient) of the aspherical surface introduced into the lens component L11. When the aspherical surface is represented by the aspherical expression defined in the present invention, better aberration correction can be performed by optimizing the κ term in addition to the appropriate value of the third-order term. In the case of the present invention, by using an aspheric surface based on a quadratic surface other than a spherical surface for κ (cone coefficient), correction of distortion and coma aberration particularly on the wide-angle side is assisted.

【0022】条件式(2)の上限値を上回る場合、非球
面のκ(円錐係数)が球面を越え、光軸近傍が曲率が弱
く周辺部で曲率が強い楕円形状を有する非球面になり、
逆に広角側の歪曲収差の補正、コマ収差の補正に悪影響
を及ぼすので好ましくない。なお、条件式(2)の上限
値を0.9以下に設定すると良好な収差補正をおこなう
ことができる。
When the value exceeds the upper limit of the conditional expression (2), the κ (cone coefficient) of the aspherical surface exceeds the spherical surface, and the aspherical surface has an elliptical shape having a weak curvature near the optical axis and a strong curvature at the periphery,
On the other hand, it is not preferable because it adversely affects the correction of distortion and coma on the wide-angle side. If the upper limit of conditional expression (2) is set to 0.9 or less, favorable aberration correction can be performed.

【0023】逆に、条件式(2)の下限値を下回る場
合、非球面のκ(円錐係数)が非常に小さくなるため、
周辺部分の曲率が著しく緩くなる。従って、本発明のよ
うな比較的物体側の負レンズにこのような非球面を導入
すると、周辺部分の屈折力が弱まり、斜光線の入射高が
高くなり、前玉径が大型化することがあるので好ましく
ない。なお、条件式(2)の下限値を−0.5以上に設
定するとより小型化が実現できる。
Conversely, if the lower limit of conditional expression (2) is not reached, the κ (cone coefficient) of the aspheric surface becomes very small.
The curvature of the peripheral portion is significantly reduced. Therefore, when such an aspheric surface is introduced into the negative lens relatively on the object side as in the present invention, the refractive power in the peripheral portion is weakened, the incident height of oblique rays is increased, and the diameter of the front lens can be increased. Is not preferred. If the lower limit of conditional expression (2) is set to −0.5 or more, further miniaturization can be realized.

【0024】また、本発明は、望遠端状態における前記
第1レンズ群G1の最も物体側の面の頂点から像面まで
の光軸に沿った距離をTL、広角端状態における前記ズ
ームレンズ全系の焦点距離をfw、望遠端状態における
前記ズームレンズ全系の焦点距離をftとそれぞれした
とき、 (3) 0.3≦(TL・fw)/ft2≦2 の条件を満足することが望ましい。
In the present invention, the distance along the optical axis from the vertex of the most object side surface of the first lens group G1 to the image plane in the telephoto end state is TL, and the entire zoom lens system in the wide-angle end state is TL. Where fo is the focal length of the zoom lens and ft is the focal length of the entire zoom lens system at the telephoto end, it is preferable that the following condition is satisfied: 0.3 ≦ (TL · fw) / ft 2 ≦ 2 .

【0025】条件式(3)は、光学系の小型化に関する
条件であり、望遠端状態における光学系全系の全長TL
と広角端状態、望遠端状態それぞれの焦点距離との適切
な関係を規定している。条件式(3)の上限値を上回る
場合、ズームレンズの焦点距離領域に対する大きさが著
しく大きくなり、携帯性が悪化し、所謂標準ズームレン
ズとしては好ましくない。なお、条件式(3)の上限値
を1以下に設定するとより良好な収差補正および小型化
が実現でき、本発明の効果を最大限に発揮できる。
Conditional expression (3) is a condition for miniaturization of the optical system, and the total length TL of the entire optical system in the telephoto end state.
And the focal length in the wide-angle end state and in the telephoto end state. When the value exceeds the upper limit of conditional expression (3), the size of the zoom lens with respect to the focal length region becomes extremely large, and portability deteriorates, which is not preferable as a so-called standard zoom lens. If the upper limit of conditional expression (3) is set to 1 or less, better aberration correction and miniaturization can be realized, and the effects of the present invention can be maximized.

【0026】逆に、条件式(3)の下限値を下回る場
合、ズームレンズの焦点距離領域に対する大きさが著し
く小さくなり、前記諸収差の補正が悪化し好ましくな
い。また、鏡筒設計時にズーム移動カム等の構造を設け
ることが困難になるので好ましくない。
On the other hand, if the lower limit value of conditional expression (3) is not reached, the size of the zoom lens with respect to the focal length region becomes extremely small, and the correction of the various aberrations is undesirably deteriorated. Further, it is difficult to provide a structure such as a zoom moving cam when designing the lens barrel, which is not preferable.

【0027】また、本発明は、前記第2レンズ群G2の
焦点距離をf2、望遠端状態における前記ズームレンズ
全系の焦点距離をftとそれぞれしたとき、 (4) 0.3≦f2/ft≦0.6 の条件を満足することが望ましい。
The present invention also provides: (4) 0.3 ≦ f2 / ft, where f2 is the focal length of the second lens group G2 and ft is the focal length of the entire zoom lens system in the telephoto end state. It is desirable to satisfy the condition of ≦ 0.6.

