JPH05141933A - Three-dimensional shape measuring device - Google Patents

Three-dimensional shape measuring device

Info

Publication number
JPH05141933A
JPH05141933A JP30332491A JP30332491A JPH05141933A JP H05141933 A JPH05141933 A JP H05141933A JP 30332491 A JP30332491 A JP 30332491A JP 30332491 A JP30332491 A JP 30332491A JP H05141933 A JPH05141933 A JP H05141933A
Authority
JP
Japan
Prior art keywords
light
measurement target
incident
beam splitter
focus position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30332491A
Other languages
Japanese (ja)
Inventor
Yoshihisa Imai
義久 今井
Hideo Hirukawa
英男 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP30332491A priority Critical patent/JPH05141933A/en
Publication of JPH05141933A publication Critical patent/JPH05141933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a device having high precision and high reliability by detecting the focal point position with a laser interferometer, and obtaining the inclination at the focal point position with a position detecting element. CONSTITUTION:The light transmitting a beam splitter 2, a polarization beam splitter 4, and a 1/4-wavelength plate 5 in sequence is condensed on a measured object 7. The reflected light from the measured object 7 is reflected on the polarization beam splitter 4 and fed to a half-mirror 12. Part of the light from the measured object 7 transmitting the half-mirror 12 is fed to a position detecting element 13, and the inclination at the focal point position on the measured object 7 is measured from the position of the incident light. A signal processing device 11 determines the shape of the measured object 7, and the three-dimensional shape of the measured object 7 is determined with higher precision from the inclination at the focal point position on the measured object 7 outputted from the position detecting element 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光の干渉を利用
して、物体の表面形状などを測定する3次元形状測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring apparatus for measuring the surface shape of an object by utilizing the interference of laser light.

【0002】[0002]

【従来の技術】図3は従来の3次元形状測定装置の一例
を示す構成図である。図3において、レーザ光源1から
出射した光は、ビームスプリッタ2で2つに分岐され
る。一方の光は、ビームスプリッタ2で反射され、参照
ミラー3へ入射されて反射された後、ビームスプリッタ
2を介して、光検出器9へ入射される。他方の光は、ビ
ームスプリッタ2を透過して、偏光ビームスプリッタ
4、1/4波長板5を順次透過して、円偏光となる。こ
の光は、対物レンズ6により測定対象7上に集光され
る。なお、この時、測定対象7上で焦点を結ぶように対
物レンズ6の光軸方向位置を調整する。測定対象7から
の反射光は、対物レンズ6で再びコリメートされ、平行
光になる。なお、測定対象7の面が傾いていても、再び
コリメートされた平行光の光軸は、入射光の光軸と平行
である。測定対象7からの反射によって、円偏光は逆回
りの円偏光となり、1/4波長板5を通る。この光は、
偏光ビームスプリッタ4で反射され、平面ミラー8に入
射される。入射光は、平面ミラー8で反射され、偏光ビ
ームスプリッタ4→1/4波長板5→対物レンズ6を介
して、測定対象7に再び入射され、反射される。反射光
は、対物レンズ6を介して、1/4波長板5を通り、偏
光ビームスプリッタ4を透過する。偏光ビームスプリッ
タ4を透過した光は、ビームスプリッタ2で反射され、
光検出器9に入射され、参照ミラー3からの光と干渉さ
れて、干渉縞の変化を測定され、測定対象7上の焦点の
変化を測定する。測定対象7はステージ10に固定さ
れ、光軸と垂直面内を動かすことによって、焦点位置に
変位を与える。この測定される変位とステージ10の動
きから、信号処理装置11にて、測定対象7の3次元形
状が求められる。
2. Description of the Related Art FIG. 3 is a block diagram showing an example of a conventional three-dimensional shape measuring apparatus. In FIG. 3, the light emitted from the laser light source 1 is split into two by the beam splitter 2. One of the lights is reflected by the beam splitter 2, enters the reference mirror 3 and is reflected, and then enters the photodetector 9 via the beam splitter 2. The other light is transmitted through the beam splitter 2, is sequentially transmitted through the polarization beam splitter 4 and the quarter wavelength plate 5, and is circularly polarized. This light is condensed on the measurement target 7 by the objective lens 6. At this time, the position of the objective lens 6 in the optical axis direction is adjusted so as to focus on the measurement target 7. The reflected light from the measurement target 7 is collimated again by the objective lens 6 and becomes parallel light. Even if the surface of the measurement target 7 is inclined, the optical axis of the collimated parallel light is parallel to the optical axis of the incident light. Due to the reflection from the measurement target 7, the circularly polarized light becomes reverse circularly polarized light and passes through the quarter-wave plate 5. This light is
It is reflected by the polarization beam splitter 4 and is incident on the plane mirror 8. The incident light is reflected by the plane mirror 8, is again incident on the measurement target 7 via the polarization beam splitter 4 → the quarter wavelength plate 5 → the objective lens 6, and is reflected. The reflected light passes through the quarter-wave plate 5 via the objective lens 6 and passes through the polarization beam splitter 4. The light transmitted through the polarization beam splitter 4 is reflected by the beam splitter 2,
The light is incident on the photodetector 9, interferes with the light from the reference mirror 3, changes in interference fringes are measured, and changes in the focus on the measurement target 7 are measured. The measurement target 7 is fixed to the stage 10 and moved in a plane perpendicular to the optical axis to give a displacement to the focal position. From the measured displacement and the movement of the stage 10, the signal processing device 11 obtains the three-dimensional shape of the measurement target 7.

