JPH05140694A - Ferritic dispersion strengthened type heat resistant alloy and its manufacture - Google Patents

Ferritic dispersion strengthened type heat resistant alloy and its manufacture

Info

Publication number
JPH05140694A
JPH05140694A JP3326981A JP32698191A JPH05140694A JP H05140694 A JPH05140694 A JP H05140694A JP 3326981 A JP3326981 A JP 3326981A JP 32698191 A JP32698191 A JP 32698191A JP H05140694 A JPH05140694 A JP H05140694A
Authority
JP
Japan
Prior art keywords
powder
alloy
oxide
raw material
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3326981A
Other languages
Japanese (ja)
Inventor
Toshio Nishida
俊夫 西田
Masayuki Fujiwara
優行 藤原
Hiroyuki Uchida
博幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3326981A priority Critical patent/JPH05140694A/en
Publication of JPH05140694A publication Critical patent/JPH05140694A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a ferritic dispersion strengthened type heat resistant alloy in which fine multiple oxides of Ti and Y are uniformly dispersed and having high strength and less anisotropy in strength by adding Ti and Y to the powder of Fe or an Fe alloy in a state of nonoxidized powder and mechanically alloying them in an oxidizing state. CONSTITUTION:A powdery raw material obtd. by mixing the powder of Y or an intermetallic compound of Y to the powder of an Fe-Ti alloy essentially consisting of Fe, a powder raw material obtd. by mixing Ti and Y respectively in the state of the powder of metals or intermetallic compounds with the powder of an Fe-Y alloy essentially consisting of Fe and powdery raw material of an Fe-Ti-Y alloy essentially consisting of Fe or the like are mechanically alloyed in an atmosphere of an O2 gas. Or, a powdery raw material obtd. by mixing Y in the state of the powder of a metal or an intermetallic compound and a Ti oxide with the powder of an Fe-Y alloy or a powdery raw material obtd. by mixing the powder of a Ti oxide with the powder of an Fe-Y alloy is mechanically alloyed in an atmosphere of an inert gas. An Fe series heat resistant alloy in which the fine grains of Y2O3-2TiO2 are uniformly dispersed and having high strength can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温強度に優れ、特に
高速炉燃料被覆管材や高温装置用部材に最適なフェライ
ト系分散強化型耐熱合金、およびその様な耐熱合金を製
造する為の方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a ferritic dispersion strengthened heat-resistant alloy which is excellent in high-temperature strength and is particularly suitable for fast reactor fuel clad pipes and members for high-temperature equipment, and a method for producing such heat-resistant alloys. It is about.

【0002】[0002]

【従来の技術】セラミックスの様な硬い微粒子を金属マ
トリックス中に強化材として分散させた金属複合材料
は、分散強化型合金と呼ばれている。Al−Al23
系分散強化型合金(SAP)が発表されて以来、現在ま
で金属マトリックスと分散粒子の様々な組合せについて
種々の角度から研究されている。
2. Description of the Related Art A metal composite material in which hard particles such as ceramics are dispersed as a reinforcing material in a metal matrix is called a dispersion strengthening alloy. Al-Al 2 O 3
Since the introduction of system dispersion strengthened alloys (SAPs), various combinations of metal matrices and dispersed particles have been studied to date from different angles.

【0003】その研究成果の一つとして、分散強化型合
金の新しい製法である機械的合金化処理の方法が開発さ
れ、この方法で製造された酸化物分散強化型耐熱合金は
ODS(Oxide Dispersion Strengthened Super Alloy)
と略称され、非常に優れた高温強さを示すことが知られ
ている。
As one of the research results, a method of mechanical alloying treatment, which is a new method for producing a dispersion-strengthened alloy, has been developed. Super Alloy)
It is known as abbreviated as "," and exhibits excellent high temperature strength.