【0028】条件式(4)は第2レンズ群G2の適切な
パワーバランスを規定している。上述したとおり、本発
明は超小型のズームレンズに最適な解を提案するもので
あり、正の第2レンズ群の適切なパワーバランスは光学
系全体の良好な収差バランスと実用的な大きさとを適切
に設定する上で条件式(4)を満足することが望まし
い。条件式(4)の上限値を上回る場合、第2レンズ群
G2が弱いパワーで構成されることになる。従って、第
2レンズ群G2は大型化し、変倍時の移動量が増し、結
果的にバックフォーカスBFも長くなるために全系が大
型化してしまい、小型化という目的から逸脱するので好
ましくない。なお、条件式(4)の上限値を0.55以
下に設定すると実用的な光学系の大きさに関する解を得
ることができる。さらに好ましくは、条件式(4)の上
限値を0.49以下に設定すると本発明の効果を最大限
に発揮できるので望ましい。
Conditional expression (4) defines an appropriate power balance of the second lens group G2. As described above, the present invention proposes an optimal solution for an ultra-small zoom lens, and an appropriate power balance of the positive second lens group is a balance between a good aberration balance of the entire optical system and a practical size. It is desirable to satisfy conditional expression (4) in setting appropriately. If the upper limit of conditional expression (4) is exceeded, the second lens group G2 will be composed of weak power. Accordingly, the size of the second lens group G2 is increased, the amount of movement at the time of zooming is increased, and as a result, the back focus BF is lengthened, so that the entire system is enlarged. If the upper limit value of conditional expression (4) is set to 0.55 or less, a practical solution regarding the size of the optical system can be obtained. More preferably, setting the upper limit of conditional expression (4) to 0.49 or less is preferable because the effects of the present invention can be maximized.

【0029】逆に、条件式(4)の下限値を下回る場
合、第2レンズ群G2が強いパワーで構成されることに
なる。従って、本発明のような構成枚数の少ないズーム
レンズの場合、上述したように、特に望遠側の球面収
差、コマ収差と非点収差の補正が悪化するので好ましく
ない。なお、条件式(4)の下限値を0.4以上に設定
するとより良好な収差補正ができるので好ましい。さら
に好ましくは、条件式(4)の下限値を0.42以上に
設定すると本発明の効果を最大限に発揮できるので望ま
しい。
On the other hand, if the lower limit of conditional expression (4) is not reached, the second lens group G2 will have a strong power. Therefore, in the case of a zoom lens having a small number of components as in the present invention, the correction of spherical aberration, coma and astigmatism particularly on the telephoto side deteriorates as described above, which is not preferable. It is preferable to set the lower limit of conditional expression (4) to 0.4 or more, because better aberration correction can be achieved. More preferably, setting the lower limit of conditional expression (4) to 0.42 or more is preferable because the effects of the present invention can be maximized.

【0030】また、本発明では、広角端状態における前
記ズームレンズのバックフォーカスをBF、前記ズーム
レンズ全系の許容する最大像高をyとそれぞれしたと
き、 (5) 1.7≦BF/y≦2.5 の条件を満足することが望ましい。
In the present invention, when the back focus of the zoom lens in the wide-angle end state is BF, and the maximum image height allowed by the entire zoom lens system is y, (5) 1.7 ≦ BF / y It is desirable to satisfy the condition of ≦ 2.5.

【0031】条件式(5)は広角端状態における光学系
全系のバックフォーカスBFに対する条件で、光学系全
系の許容できる最大画角時に対応する最大像高、換言す
ると像面のフォーマットサイズに対するイメージサーク
ルの半径yで規格化した値の適切な範囲を規定してい
る。条件式(5)の上限値を上回る場合、バックフォー
カスが著しく大きくなり、小型化に反し、好ましくな
い。
Conditional expression (5) is a condition for the back focus BF of the entire optical system in the wide-angle end state, and corresponds to the maximum image height corresponding to the maximum allowable angle of view of the entire optical system, in other words, the format size of the image plane. An appropriate range of the value standardized by the radius y of the image circle is defined. If the value exceeds the upper limit value of conditional expression (5), the back focus becomes extremely large, which is not preferable in spite of miniaturization.

【0032】逆に、条件式(5)の下限値を下回る場
合、バックフォーカスが著しく小さくなり、所謂一眼レ
フカメラのミラーに干渉してしまうので好ましくない。
On the other hand, if the lower limit of conditional expression (5) is not reached, the back focus becomes extremely small, which is not preferable because it interferes with the mirror of a so-called single-lens reflex camera.

【0033】また、本発明のように小型で低コストかつ
高性能のズームレンズを実現するには、第2レンズ群の
構成が、物体側から少なくとも正・負・正の各レンズ成
分を有する構成にすることが望ましい。さらに好ましく
は、正・正・負・正の4つのレンズ成分のみで構成され
ていることが望ましい。
In order to realize a compact, low-cost and high-performance zoom lens as in the present invention, the second lens unit must have at least positive, negative and positive lens components from the object side. Is desirable. More preferably, it is desirable to be constituted only by four lens components of positive, positive, negative and positive.