【0003】しかしながら、上記従来技術に示す3次元
形状測定装置において、光検出器9上で検出される干渉
縞を測定することで、測定対象7上での焦点位置を求め
ることはできるが、測定対象7上の焦点位置での傾きを
同時に求めようとすると、3点以上の位置を測定しない
と求められないため、装置の測定精度を向上させる上で
の限界があった。
However, in the three-dimensional shape measuring apparatus shown in the above-mentioned prior art, the focus position on the measuring object 7 can be obtained by measuring the interference fringes detected on the photodetector 9, but the measurement is performed. There is a limit in improving the measurement accuracy of the apparatus because the inclination at the focal position on the target 7 is to be obtained at the same time, since it cannot be obtained unless the positions of three or more points are measured.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題を踏まえて成されたものであり、レーザ干渉計
による焦点位置検出と同時に、位置検出素子を用いて焦
点位置での傾きも求めることにより、高精度で信頼性の
高い3次元形状測定装置を提供することを目的としたも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and at the same time as the focus position detection by the laser interferometer, the tilt at the focus position is also detected by using the position detection element. It is an object of the present invention to provide a highly accurate and highly reliable three-dimensional shape measuring apparatus by seeking.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、光ビームを測定対象面と基準面に照
射し、これらの反射光の位相差から前記測定対象の形状
を求める形状測定装置において、レーザ光源と、このレ
ーザ光源の出射光を2つに分岐する光学部品と、この光
学部品で分岐された一方の光を前記測定対象に集光させ
るための対物レンズと、前記測定対象からの第1の反射
光が前記対物レンズを介して入射される偏光ビームスプ
リッタおよび1/4波長板からなる光アイソレータと、
この光アイソレータに入射された光を再び前記対物レン
ズを介して前記測定対象へ入射させると共に、入射光の
一部を透過させるハーフミラーと、前記光学部品で分岐
された他方の光を反射する参照ミラーと、この参照ミラ
ーからの反射光と前記測定対象からの第2の反射光とを
前記光学部品を介して干渉させ、その干渉縞から前記測
定対象上の焦点位置の変化を検出する光検出器と、前記
ハーフミラーを透過した光が入射され、その光の位置か
ら前記測定対象上の焦点位置での傾きを検出する位置検
出素子と、前記測定対象を光軸に対して垂直方向に移動
させ、前記測定対象上の焦点位置に変位を与えるステー
ジと、このステージからの変位出力と前記光検出器から
出力される焦点位置変化と前記位置検出素子から出力さ
れる焦点位置での傾きから前記測定対象の形状を求めて
表示する信号処理装置とを備えた構成としたことを特徴
とするものである。
The structure of the present invention for solving the above-mentioned problems is to irradiate a light beam on a measurement object surface and a reference surface, and obtain the shape of the measurement object from the phase difference between the reflected lights. In the shape measuring apparatus, a laser light source, an optical component that splits the light emitted from the laser light source into two, an objective lens that focuses one of the light split by the optical component on the measurement target, and An optical isolator comprising a polarization beam splitter and a 1/4 wavelength plate on which first reflected light from a measurement target is incident via the objective lens;
A reference that causes the light that has entered the optical isolator to enter the measurement target again via the objective lens, and that reflects the other light branched by the optical component and a half mirror that transmits part of the incident light. Light detection for causing a mirror, reflected light from the reference mirror and second reflected light from the measurement target to interfere with each other through the optical component, and detecting a change in the focal position on the measurement target from the interference fringes. And a position detection element that receives the light transmitted through the half mirror and detects the tilt at the focus position on the measurement target from the position of the light, and moves the measurement target in the direction perpendicular to the optical axis. And a stage for displacing the focus position on the measurement target, a displacement output from the stage, a change in the focus position output from the photodetector, and a focus position output from the position detection element. Is characterized in that it has a structure in which a signal processing device for determining and displaying the shape of the measurement target from the gas.