【0004】酸化物分散強化型耐熱合金(以下、単に耐
熱合金と呼ぶことがある)は、分散粒子の大きさと粒子
間距離が小さい程機械的性質が向上すると言われてい
る。従って、金属マトリックス中にいかにして分散粒子
を均一微細に分散させるかという点を中心に研究が進め
られているのが実情である。
It is said that the oxide dispersion strengthened heat-resistant alloy (hereinafter sometimes simply referred to as heat-resistant alloy) has improved mechanical properties as the size of dispersed particles and the distance between particles are smaller. Therefore, the actual situation is that research is being conducted mainly on how to disperse dispersed particles uniformly and finely in a metal matrix.

【0005】[0005]

【発明が解決しようとする課題】ところで耐熱合金の製
造方法としては、例えばNiやFeを主体とする金属マ
トリックス形成粉末と、微細なY23 粉末を混合して
原料粉末とし、該原料粉末に機械的合金化処理を施して
23 粒子を金属マトリックス中に分散させるのが一
般的である。
As a method for producing a heat-resistant alloy, for example, a metal matrix-forming powder mainly composed of Ni or Fe and a fine Y 2 O 3 powder are mixed into a raw material powder, and the raw material powder is prepared. It is common to subject the Y 2 O 3 particles to a mechanical matrix to disperse the Y 2 O 3 particles in the metal matrix.

【0006】しかしながらこれまでの方法によって得ら
れた耐熱合金では、Y23 微粒子が均一に分散してい
るかの様に言われているが、電子顕微鏡等によって子細
に分散状態を観察してみると、実際には均一に分散して
おらず層状に分散している。この様な事態が生じるの
は、機械的合金化処理の際に、金属粉末が鋼球によって
潰され、その表面にY23微粒子が付着し、更に別の
金属粉末と一緒に潰される過程を繰り返し、Y23
子が層状に分布していくものと考えられている。
However, it is said that the Y 2 O 3 fine particles are uniformly dispersed in the heat-resistant alloy obtained by the conventional method, but the finely dispersed state is observed by an electron microscope or the like. And, actually, they are not uniformly dispersed but dispersed in layers. Such a situation occurs when the metal powder is crushed by the steel balls during the mechanical alloying treatment, Y 2 O 3 fine particles adhere to the surface thereof, and the metal powder is crushed together with another metal powder. It is considered that Y 2 O 3 particles are distributed in layers by repeating the above.

【0007】上記の様な耐熱合金では、ある一定の方向
に対する強度は高いが別の方向に対する強度が低くなる
傾向が見られ、この傾向はクリープ強度において顕著に
観測される。この様な傾向は被覆管の様なパイプ状のも
のでも当然観測され、例えばパイプの軸方向の応力に対
するクリープ強度は高いが、内圧に対するクリープ強度
は低いという様な強度上の異方性が認められる。こうし
た特性を有する耐熱合金では高速炉の被覆管の様に高温
で内圧の加わる部分に用いることは到底できない。
In the heat-resistant alloy as described above, the strength in a certain direction is high, but the strength in another direction tends to be low, and this tendency is remarkably observed in the creep strength. This tendency is naturally observed even in the case of a pipe such as a cladding tube. For example, an anisotropy of strength is recognized such that the creep strength with respect to the axial stress of the pipe is high, but the creep strength with respect to the internal pressure is low. Be done. A heat-resistant alloy having such characteristics cannot be used in a portion to which internal pressure is applied at high temperature like a cladding tube of a fast reactor.

【0008】本発明はこうした技術背景のもとになされ
たものであって、その目的は、酸化物の金属マトリック
ス中への均一分散を図り、高強度でしかも強度の異方性
を低減したフェライト系分散強化型耐熱合金、およびそ
れを製造する為の方法を提供することにある。
The present invention has been made based on such a technical background, and an object thereof is to obtain a ferrite having a high strength and a reduced anisotropy of strength, which is intended to uniformly disperse an oxide in a metal matrix. Disclosed is a dispersion-strengthened heat-resistant alloy, and a method for producing the same.