【0034】また、本発明では、非球面レンズL11を
ガラス材料と樹脂材料との複合からなる部材により形成
することが望ましい。これによりコストダウンを図るこ
とができる。また、開口絞りは、第2レンズ群の物体側
又は第2レンズ群中に設置することが望ましい。また、
合焦動作は第1レンズ群G1を繰り出す(移動する)こ
とにより行うことが望ましいが、これに限られるもので
はなく、第2レンズ群又は第2レンズ群を構成する一部
のレンズ成分を移動することで合焦しても良い。また、
広角端状態と望遠端状態との合焦動作による繰り出し量
は同一量に限定する必要はない。例えば、望遠端近傍を
広角端に比べて著しく繰り出すことによりマクロ撮影を
することもできる。
In the present invention, it is desirable that the aspheric lens L11 is formed of a composite member of a glass material and a resin material. As a result, cost can be reduced. Further, it is desirable that the aperture stop is provided on the object side of the second lens group or in the second lens group. Also,
The focusing operation is desirably performed by extending (moving) the first lens group G1, but is not limited to this. The second lens group or a part of the lens components constituting the second lens group is moved. You may focus by doing. Also,
It is not necessary to limit the amount of extension by the focusing operation between the wide-angle end state and the telephoto end state to the same amount. For example, macro photography can be performed by protruding the vicinity of the telephoto end significantly compared to the wide-angle end.

【0035】[0035]

【実施例】以下、添付図面に基づいて本発明の数値実施
例を説明する。図1(a)〜(c)は第1及び第2実施
例にかかるズームレンズのレンズ構成と移動軌跡とをそ
れぞれ示している。図1(a)は、広角端状態、(b)
は中間焦点距離状態、(c)は望遠端状態のレンズ構成
をそれぞれ示している。物体側から順に、負の屈折力を
有する第1レンズ群G1と、正の屈折力を有する第2レ
ンズ群G2との負・正2群から構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIGS. 1A to 1C show the lens configuration and the movement locus of the zoom lens according to the first and second examples, respectively. FIG. 1A shows a wide-angle end state, and FIG.
Shows the lens configuration in the intermediate focal length state, and (c) shows the lens configuration in the telephoto end state. In order from the object side, the first lens group G1 has a negative refractive power and the second lens group G2 has a positive refractive power.

【0036】第1レンズ群G1は、物体側から順に、物
体側に凸面を向け、像側の凹面に非球面を有する樹脂材
料とガラス材料との複合からなる複合型負メニスカス非
球面レンズL11と、物体側に凸面を向けた正メニスカ
スレンズL12とから構成され、第2レンズ群G2は、
物体側から順に、正レンズ成分L21と、負レンズ成分
L22と、正レンズ成分L23とから構成され、該正レ
ンズ成分L21は2つの正レンズを有し、その2枚の正
レンズの間に開口絞りSが設けられている。
The first lens group G1 includes, in order from the object side, a composite negative meniscus aspheric lens L11 having a convex surface facing the object side and a composite of a resin material and a glass material having an aspheric surface on the concave surface on the image side. A positive meniscus lens L12 having a convex surface facing the object side, and the second lens group G2 includes:
In order from the object side, it is composed of a positive lens component L21, a negative lens component L22, and a positive lens component L23. The positive lens component L21 has two positive lenses, and has an aperture between the two positive lenses. An aperture S is provided.

【0037】また、第2レンズ群G2の像側には変倍中
に空気間隔が変化するフレアーストッパーSFが設けら
れている。変倍動作は広角端状態から望遠端状態に向か
って、第1レンズ群G1と第2レンズ群G2との間の空
気間隔が縮小するように第1レンズ群G1と第2レンズ
群G2とを移動することによって行なう。また、近距離
合焦動作は前群である第1レンズ群G1を物体方向に移
動して行なう。
On the image side of the second lens group G2, there is provided a flare stopper SF whose air gap changes during zooming. The zooming operation is performed by moving the first lens group G1 and the second lens group G2 such that the air gap between the first lens group G1 and the second lens group G2 decreases from the wide-angle end state to the telephoto end state. This is done by moving. The short-distance focusing operation is performed by moving the first lens group G1, which is the front group, toward the object.

【0038】(第1実施例)以下の表1に第1実施例の
諸元値を掲げる。レンズデータにおいて、面番号は物体
側から数えたレンズ面の順番、rはレンズ面の曲率半
径、dはレンズ面の光軸上の面間隔、nはd線(λ=5
87.56nm)に対する屈折率、νはアッベ数をそれ
ぞれ表している。また、D0は物体から第1面までの光
軸に沿った距離、fは焦点距離、FnoはFナンバー、
2ωは画角、BFはバックフォーカス(d14+d1
5)をそれぞれ示している。また、非球面は光軸から垂
直方向の高さyにおける各非球面の頂点の接平面から光
軸方向に沿った距離をS(y)とし、近軸曲率半径を
R、円錐係数をκ、n次の非球面係数をCnとすると
き、以下の非球面式で与えられる。
(First Embodiment) Table 1 below shows data values of the first embodiment. In the lens data, the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surface, d is the surface interval on the optical axis of the lens surface, and n is the d line (λ = 5).
87.56 nm), and ν represents the Abbe number. D0 is the distance from the object to the first surface along the optical axis, f is the focal length, Fno is the F number,
2ω is the angle of view, BF is the back focus (d14 + d1
5) are shown respectively. The aspheric surface has a distance along the optical axis direction from the tangent plane of the apex of each aspheric surface at a height y in the vertical direction from the optical axis as S (y), a paraxial radius of curvature R, a cone coefficient κ, When the n-th order aspherical coefficient is Cn, it is given by the following aspherical expression.