【0006】[0006]

【作用】本発明によれば、レーザの干渉を用いた3次元
形状測定装置に位置検出素子を設けて、測定対象上の焦
点位置だけではなく、焦点位置での傾きも同時に検出で
きるような構成としている。したがって、装置の測定精
度をさらに向上できる。
According to the present invention, the three-dimensional shape measuring apparatus using laser interference is provided with the position detecting element so that not only the focus position on the measurement object but also the tilt at the focus position can be detected at the same time. I am trying. Therefore, the measurement accuracy of the device can be further improved.

【0007】[0007]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の3次元形状測定装置の一実施例を示す構成
図である。なお、図1において図3と同一要素には同一
符号を付して重複する説明は省略する。図1において、
12は測定対象7からの第1の反射光を再び測定対象に
入射させると共に、入射光の一部を透過させるためのハ
ーフミラーである。13はハーフミラー12を透過した
光が入射され、その光の位置から測定対象7上の焦点位
置での傾きを検出する位置検出素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a three-dimensional shape measuring apparatus of the present invention. In FIG. 1, the same elements as those of FIG. In FIG.
Reference numeral 12 denotes a half mirror for allowing the first reflected light from the measurement target 7 to be incident on the measurement target again and transmitting a part of the incident light. Reference numeral 13 denotes a position detection element that receives the light transmitted through the half mirror 12 and detects the tilt at the focus position on the measurement target 7 from the position of the light.

【0008】このような構成において、レーザ光源1か
ら出射したレーザ光は、ビームスプリッタ2で2つに分
岐される。一方の光は、ビームスプリッタ2で反射さ
れ、参照ミラー3へ入射されて反射された後、再びビー
ムスプリッタ2を介して、光検出器9に入射される。他
方の光は、ビームスプリッタ2を透過して、偏光ビーム
スプリッタ4、1/4波長板5を順次透過して、円偏光
となる。この光は、対物レンズ6により測定対象7上に
集光される。なお、この時、測定対象7上で焦点を結ぶ
ように対物レンズ6の光軸方向位置を調整する。測定対
象7からの反射光は、対物レンズ6で再びコリメートさ
れ、平行光になる。なお、測定対象の面が傾いていて
も、再びコリメートされた平行光の光軸は、入射光の光
軸と平行である。測定対象7からの反射によって、円偏
光は逆回りの円偏光となり、1/4波長板5を再び通
る。この光は、偏光ビームスプリッタ4で反射され、ハ
ーフミラ−12に入射される。入射光は、ハーフミラー
12で、その一部が透過されるが残りの光は反射され、
偏光ビームスプリッタ4→1/4波長板5→対物レンズ
6を介して、測定対象7に再び入射され、反射される。
反射光は、対物レンズ6を介して1/4波長板5、偏光
ビームスプリッタ4を順次透過する。偏光ビームスプリ
ッタ4を透過した光は、ビームスプリッタ2で反射さ
れ、光検出器9に入射され、参照ミラー3からの光と干
渉されて、干渉縞の変化を測定され、測定対象7上の焦
点の位置の変化を測定する。
In such a structure, the laser light emitted from the laser light source 1 is split into two by the beam splitter 2. One of the lights is reflected by the beam splitter 2, enters the reference mirror 3 and is reflected, and then enters the photodetector 9 via the beam splitter 2 again. The other light is transmitted through the beam splitter 2, is sequentially transmitted through the polarization beam splitter 4 and the quarter wavelength plate 5, and is circularly polarized. This light is condensed on the measurement target 7 by the objective lens 6. At this time, the position of the objective lens 6 in the optical axis direction is adjusted so as to focus on the measurement target 7. The reflected light from the measurement target 7 is collimated again by the objective lens 6 and becomes parallel light. Even if the surface to be measured is inclined, the optical axis of the collimated parallel light is parallel to the optical axis of the incident light. Due to the reflection from the measurement target 7, the circularly polarized light becomes the reverse circularly polarized light, and passes through the quarter wavelength plate 5 again. This light is reflected by the polarization beam splitter 4 and is incident on the half mirror-12. The incident light is partially transmitted by the half mirror 12, but the remaining light is reflected,
The polarized beam splitter 4 → 1/4 wavelength plate 5 → objective lens 6 is incident again on the measurement target 7 and reflected.
The reflected light is sequentially transmitted through the quarter-wave plate 5 and the polarization beam splitter 4 via the objective lens 6. The light transmitted through the polarization beam splitter 4 is reflected by the beam splitter 2, enters the photodetector 9, interferes with the light from the reference mirror 3, the change in the interference fringes is measured, and the focus on the measurement target 7 is measured. Measure the change in position.