【0009】[0009]

【課題を解決する為の手段】上記目的を達成し得た本発
明とは、下記(I) 〜(IV)のいずれかの粉末を原料粉末
とし、該原料粉末を酸素ガスの存在下に機械的合金化処
理してFeマトリックス中にTiとYの複合酸化物を形
成する工程を含む点に要旨を有するフェライト系分散強
化型耐熱合金の製造方法である。 (I) Feを主体とし、これにTiを合金化した粉末と、
金属Y若しくはYの金属間化合物の粉末を混合した粉末 (II)Fe粉に、金属Ti若しくはTiの金属間化合物の
粉末と、金属Y若しくはYの金属間化合物の粉末を混合
した粉末 (III) Feを主体とし、これにYを合金化した粉末と、
金属Ti若しくはTiの金属間化合物の粉末を混合した
粉末 (IV)Feを主体とし、これにTiおよびYを合金化した
粉末 また本発明は下記(V) 〜(VI)のいずれかの原料粉末に、
少なくともTi酸化物を含む酸化物粉末を酸素供給源と
して混合し、不活性雰囲気下に機械的合金化処理してF
eマトリックス中にTiとYの複合酸化物を形成する工
程を含む点にも要旨を有するフェライト系分散強化型耐
熱合金の製造方法である。 (V) Fe粉に、金属Y若しくはYの金属間化合物の粉末
を混合した粉末 (VI)Feを主体とし、Yを合金化した粉末
Means for Solving the Problems The present invention capable of achieving the above-mentioned object means that any one of the following powders (I) to (IV) is used as a raw material powder, and the raw material powder is machined in the presence of oxygen gas. The present invention is a method for producing a ferrite dispersion-strengthened heat-resistant alloy having the point of including a step of forming a complex oxide of Ti and Y in a Fe matrix by performing a dynamic alloying treatment. (I) Fe-based powder containing Ti as an alloy, and
Powder (II) Fe powder mixed with powder of metal Y or intermetallic compound of Y (Y) Powder mixed with powder of metal Ti or intermetallic compound of Ti and powder of metal Y or intermetallic compound of Y (III) A powder mainly composed of Fe and alloyed with Y,
Powder of metal Ti or powder of intermetallic compound of Ti (IV) Powder mainly composed of Fe and alloyed with Ti and Y. Further, the present invention is a raw material powder of any one of (V) to (VI) below. To
An oxide powder containing at least Ti oxide is mixed as an oxygen supply source, and mechanical alloying treatment is performed in an inert atmosphere to obtain F
The method for producing a ferrite dispersion-strengthened heat-resistant alloy is also characterized in that it includes a step of forming a composite oxide of Ti and Y in an e-matrix. (V) Fe powder mixed with powder of metal Y or Y intermetallic compound (VI) Powder mainly composed of Fe and alloyed with Y

【0010】更に本発明は上記(I) 〜(IV)の原料粉末を
用いて、少なくともTi酸化物を含む酸化物粉末の共存
下に行うこともできる。また上記各製造方法によれば、
Feマトリックス中にYおよびTiの複合酸化物粒子が
均一に分散しており、且つ該複合酸化物粒子の平均粒径
が 0.1μm以下である様なフェライト系分散強化型耐熱
合金が得られる。
Further, the present invention can be carried out by using the raw material powders of the above (I) to (IV) in the coexistence of oxide powder containing at least Ti oxide. Further, according to the above manufacturing methods,
A ferrite-based dispersion-strengthened heat-resistant alloy in which the composite oxide particles of Y and Ti are uniformly dispersed in the Fe matrix, and the average particle diameter of the composite oxide particles is 0.1 μm or less is obtained.