【0039】[0039]

【数1】S(y)=(y2/R)/〔1+(1−κ・y2
/R21/2〕+C3・|y|3+C4・y4+C5・|y|
5+C6・y6+C8・y8+C10・y10+C12・y12+C1
4・y14
S (y) = (y 2 / R) / [1+ (1−κ · y 2)
/ R 2 ) 1/2 ] + C3 · | y | 3 + C4 · y 4 + C5 · | y |
5 + C6 · y 6 + C8 · y 8 + C10 · y 10 + C12 · y 12 + C1
4 ・ y 14

【0040】また、諸元表中の非球面には面番号の左側
に★印を付し、r欄には近軸曲率半径を記載する。な
お、以下全ての実施例の諸元値及び非球面において本実
施例と同様の符号を用いる。
In the specification table, asterisks are attached to the left of the surface numbers for the aspheric surfaces, and the paraxial radius of curvature is described in the r column. Note that the same reference numerals as those of the present embodiment are used in the specification values and the aspheric surfaces of all the embodiments below.

【0041】[0041]

【表1】 f=28.8〜77.6mm Fno= F3.3〜5.8 2ω=76.5〜30.9゜ (レンズデータ) 面番号 r d アッベ数 n 1) 111.5622 2.2000 49.61 1.772500 2) 19.8000 0.0300 37.50 1.558040 ★ 3) 16.7400 7.6000 1.000000 4) 27.2997 4.2000 25.43 1.805180 5) 46.6621 d5 1.000000 6) 28.4256 3.8000 60.29 1.620410 7) -254.6431 1.6000 1.000000 8>開口絞り 0.5000 1.000000 9) 20.6834 4.0000 64.10 1.516800 10) -751.6620 0.6000 1.000000 11) -71.9589 6.8500 28.56 1.795040 12) 18.2538 1.3500 1.000000 13) 98.4420 3.0000 33.80 1.647690 14) -33.3001 d14 1.000000 15)フレアーストッハ゜ー d15 1.000000 (非球面データ) 第3面 κ=-0.0877 C 3= 0.78533×10-5 C 4= 1.12030×10-5 C 5= 0.75286×10-6 C 6=-4.74760×10-8 C 8= 1.87130×10-10 C10=-5.53870×10-13 C12= 0.63397×10-15 C14= 0.00000 (可変間隔データ) 1-POS 2-POS 3-POS 1'-POS 2'-POS 3'-POS F&β 28.80000 50.00000 77.60000 -0.03333 -0.03333 -0.03333 D0 ∞ ∞ ∞ 818.2574 1454.2575 2282.2598 d5 38.55293 13.23248 0.99831 41.10964 14.70515 1.94719 d14 0.00000 4.95176 11.39837 0.00000 4.95176 11.39837 d15 42.59522 54.14931 69.19143 42.59523 54.14931 69.19143 1"-POS 2"-POS 3"-POS β -0.10639 -0.17871 -0.28714 D0 224.9617 234.0411 224.5080 d5 46.71312 21.12786 9.17220 d14 0.00000 4.95176 11.39837 d15 42.59522 54.14931 69.19142 ここで、1'-POS,2”-POS等の符号は1-POSから3-POSに相
当する焦点距離における近距離合焦時のデータを示して
いる。(条件対応値) (1) |C3|= 0.78533×10-5 (2) κ= −0.0877 (3) (TL・fw)/ft2 =0.561 (4) f2/ft=0.472 (5) BF/y=1.974
[Table 1] f = 28.8-77.6 mm Fno = F3.3-5.8 2ω = 76.5-30.9 ゜ (lens data) Surface number rd Abbe number n 1) 111.5622 2.2000 49.61 1.772500 2) 19.8000 0.0300 37.50 1.558040 ★ 3) 16.7400 7.6000 1.000000 4) 27.2997 4.2000 25.43 1.805180 5) 46.6621 d5 1.000000 6) 28.4256 3.8000 60.29 1.620410 7) -254.6431 1.6000 1.000000 8> Aperture stop 0.5000 1.000000 9) 20.6834 4.0000 64.10 1.516800 10) -751.6620 0.6000 1.000000 11) -71.9589 6.8500 28.56 1.795040 12 ) 18.2538 1.3500 1.000000 13) 98.4420 3.0000 33.80 1.647690 14) -33.3001 d14 1.000000 15) flare stopper c゜ーd15 1.000000 (aspherical data) third surface κ = -0.0877 C 3 = 0.78533 × 10 - 5 C 4 = 1.12030 × 10 -5 C 5 = 0.75286 × 10 -6 C 6 = -4.74760 × 10 -8 C 8 = 1.87130 × 10 -10 C10 = -5.53870 × 10 -13 C12 = 0.63397 × 10 -15 C14 = 0.00000 (variable interval data) 1-POS 2-POS 3-POS 1'-POS 2'-POS 3'-POS F & β 28.80000 50.00000 77.60000 -0.03333 -0. 03333 -0.03333 D0 ∞ ∞ ∞ 818.2574 1454.2575 2282.2598 d5 38.55293 13.23248 0.99831 41.10964 14.70515 1.94719 d14 0.00000 4.95176 11.39837 0.00000 4.95176 11.39837 d15 42.59522 54.14931 69.19143 42.59523 54.14931 69.19143 -0.1-0.1-β2 -0.12 D0 224.9617 234.0411 224.5080 d5 46.71312 21.12786 9.17220 d14 0.00000 4.95176 11.39837 d15 42.59522 54.14931 69.19142 Here, symbols such as 1'-POS, 2 ''-POS are used when focusing on a short distance at a focal length equivalent to 1-POS to 3-POS. Shows the data. (Conditional value) (1) | C3 | = 0.78533 × 10 −5 (2) κ = −0.0877 (3) (TL · fw) / ft 2 = 0.561 (4) f2 / ft = 0. 472 (5) BF / y = 1.974