【0009】また、ハーフミラー12を透過した測定対
象7からの光の一部は、位置検出素子13に入射され、
その入射光の位置から測定対象7上の焦点位置での傾き
が測定される。ここで、位置検出素子13によって、測
定対象7の傾きを求めるためには、図2に示すように、
測定対象7から位置検出素子13までの距離をL、位置
検出素子13上での光軸からのずれをDとすれば、測定
対象7を傾き角θとして、 tan2θ=D/L が成り立つため、 θ=(1/2)tan-1D/L から、傾き角θが求められる。
Further, a part of the light from the object 7 to be measured which has passed through the half mirror 12 is incident on the position detecting element 13,
The tilt at the focus position on the measurement target 7 is measured from the position of the incident light. Here, in order to obtain the inclination of the measurement target 7 by the position detection element 13, as shown in FIG.
Assuming that the distance from the measurement target 7 to the position detection element 13 is L and the deviation from the optical axis on the position detection element 13 is D, the measurement target 7 is an inclination angle θ, and tan2θ = D / L holds. The tilt angle θ is obtained from θ = (½) tan −1 D / L.

【0010】また、測定対象7は、ステージ10に固定
され、光軸と垂直面内を動かすことによって、焦点位置
に変位を与える。この測定される変位とステージ10の
動きから、信号処理装置11にて、測定対象7の3次元
形状が求められると共に、位置検出素子13から出力さ
れる測定対象7上の焦点位置での傾きから、測定対象7
の3次元形状がより高精度に求められる。
The object 7 to be measured is fixed to the stage 10 and moved in a plane perpendicular to the optical axis to give a displacement to the focal position. From the measured displacement and the movement of the stage 10, the signal processing device 11 obtains the three-dimensional shape of the measurement target 7 and from the tilt at the focus position on the measurement target 7 output from the position detection element 13. , Measurement target 7
3D shape is required with higher accuracy.

【0011】なお、図示にての説明は省略するが、上記
実施例において、オートフォーカス機構を設け、対物レ
ンズ6を動かして、常に測定対象7上に焦点を結ばせる
構成とすることにより、横分解能を上げることができ
る。
Although not shown in the drawings, in the above embodiment, the autofocus mechanism is provided and the objective lens 6 is moved to always focus on the object 7 to be measured. The resolution can be increased.

【0012】[0012]

【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、レーザの干渉を用いた3次元形
状測定装置に位置検出素子を設けた構成とすることによ
り、測定対象上の焦点の位置だけではなく、測定対象上
の焦点位置での傾きも同時に検出することができるた
め、装置の測定精度をさらに向上できると共に信頼性の
高い3次元形状測定装置を実現できる。
As described above in detail with reference to the embodiments, according to the present invention, a three-dimensional shape measuring apparatus using laser interference is provided with a position detecting element, so that the object to be measured can be measured. Since not only the position of the upper focus but also the tilt at the focus position on the measurement target can be detected at the same time, the measurement accuracy of the device can be further improved and a highly reliable three-dimensional shape measuring device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の3次元形状測定装置の一実施例を示す
構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a three-dimensional shape measuring apparatus of the present invention.

【図2】図1装置の動作を説明するための図である。FIG. 2 is a diagram for explaining the operation of the device in FIG.