【0011】[0011]

【作用】本発明者らは、Feマトリックス中に分散粉子
を均一に分散させる手段について様々な角度から検討し
た。そしてまず、Y,TiおよびOは機械的合金化処理
中に相互に反応して複合酸化物を形成することに着目し
た。そしてYをはじめからY23 の形で機械的に分散
させるのではなく、少なくともYを酸化物でない形(金
属Y若しくはYの金属間化合物)で添加しておき、機械
的合金化処理の際に酸素の存在によってTiとYの複合
酸化物を形成すれば該複合酸化物の均一分散が図れ、高
強度でしかも強度の異方性を低減した分散強化型耐熱合
金が得られることを見出し、本発明を完成した。
The present inventors have examined means for uniformly dispersing dispersed particles in the Fe matrix from various angles. And firstly, attention was paid to the fact that Y, Ti and O react with each other during the mechanical alloying treatment to form a complex oxide. Then, Y is not mechanically dispersed in the form of Y 2 O 3 from the beginning, but at least Y is added in a form that is not an oxide (metal Y or an intermetallic compound of Y), and the mechanical alloying treatment is performed. It has been found that when a complex oxide of Ti and Y is formed in the presence of oxygen, the complex oxide can be uniformly dispersed and a dispersion-strengthened heat-resistant alloy having high strength and reduced strength anisotropy can be obtained. The present invention has been completed.

【0012】本発明で用いる原料粉末は、例えば下記に
示す様に様々なものが挙げられる。 (I) Feを主体とし、これにTiを合金化した粉末と、
金属Y若しくはYの金属間化合物の粉末を混合した粉末 (II)Fe粉に、金属Ti若しくはTiの金属間化合物の
粉末と、金属Y若しくはYの金属間化合物の粉末を混合
した粉末 (III) Feを主体とし、これにYを合金化した粉末と、
金属Ti若しくはTiの金属間化合物の粉末を混合した
粉末 (IV)Feを主体とし、これにTiおよびYを合金化した
粉末
The raw material powder used in the present invention includes various powders as shown below. (I) Fe-based powder containing Ti as an alloy, and
Powder (II) Fe powder mixed with powder of metal Y or intermetallic compound of Y (Y) Powder mixed with powder of metal Ti or intermetallic compound of Ti and powder of metal Y or intermetallic compound of Y (III) A powder mainly composed of Fe and alloyed with Y,
Powder composed of a mixture of powder of metal Ti or an intermetallic compound of Ti (IV) Powder mainly composed of Fe and alloyed with Ti and Y

【0013】上記の様な各形態の原料粉末を用い、酸素
ガスの存在下で機械的合金化処理を行なうと、TiとY
の微細な複合酸化物がFeマトリックス中に均一分散さ
れる。またTiとYの複合酸化物が分散されたものは、
Yの酸化物(Y23 )のみが分散されたものに比べて
強度が大幅に上昇する。更にこの方法によれば、高価な
23 の超微細粉末(平均粒径 200Å以下)を使用し
なくても良いので経済的にも有利である。
Using the raw material powders in the respective forms as described above and performing mechanical alloying treatment in the presence of oxygen gas, Ti and Y can be obtained.
The fine composite oxide of is uniformly dispersed in the Fe matrix. In addition, when the composite oxide of Ti and Y is dispersed,
The strength is significantly increased as compared with the case where only the Y oxide (Y 2 O 3 ) is dispersed. Further, according to this method, it is not necessary to use expensive ultrafine powder of Y 2 O 3 (average particle size of 200Å or less), which is economically advantageous.