【0042】図2は本実施例の無限遠合焦時での広角端
状態における諸収差、図3は無限遠合焦時での望遠端状
態における諸収差をそれぞれ示す図である。収差図にお
いて、FNOはFナンバー、Yは像高、d,gはそれぞ
れd線(λ=587.56nm),g線(λ=435.
84nm)における収差曲線を示している。また、非点
収差において、実線はサジタル像面、点線はメリジオナ
ル像面をそれぞれ示している。なお、以下全ての実施例
の収差図において、本実施例と同様の符号を用いる。こ
れら収差図からも明らかなように、良好に収差補正がさ
れていることがわかる。
FIG. 2 is a diagram showing various aberrations of the present embodiment in the wide-angle end state when focusing on infinity, and FIG. 3 is a diagram showing various aberrations in the telephoto end state when focusing on infinity. In the aberration diagrams, FNO represents the F number, Y represents the image height, d and g represent the d-line (λ = 587.56 nm) and the g-line (λ = 435.
84 nm). In the astigmatism, a solid line indicates a sagittal image plane, and a dotted line indicates a meridional image plane. The same reference numerals as those in the present embodiment are used in the aberration diagrams of all the embodiments below. As is clear from these aberration diagrams, it can be seen that the aberration is properly corrected.

【0043】(第2実施例)表2に第2実施例の諸元値
を掲げる。
(Second Embodiment) Table 2 shows the specification values of the second embodiment.

【0044】[0044]

【表2】 f=28.8〜77.6mm Fno= F3.3〜5.8 2ω=76.5〜30.9゜ (レンズデータ) 面番号 r d アッベ数 n 1) 81.6076 2.2000 46.63 1.816000 2) 19.6999 0.0300 56.34 1.495210 ★ 3) 17.0087 7.9500 1.000000 4) 25.8422 4.0000 23.78 1.846660 5) 37.9967 d5 1.000000 6) 22.9906 3.8000 65.47 1.603000 7) -151.7022 1.0000 1.000000 8>開口絞り 0.8000 1.000000 9) 18.9906 3.3500 69.98 1.518601 10) 73.5829 1.1000 1.000000 11) -62.3212 4.6500 28.56 1.795040 12) 17.3022 1.3000 1.000000 13) 107.7478 2.5000 32.11 1.672700 14) -30.0016 d14 1.000000 15)フレアーストッハ゜ー d15 1.000000 (非球面データ) 第3面 κ=0.7608 C 3=-0.80603×10-5 C 4=-8.98010×10-6 C 5= 0.14058×10-5 C 6=-1.57520×10-7 C 8= 4.96060×10-10 C10=-1.39820×10-12 C12= 0.90064×10-15 C14=-0.43594×10-18 (可変間隔データ) 1-POS 2-POS 3-POS 1'-POS 2'-POS 3'-POS F&β 28.80000 50.00000 77.60000 -0.03333 -0.03333 -0.03333 D0 ∞ ∞ ∞ 817.4568 1453.4497 2281.4505 d5 37.41226 12.84823 0.97952 39.96895 14.32090 1.92840 d14 0.00000 4.80383 11.05787 0.00000 4.80383 11.05787 d15 41.99336 53.20230 67.79506 41.99336 53.20229 67.79507 1"-POS 2"-POS 3"-POS β -0.10417 -0.17527 -0.28112 D0 229.9245 238.7222 229.4850 d5 45.40209 20.59166 8.98208 d14 0.00000 4.80383 11.05787 d15 41.99336 53.20230 67.79505 ここで、1'-POS,2”-POS等の符号は1-POSから3-POSに相
当する焦点距離における近距離合焦時のデータを示して
いる。 (条件対応値) (1) |C3|= 0.80603×10-5 (2) κ=0.7608 (3) (TL・fw)/ft2 =0.548 (4) f2/ft=0.457 (5) BF/y=1.907
[Table 2] f = 28.8-77.6mm Fno = F3.3-5.8 2ω = 76.5-30.9 ゜ (lens data) Surface number rd Abbe number n 1) 81.6076 2.2000 46.63 1.816000 2) 19.6999 0.0300 56.34 1.495210 ★ 3) 17.0087 7.9500 1.000000 4) 25.8422 4.0000 23.78 1.846660 5) 37.9967 d5 1.000000 6) 22.9906 3.8000 65.47 1.603000 7) -151.7022 1.0000 1.000000 8> Aperture stop 0.8000 1.000000 9) 18.9906 3.3500 69.98 1.518601 10) 73.5829 1.100000000 11) -62.3212 4.6500 28.56 1.795040 12) 17.3022 1.3000 1.000000 13) 107.7478 2.5000 32.11 1.672700 14) -30.0016 d14 1.000000 15) Flair Stocker d15 1.000000 (Aspherical surface data) Third surface κ = 0.7608 C 3 = -0.80603 × 10 -5 C 4 = -8.98010 × 10 -6 C 5 = 0.14058 × 10 -5 C 6 = -1.557520 × 10 -7 C 8 = 4.96060 × 10 -10 C10 = -1.39820 × 10 -12 C12 = 0.90064 × 10 -15 C14 = -0.43594 × 10 -18 (variable interval data) 1-POS 2-POS 3-POS 1'-POS 2'-POS 3'-POS F & β 28.80000 50.00000 77.60000 -0. 03333 -0.03333 -0.03333 D0 ∞ ∞ ∞ 817.4568 1453.4497 2281.4505 d5 37.41226 12.84823 0.97952 39.96895 14.32090 1.92840 d14 0.00000 4.80383 11.05787 0.00000 4.80383 11.05787 d15 41.99336 53.20230 67.79506 41.99336 53.20-71.04-31.04-31.04-0.17 -0.28112 D0 229.9245 238.7222 229.4850 d5 45.40209 20.59166 8.98208 d14 0.00000 4.80383 11.05787 d15 41.99336 53.20230 67.79505 where 1'-POS, 2 ''-POS etc. signifies the short distance at the focal length corresponding to 1-POS to 3-POS. The data at the time of focus is shown. (Conditional value) (1) | C3 | = 0.80603 × 10 -5 (2) κ = 0.7608 (3) (TL · fw) / ft 2 = 0.548 (4) f2 / ft = 0.457 (5) BF / y = 1.907