【図3】3次元形状測定装置の従来例である。FIG. 3 is a conventional example of a three-dimensional shape measuring apparatus.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 ビームスプリッタ 3 参照ミラー 4 偏光ビームスプリッタ 5 1/4波長板 6 対物レンズ 7 測定対象 9 光検出器 10 ステージ 11 信号処理装置 12 ハーフミラー 13 位置検出素子 1 Laser Light Source 2 Beam Splitter 3 Reference Mirror 4 Polarizing Beam Splitter 5 1/4 Wave Plate 6 Objective Lens 7 Measurement Target 9 Photo Detector 10 Stage 11 Signal Processing Device 12 Half Mirror 13 Position Detection Element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを測定対象面と基準面に照射
し、これらの反射光の位相差から前記測定対象の形状を
求める3次元形状測定装置において、 レーザ光源と、 このレーザ光源の出射光を2つに分岐する光学部品と、 この光学部品で分岐された一方の光を前記測定対象に集
光させるための対物レンズと、 前記測定対象からの第1の反射光が前記対物レンズを介
して入射される偏光ビームスプリッタおよび1/4波長
板からなる光アイソレータと、 この光アイソレータに入射された光を再び前記対物レン
ズを介して前記測定対象へ入射させると共に、入射光の
一部を透過させるハーフミラーと、 前記光学部品で分岐された他方の光を反射する参照ミラ
ーと、 この参照ミラーからの反射光と前記測定対象からの第2
の反射光とを前記光学部品を介して干渉させ、その干渉
縞から前記測定対象上の焦点位置の変化を検出する光検
出器と、 前記ハーフミラーを透過した光が入射され、その光の位
置から前記測定対象上の焦点位置での傾きを検出する位
置検出素子と、 前記測定対象を光軸に対して垂直方向に移動させ、前記
測定対象上の焦点位置に変位を与えるステージと、 このステージからの変位出力と前記光検出器から出力さ
れる焦点位置変化と前記位置検出素子から出力される焦
点位置での傾きから前記測定対象の形状を求めて表示す
る信号処理装置とを備えた構成としたことを特徴とする
3次元形状測定装置。
1. A three-dimensional shape measuring apparatus for irradiating a light beam on a surface to be measured and a reference surface, and determining the shape of the object to be measured from the phase difference between the reflected light, a laser light source, and light emitted from the laser light source. An optical component for branching the light into two, an objective lens for converging one of the lights branched by the optical component on the measurement target, and a first reflected light from the measurement target via the objective lens. An optical isolator consisting of a polarization beam splitter and a quarter-wave plate that are incident as an incident light, and the light that is incident on this optical isolator is incident on the measurement target again through the objective lens, and part of the incident light is transmitted. A half mirror, a reference mirror that reflects the other light branched by the optical component, a reflected light from the reference mirror, and a second light from the measurement target.
The reflected light of the interference through the optical component, a photodetector for detecting the change of the focus position on the measurement object from the interference fringes, the light transmitted through the half mirror is incident, the position of the light A position detecting element for detecting an inclination at a focus position on the measurement target from the stage, a stage for moving the measurement target in the direction perpendicular to the optical axis, and a stage for displacing the focus position on the measurement target; And a signal processing device that obtains and displays the shape of the measurement target from the displacement output from the device, the change in the focus position output from the photodetector, and the tilt at the focus position output from the position detection element, A three-dimensional shape measuring device characterized in that
JP30332491A 1991-11-19 1991-11-19 Three-dimensional shape measuring device Pending JPH05141933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30332491A JPH05141933A (en) 1991-11-19 1991-11-19 Three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30332491A JPH05141933A (en) 1991-11-19 1991-11-19 Three-dimensional shape measuring device

Publications (1)

Publication Number Publication Date
JPH05141933A true JPH05141933A (en) 1993-06-08

Family

ID=17919605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30332491A Pending JPH05141933A (en) 1991-11-19 1991-11-19 Three-dimensional shape measuring device

Country Status (1)

Country Link
JP (1) JPH05141933A (en)

Similar Documents

Publication Publication Date Title
US7130056B2 (en) System and method of using a side-mounted interferometer to acquire position information
CN1916561A (en) Interferometer for measuring perpendicular translations
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
US4776699A (en) Optical measuring device
KR20050072340A (en) Displacement, yaw and pitch measuring method and measuring apparatus therefor
US5633716A (en) Self-aligning retroreflector target carrier
JPS5979104A (en) Optical device
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JP2002005617A (en) Optical measurement device
JPH05141933A (en) Three-dimensional shape measuring device
JP2823112B2 (en) Rangefinder
GB2107079A (en) Improvements in or relating to interferometers
JPH0510733A (en) Three-dimensional shape measuring apparatus
JP2591143B2 (en) 3D shape measuring device
JPH0754802Y2 (en) Contact type profilometer
JP2808713B2 (en) Optical micro displacement measuring device
JP3045567B2 (en) Moving object position measurement device
JP2625209B2 (en) Optical micro displacement measuring device
JPH09126712A (en) Laser length measuring machine
JP3517506B2 (en) Optical displacement measuring device
JPH0599612A (en) Laser interferometer
JPH02300618A (en) Three-dimensional shape measuring instrument
JPH06109435A (en) Surface displacement meter
JPH0560558A (en) Optical micro displacement measuring apparatus
JPH06185977A (en) Gauge interferometer