【0014】上記説明においては、酸化物形成手段とし
て、機械的合金化処理中の雰囲気または原料粉末中に必
要量の酸素ガスを供給する方法を述べた。一方例えば下
記の様な固体状酸素供給源を使用する方法もある。即
ち、Y酸化物よりも不安定な金属酸化物、例えばTiや
Feの酸化物粉末を酸素供給源とし、該粉末と原料粉末
を混合して不活性雰囲気下で機械的合金化処理をする
と、FeやTiの酸化物が分解し、安定なTiとYの複
合酸化物を形成することが期待される。
In the above description, a method of supplying a required amount of oxygen gas into the atmosphere or the raw material powder during the mechanical alloying process has been described as the oxide forming means. On the other hand, there is also a method of using a solid oxygen supply source as described below. That is, when a metal oxide that is more unstable than Y oxide, for example, an oxide powder of Ti or Fe is used as an oxygen supply source, and the powder and the raw material powder are mixed and mechanical alloying treatment is performed in an inert atmosphere, It is expected that the oxides of Fe and Ti will decompose and form stable composite oxides of Ti and Y.

【0015】ところで酸化物分散型耐熱合金に使用され
るY23 粒子の割合は2%以内とするのが一般的であ
る。即ちY23 量を2%よりも多くすると硬度が高く
なりすぎ、加工が困難となる。従って、複合酸化物を形
成する上で必要なTi量は、全てがYと反応すると仮定
すると2%となる。しかしこの様なことは現実には起り
得ないことであり、Tiの50%程度がYと反応すると考
えられるので、Tiの含有量は4%程度までとするのが
良い。またYは0.05%以上あれば、分散強化効果が発揮
されるので、Tiの含有量は 0.1%程度以上とするのが
よい。但し、Tiの含有量は、例えば酸素供給源として
Ti酸化物を用いる場合は、Ti酸化物に由来するもの
と金属Tiに由来するものの総和として制御すべきであ
る。換言すれば、原料粉末として金属Tiを含まず、或
は少量の金属Tiを含み酸素供給源として添加するTi
酸化物によって合金に必要なTiの総量を確保してもよ
く、この様な態様も本発明に含まれるものである。原料
粉末として金属TiまたはTiの金属間化合物を含まな
いものを用いるときは、例えば下記(V) および(VI)の様
なものが挙げられる。 (V) Fe粉に、金属Y若しくはYの金属間化合物の粉末
を混合した粉末 (VI)Feを主体とし、Yを合金化した粉末 尚、本発明の耐熱合金は、少なくともTiおよびYを含
有するものであるが、その他適当量のCr,W,Mo等
を含有させてもよく、この様な合金も本発明の技術的範
囲に含まれるものである。
Incidentally, the proportion of Y 2 O 3 particles used in the oxide-dispersed heat-resistant alloy is generally within 2%. That is, if the amount of Y 2 O 3 is more than 2%, the hardness becomes too high and the processing becomes difficult. Therefore, the amount of Ti required to form the composite oxide is 2% assuming that all reacts with Y. However, such a thing cannot actually occur, and since it is considered that about 50% of Ti reacts with Y, it is preferable to set the content of Ti to about 4%. If Y is 0.05% or more, the effect of strengthening dispersion is exhibited, so the Ti content is preferably about 0.1% or more. However, the content of Ti should be controlled as the sum of those derived from Ti oxide and those derived from metallic Ti when Ti oxide is used as an oxygen supply source, for example. In other words, Ti that does not contain metallic Ti as a raw material powder or that contains a small amount of metallic Ti and is added as an oxygen supply source.
The total amount of Ti required for the alloy may be secured by the oxide, and such an embodiment is also included in the present invention. When the raw material powder containing no metal Ti or an intermetallic compound of Ti is used, for example, the following (V) and (VI) can be mentioned. (V) Fe powder mixed with powder of metal Y or powder of intermetallic compound of Y (VI) Powder mainly composed of Fe and alloyed with Y. The heat-resistant alloy of the present invention contains at least Ti and Y. However, other suitable amounts of Cr, W, Mo, etc. may be contained, and such alloys are also included in the technical scope of the present invention.