【0045】図4は本実施例の無限遠合焦時での広角端
状態における諸収差、図5は無限遠合焦時での望遠端状
態における諸収差をそれぞれ示す図である。これら収差
図からも明らかなように、良好に収差補正がされている
ことがわかる。
FIG. 4 is a diagram showing various aberrations at the wide-angle end state when focusing on infinity according to the present embodiment, and FIG. 5 is a diagram showing various aberrations at a telephoto end state when focusing on infinity. As is clear from these aberration diagrams, it can be seen that the aberration is properly corrected.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
画角2ω=76.5〜30.9゜を有し、Fナンバーが
F3.3〜5.8程度の口径比を有し、約2.7倍程度
の比較的大きい変倍比を有する高性能で、レンズ構成枚
数が著しく少ない超小型のズームレンズを提供できる。
As described above, according to the present invention,
The angle of view 2ω = 76.5-30.9 °, the F-number has an aperture ratio of approximately F3.3-5.8, and a relatively large zoom ratio of approximately 2.7 times. It is possible to provide an ultra-small zoom lens having extremely small number of lens components with high performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は、第1及び第2実施例に共通
するレンズ構成及び移動軌跡を示す図である。
FIGS. 1A to 1C are diagrams illustrating a lens configuration and a movement locus common to the first and second embodiments.

【図2】第1実施例の無限遠合焦時での広角端状態にお
ける諸収差図である。
FIG. 2 is a diagram illustrating various aberrations of the first embodiment in a wide-angle end state upon focusing on infinity.

【図3】第1実施例の無限遠合焦時での望遠端状態にお
ける諸収差図である。
FIG. 3 is a diagram illustrating various aberrations of the first embodiment in a telephoto end state upon focusing on infinity.

【図4】第2実施例の無限遠合焦時での広角端状態にお
ける諸収差図である。
FIG. 4 is a diagram illustrating various aberrations of the second embodiment at the wide-angle end state upon focusing on infinity.

【図5】第2実施例の無限遠合焦時での望遠端状態にお
ける諸収差図である。
FIG. 5 is a diagram illustrating various aberrations of the second embodiment in a telephoto end state upon focusing on infinity.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 L11 第1レンズ群内の非球面負レンズ成分 L12 第1レンズ群内の正レンズ成分 L21 第2レンズ群内の第1正レンズ成分 L22 第2レンズ群内の負レンズ成分 L23 第2レンズ群内の第2正レンズ成分 S 開口絞り SF フレアーストッパー G1 First lens group G2 Second lens group L11 Aspheric negative lens component in first lens group L12 Positive lens component in first lens group L21 First positive lens component in second lens group L22 In second lens group L23 The second positive lens component in the second lens group S Aperture stop SF Flare stopper