【0016】[0016]

【実施例】【Example】

実施例1 Fe−13%Cr−3%W− 0.5%Ti系の合金粉末に、
0.91%Fe2 Yと 0.8%Fe23 を混ぜて不活性雰囲
気下に機械化合金化処理を行なった。次いで、カプセル
に詰めて脱気,密封し、1150℃で熱間押出しした後、11
50℃で1時間加熱し放冷した。得られた耐熱合金の成分
を表1に示す。
Example 1 Fe-13% Cr-3% W-0.5% Ti alloy powder,
0.91% Fe 2 Y and 0.8% Fe 2 O 3 were mixed and mechanically alloyed in an inert atmosphere. Then, after encapsulating in a capsule, degassing, sealing, and hot extruding at 1150 ° C, 11
The mixture was heated at 50 ° C for 1 hour and allowed to cool. The components of the obtained heat resistant alloy are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】得られた合金について、抽出しプリカ法に
よる電子顕微鏡写真を観察したところ、かなり微細な酸
化物になっているのが分かった。この酸化物粉子の電子
線回折パターンから面間隔を求め、ASTM値と比較し
たところ表2に示す結果が得られた。表2から、微細に
なった酸化物粒子は、YとTiの複合酸化物(Y23
・2TiO2 )になっていることが分かった。
The obtained alloy was extracted and observed by an electron micrograph by the plica method, and it was found that it was a very fine oxide. The interplanar spacing was determined from the electron diffraction pattern of this oxide powder and compared with the ASTM value, and the results shown in Table 2 were obtained. From Table 2, the finely divided oxide particles are the composite oxide of Y and Ti (Y 2 O 3
2 TiO 2 ) was found.

【0019】[0019]

【表2】 [Table 2]

【0020】次に、Fe−12%Cr−2%Mo− 0.9T
i系の合金粉末に、0.25%のY23 粒子を混合して、
上記と同様にして耐熱合金を製造し、Y23 粒子の分
布状態を薄膜の電子顕微鏡観察により観察したところ、
23 粒子密度の高いところが筋の様に見え、均一に
分布していないことが認められた。図1は本発明方法に
よって得られた合金と、従来の耐熱合金(INCO M
A957)のクリープ強度を比較したグラフである。こ
の結果から、本発明に係る合金はクリープ強度の異方性
が低減されているのがよく分かった。
Next, Fe-12% Cr-2% Mo-0.9T
0.25% Y 2 O 3 particles were mixed with the i-based alloy powder,
A heat-resistant alloy was produced in the same manner as above, and the distribution state of Y 2 O 3 particles was observed by observing the thin film with an electron microscope.
It was confirmed that the areas where the Y 2 O 3 particle density was high looked like streaks and were not evenly distributed. FIG. 1 shows an alloy obtained by the method of the present invention and a conventional heat-resistant alloy (INCOM
It is a graph which compared the creep strength of A957). From this result, it was well understood that the anisotropy of creep strength was reduced in the alloy according to the present invention.

【0021】実施例2 Fe−12%Cr−8%Mo− 0.5%Ti系の合金粉末
に、0.91%Fe2 Yと0.50%TiO2 を混ぜて不活性雰
囲気下に機械的合金化処理を行なった。次いで、カプセ
ルに詰めて、脱気,密封し、1150℃で熱間押出しした
後、1100℃で1時間加熱し水冷した。得られた耐熱合金
の成分を表3に示す。
Example 2 Fe-12% Cr-8% Mo-0.5% Ti alloy powder was mixed with 0.91% Fe 2 Y and 0.50% TiO 2 and mechanically alloyed in an inert atmosphere. It was Then, it was filled in a capsule, deaerated, sealed, hot extruded at 1150 ° C., then heated at 1100 ° C. for 1 hour and cooled with water. Table 3 shows the components of the obtained heat resistant alloy.

【0022】[0022]

【表3】 [Table 3]

【0023】得られた合金について、抽出しプリカ法に
よる電子顕微鏡写真を観察したところ、かなり微細な酸
化物になっているのが分かった。この酸化物粒子の電子
線回折パターンから面間隔を求めASTM値と比較した
ところ、表4に示す結果が得られた。表4から、微細に
なった酸化物粒子は、YとTiの複合酸化物(Y23
・2TiO2 )になっていることが分かった。
When the obtained alloy was extracted and observed by an electron micrograph by the plica method, it was found to be a considerably fine oxide. When the interplanar spacing was determined from the electron diffraction pattern of the oxide particles and compared with the ASTM value, the results shown in Table 4 were obtained. From Table 4, the finely divided oxide particles are the composite oxide of Y and Ti (Y 2 O 3
2 TiO 2 ) was found.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】本発明は以上の様に構成されており、F
eマトリックス中にはじめからY23 の形で添加する
のではなく、YやTiを酸化物でない形で添加してお
き、機械的合金化処理の際に、酸素の存在によってTi
とYの複合酸化物を形成しつつ分散させることによっ
て、該複合酸化物のFeマトリックス中への均一分散が
図れ、高強度でしかも強度の異方性を低減した分散強化
型耐熱合金が得られた。
The present invention is constituted as described above, and F
e Y and Ti are not added in the form of Y 2 O 3 to the matrix from the beginning, but Y and Ti are added in the form of non-oxide, and during the mechanical alloying treatment, due to the presence of oxygen, Ti
By forming and dispersing the composite oxide of Y and Y, the composite oxide can be uniformly dispersed in the Fe matrix, and a dispersion-strengthened heat-resistant alloy having high strength and reduced strength anisotropy can be obtained. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明方法によって得られた耐熱合金
と、従来の耐熱合金(INCOMA957)のクリープ
強度を比較したグラフである。
FIG. 1 is a graph comparing the creep strengths of a heat resistant alloy obtained by the method of the present invention and a conventional heat resistant alloy (INCOMA957).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記(I) 〜(IV)のいずれかの粉末を原
料粉末とし、該原料粉末を酸素ガスの存在下に機械的合
金化処理してFeマトリックス中にTiとYの複合酸化
物を形成する工程を含むことを特徴とするフェライト系
分散強化型耐熱合金の製造方法。 (I) Feを主体とし、これにTiを合金化した粉末と、
金属Y若しくはYの金属間化合物の粉末を混合した粉末 (II)Fe粉に、金属Ti若しくはTiの金属間化合物の
粉末と、金属Y若しくはYの金属間化合物の粉末を混合
した粉末 (III) Feを主体とし、これにYを合金化した粉末と、
金属Ti若しくはTiの金属間化合物の粉末を混合した
粉末 (IV)Feを主体とし、これにTiおよびYを合金化した
粉末
1. A powder of any one of the following (I) to (IV) is used as a raw material powder, and the raw material powder is mechanically alloyed in the presence of oxygen gas to perform a composite oxidation of Ti and Y in a Fe matrix. A method for producing a ferrite-based dispersion-strengthened heat-resistant alloy, comprising the step of forming an object. (I) Fe-based powder containing Ti as an alloy, and
Powder (II) Fe powder mixed with powder of metal Y or intermetallic compound of Y (Y) Powder mixed with powder of metal Ti or intermetallic compound of Ti and powder of metal Y or intermetallic compound of Y (III) A powder mainly composed of Fe and alloyed with Y,
Powder composed of a mixture of powder of metal Ti or an intermetallic compound of Ti (IV) Powder mainly composed of Fe and alloyed with Ti and Y
【請求項2】 下記(V) 〜(VI)のいずれかの原料粉末
に、少なくともTi酸化物を含む酸化物粉末を酸素供給
源として混合し、不活性雰囲気下に機械的合金化処理し
てFeマトリックス中にTiとYの複合酸化物を形成す
る工程を含むことを特徴とするフェライト系分散強化型
耐熱合金の製造方法。 (V) Fe粉に、金属Y若しくはYの金属間化合物の粉末
を混合した粉末 (VI)Feを主体とし、Yを合金化した粉末
2. A raw material powder of any one of the following (V) to (VI) is mixed with an oxide powder containing at least a Ti oxide as an oxygen supply source, and mechanically alloyed in an inert atmosphere. A method for producing a ferrite-based dispersion-strengthened heat-resistant alloy, comprising the step of forming a composite oxide of Ti and Y in an Fe matrix. (V) Fe powder mixed with powder of metal Y or Y intermetallic compound (VI) Powder mainly composed of Fe and alloyed with Y
【請求項3】 請求項1において少なくともTi酸化物
を含む酸化物粉末の共存下に行うことを特徴とするフェ
ライト系分散強化型耐熱合金の製造方法。
3. The method for producing a ferrite dispersion-strengthened heat-resistant alloy as claimed in claim 1, which is carried out in the presence of an oxide powder containing at least a Ti oxide.
【請求項4】 請求項1〜3のいずれかに記載の方法に
よって製造されたものであり、Feマトリックス中にY
とTiの複合酸化物粒子が均一に分散されたものであ
り、且つ該複合酸化物粒子の平均粒径が 0.1μm以下で
あることを特徴とするフェライト系分散強化型耐熱合
金。
4. The Fe matrix produced by the method according to claim 1.
A ferrite-based dispersion-strengthened heat-resistant alloy, wherein the composite oxide particles of Ti and Ti are uniformly dispersed, and the average particle size of the composite oxide particles is 0.1 μm or less.
JP3326981A 1991-11-14 1991-11-14 Ferritic dispersion strengthened type heat resistant alloy and its manufacture Withdrawn JPH05140694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326981A JPH05140694A (en) 1991-11-14 1991-11-14 Ferritic dispersion strengthened type heat resistant alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326981A JPH05140694A (en) 1991-11-14 1991-11-14 Ferritic dispersion strengthened type heat resistant alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH05140694A true JPH05140694A (en) 1993-06-08