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負の屈折力を有する第
1レンズ群G1と、正の屈折力を有する第2レンズ群G
2とを有し、該第1レンズ群G1と該第2レンズ群G2
との空気間隔を変化させることにより変倍するズームレ
ンズにおいて、 前記第1レンズ群G1は凹面側に非球面を有する負のレ
ンズ成分L11と正のレンズ成分L12とからなり、 前記非球面は光軸から垂直方向の高さyにおける各非球
面の頂点の接平面から光軸方向に沿った距離(サグ量)
をS(y)、 近軸曲率半径をR、 円錐係数をκ、 n次の非球面係数をCnとして、以下の非球面式、 S(y)=(y2/R)/〔1+(1−κ・y2/R2
1/2〕+C3・|y|3+C4・y4+C5・|y|5+C6
・y6+C8・y8+C10・y10+C12・y12+C14・y
14 で表現したとき、 (1) 1×10-7≦ |C3| ≦1×10-2 の条件を満足することを特徴とするズームレンズ。
1. A first lens group G1 having a negative refractive power and a second lens group G having a positive refractive power in order from the object side.
2, the first lens group G1 and the second lens group G2
Wherein the first lens group G1 comprises a negative lens component L11 having a concave aspheric surface and a positive lens component L12; Distance along the optical axis direction from the tangent plane of the apex of each aspheric surface at the height y in the vertical direction from the axis (sag amount)
Where S (y), R is the paraxial radius of curvature, κ is the conic coefficient, and Cn is the nth order aspherical coefficient, the following aspherical expression: S (y) = (y 2 / R) / [1+ (1 −κ · y 2 / R 2 )
1/2 ] + C3 · | y | 3 + C4 · y 4 + C5 · | y | 5 + C6
· Y 6 + C8 · y 8 + C10 · y 10 + C12 · y 12 + C14 · y
14. A zoom lens characterized by satisfying the following condition: 1 × 10 −7 ≦ | C3 | ≦ 1 × 10 −2 .
【請求項2】 前記非球面式で表わされる前記非球面の
円錐係数κは、 (2) −1 < κ < 1 の条件を満足することを特徴とする請求項1記載のズー
ムレンズ。
2. The zoom lens according to claim 1, wherein a cone coefficient κ of the aspheric surface represented by the aspheric surface expression satisfies the following condition: (2) −1 <κ <1.
【請求項3】 望遠端状態における前記第1レンズ群G
1の最も物体側の面の頂点から像面までの光軸に沿った
距離をTL、 広角端状態における前記ズームレンズ全系の焦点距離を
fw、 望遠端状態における前記ズームレンズ全系の焦点距離を
ftとそれぞれしたとき、 (3) 0.3≦(TL・fw)/ft2≦2 の条件を満足することを特徴とする請求項1または2記
載のズームレンズ。
3. The first lens group G in a telephoto end state.
1, the distance along the optical axis from the vertex of the surface closest to the object side to the image plane is TL, the focal length of the entire zoom lens system in the wide-angle end state is fw, and the focal length of the entire zoom lens system in the telephoto end state is 3. The zoom lens according to claim 1, wherein the following condition is satisfied: 0.3 ≦ (TL · fw) / ft 2 ≦ 2.
【請求項4】 前記第2レンズ群G2の焦点距離をf
2、 望遠端状態における前記ズームレンズ全系の焦点距離を
ftとそれぞれしたとき、 (4) 0.3≦f2/ft≦0.6 の条件を満足することを特徴とする請求項1乃至3のい
ずれか1項に記載のズームレンズ。
4. The focal length of the second lens group G2 is f
2. When the focal length of the entire zoom lens system at the telephoto end state is ft, the following condition is satisfied: (4) 0.3 ≦ f2 / ft ≦ 0.6. The zoom lens according to any one of the above items.
【請求項5】 広角端状態における前記ズームレンズの
バックフォーカスをBF、 前記ズームレンズ全系の許容する最大像高をyとそれぞ
れしたとき、 (5) 1.7≦BF/y ≦2.5 の条件を満足することを特徴とする請求項1乃至4のい
ずれか1項に記載のズームレンズ。
5. When the back focus of the zoom lens in the wide-angle end state is BF, and the maximum image height allowed by the entire zoom lens system is y, (5) 1.7 ≦ BF / y ≦ 2.5 The zoom lens according to any one of claims 1 to 4, wherein the following condition is satisfied.
【請求項6】 前記第2レンズ群G2は物体側から少な
くとも正レンズ成分と、負レンズ成分と、正レンズ成分
とを有することを特徴とする請求項1乃至5のいずれか
1項に記載のズームレンズ。
6. The second lens group G2 according to claim 1, wherein the second lens group G2 has at least a positive lens component, a negative lens component, and a positive lens component from the object side. Zoom lens.
【請求項7】 前記第1レンズ群G1中の非球面を有す
る前記負レンズ成分L11はガラス材料と樹脂材料との
複合からなる部材により形成されていることを特徴とす
る請求項1乃至6のいずれか1項に記載のズームレン
ズ。
7. The method according to claim 1, wherein the negative lens component L11 having an aspheric surface in the first lens group G1 is formed of a member made of a composite of a glass material and a resin material. The zoom lens according to claim 1.
JP17140599A 1999-06-17 1999-06-17 Zoom lens Expired - Lifetime JP4453120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17140599A JP4453120B2 (en) 1999-06-17 1999-06-17 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17140599A JP4453120B2 (en) 1999-06-17 1999-06-17 Zoom lens

Publications (2)

Publication Number Publication Date
JP2001004920A true JP2001004920A (en) 2001-01-12
JP4453120B2 JP4453120B2 (en) 2010-04-21

Family

ID=15922550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17140599A Expired - Lifetime JP4453120B2 (en) 1999-06-17 1999-06-17 Zoom lens

Country Status (1)

Country Link
JP (1) JP4453120B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084649A (en) * 2003-09-11 2005-03-31 Fujinon Corp Wide angle zoom lens
US7382551B2 (en) 2005-11-30 2008-06-03 Canon Kabushiki Kaisha Zoom lens system and image-pickup apparatus including same
US7760439B2 (en) 2005-10-25 2010-07-20 Konica Minolta Opto, Inc. Variable power optical system, imaging lens device and digital apparatus
US8019211B2 (en) 2009-02-02 2011-09-13 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8085475B2 (en) 2009-02-02 2011-12-27 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8411368B2 (en) 2009-02-02 2013-04-02 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8934183B2 (en) 2008-11-12 2015-01-13 Canon Kabushiki Kaisha Optical element and optical system including the optical element