Family

ID=18193968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326981A Withdrawn JPH05140694A (en) 1991-11-14 1991-11-14 Ferritic dispersion strengthened type heat resistant alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH05140694A (en)

Similar Documents

Publication Publication Date Title
US20180193916A1 (en) Additive manufacturing method and materials
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
CA2888692C (en) Ti-included oxide dispersion strengthened copper alloy and method for manufacturing dispersed copper
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
US5989491A (en) Oxide dispersion strengthened heat resisting powder metallurgy alloy and process for producing the same
KR101811278B1 (en) Oxide particle dispersed high entropy alloy for heat-resistant materials and method for manufacturing the same
WO2021078885A1 (en) Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
US7297310B1 (en) Manufacturing method for aluminum matrix nanocomposite
JP2001503105A (en) Coated powder and method for producing the same
US3533760A (en) Dispersion strengthened nickel-chromium alloy composition
AT501142B1 (en) X-RAY TUBES WITH A ROSET AGENT COMPOSITE AND A METHOD FOR THE PRODUCTION THEREOF
EP1528112A1 (en) Dispersed oxide reinforced martensitic steel excellent in high temperature strength and method for production thereof
JPH02153063A (en) Making of nitriding-alloy
JPS58193335A (en) Dispersion strengthened type nickel base heat resistant sintered alloy and preparation thereof
JPH05140694A (en) Ferritic dispersion strengthened type heat resistant alloy and its manufacture
JPH02179843A (en) Tool material for hot tube making
JPS60100646A (en) High toughness sintered body of ceramic
JPH02263947A (en) Manufacture of high strength steel containing dispersed carbide
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production
JP2703713B2 (en) Composite powder materials for powder plasma welding
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
US3625673A (en) Preparation of metals and metal alloys
US3695868A (en) Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements
CN117548902A (en) Nickel-based flux-cored wire and preparation method and application thereof
JPH0148321B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204