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446310A (en) * 1990-06-13 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH0588084A (en) * 1991-09-30 1993-04-09 Nikon Corp Zoom lens of two-group constitution
JPH05249374A (en) * 1992-03-05 1993-09-28 Nikon Corp Zoom lens with wide field angle
JPH05249376A (en) * 1992-03-06 1993-09-28 Nikon Corp Standard zoom lens
JPH05281470A (en) * 1992-03-30 1993-10-29 Olympus Optical Co Ltd Small-sized two-group zoom lens
JPH05333266A (en) * 1992-06-01 1993-12-17 Olympus Optical Co Ltd Small-sized two-group zoom lens
JPH05346542A (en) * 1992-06-01 1993-12-27 Olympus Optical Co Ltd Small-sized two-group zoom lens
JPH0611650A (en) * 1992-03-10 1994-01-21 Nikon Corp Zoom lens
JPH06337374A (en) * 1993-05-31 1994-12-06 Nikon Corp Zoom lens having vibration proof function
JPH0727976A (en) * 1993-07-08 1995-01-31 Olympus Optical Co Ltd Small-sized two-group zoom lens system
JPH07104182A (en) * 1993-10-04 1995-04-21 Casio Comput Co Ltd Photographic lens
JPH07209571A (en) * 1994-01-17 1995-08-11 Nikon Corp Optical system with flare stopper
JPH0933810A (en) * 1995-07-20 1997-02-07 Sony Corp Zoom lens
JPH10133109A (en) * 1996-09-04 1998-05-22 Nikon Corp High magnification zoom lens
JPH10282417A (en) * 1997-04-10 1998-10-23 Minolta Co Ltd Compact zoom lens
JPH1152235A (en) * 1997-07-31 1999-02-26 Canon Inc Zoom lens

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446310A (en) * 1990-06-13 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH0588084A (en) * 1991-09-30 1993-04-09 Nikon Corp Zoom lens of two-group constitution
JPH05249374A (en) * 1992-03-05 1993-09-28 Nikon Corp Zoom lens with wide field angle
JPH05249376A (en) * 1992-03-06 1993-09-28 Nikon Corp Standard zoom lens
JPH0611650A (en) * 1992-03-10 1994-01-21 Nikon Corp Zoom lens
JPH05281470A (en) * 1992-03-30 1993-10-29 Olympus Optical Co Ltd Small-sized two-group zoom lens
JPH05333266A (en) * 1992-06-01 1993-12-17 Olympus Optical Co Ltd Small-sized two-group zoom lens
JPH05346542A (en) * 1992-06-01 1993-12-27 Olympus Optical Co Ltd Small-sized two-group zoom lens
JPH06337374A (en) * 1993-05-31 1994-12-06 Nikon Corp Zoom lens having vibration proof function
JPH0727976A (en) * 1993-07-08 1995-01-31 Olympus Optical Co Ltd Small-sized two-group zoom lens system
JPH07104182A (en) * 1993-10-04 1995-04-21 Casio Comput Co Ltd Photographic lens
JPH07209571A (en) * 1994-01-17 1995-08-11 Nikon Corp Optical system with flare stopper
JPH0933810A (en) * 1995-07-20 1997-02-07 Sony Corp Zoom lens
JPH10133109A (en) * 1996-09-04 1998-05-22 Nikon Corp High magnification zoom lens
JPH10282417A (en) * 1997-04-10 1998-10-23 Minolta Co Ltd Compact zoom lens
JPH1152235A (en) * 1997-07-31 1999-02-26 Canon Inc Zoom lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084649A (en) * 2003-09-11 2005-03-31 Fujinon Corp Wide angle zoom lens
JP4497514B2 (en) * 2003-09-11 2010-07-07 フジノン株式会社 Wide angle zoom lens
US7760439B2 (en) 2005-10-25 2010-07-20 Konica Minolta Opto, Inc. Variable power optical system, imaging lens device and digital apparatus
US7382551B2 (en) 2005-11-30 2008-06-03 Canon Kabushiki Kaisha Zoom lens system and image-pickup apparatus including same
CN100426042C (en) * 2005-11-30 2008-10-15 佳能株式会社 Zoom lens system and image-pickup apparatus including same
US8934183B2 (en) 2008-11-12 2015-01-13 Canon Kabushiki Kaisha Optical element and optical system including the optical element
US10185059B2 (en) 2008-11-12 2019-01-22 Canon Kabushiki Kaisha Optical element and optical system including the optical element
US8019211B2 (en) 2009-02-02 2011-09-13 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8085475B2 (en) 2009-02-02 2011-12-27 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8411368B2 (en) 2009-02-02 2013-04-02 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system

Also Published As

Publication number Publication date
JP4453120B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US6844991B2 (en) Fisheye lens
US8867147B2 (en) Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
US7551367B2 (en) Wide-angle lens, optical apparatus and method for focusing
US7492524B2 (en) Zoom lens system, imaging apparatus, method for vibration reduction, and method for varying focal length
JP3200925B2 (en) Zoom lens with wide angle of view
US8000035B2 (en) Wide-angle lens, optical apparatus, and method for focusing
JPH06281860A (en) Two-group zoom lens
KR20090063155A (en) Macro lens, optical apparatus, and method for manufacturing the macro lens
JP2002350727A (en) Zoom lens
JPH0588084A (en) Zoom lens of two-group constitution
JP2000338397A (en) Zoom lens
JPH05249373A (en) Wide-angle zoom lens
JPH08313802A (en) Wide angle lens
JPH10246854A (en) Compact wide-angle lens
JP2002006214A (en) Zoom lens and photographing device equipped with the same
JPH06347695A (en) Projection lens
JP3029148B2 (en) Rear focus zoom lens
JP4453120B2 (en) Zoom lens
JPH06130298A (en) Compact zoom lens
JP4210876B2 (en) Zoom lens
JPH07104183A (en) Bright triplet lens
JP2003005070A (en) Zoom lens
JPH11211985A (en) Zoom lens
JPH08286110A (en) Zoom lens of high power
JP3744042B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term