JP2703713B2 - Composite powder materials for powder plasma welding - Google Patents

Composite powder materials for powder plasma welding

Info

Publication number
JP2703713B2
JP2703713B2 JP5196836A JP19683693A JP2703713B2 JP 2703713 B2 JP2703713 B2 JP 2703713B2 JP 5196836 A JP5196836 A JP 5196836A JP 19683693 A JP19683693 A JP 19683693A JP 2703713 B2 JP2703713 B2 JP 2703713B2
Authority
JP
Japan
Prior art keywords
powder
carbide
welding
plasma welding
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5196836A
Other languages
Japanese (ja)
Other versions
JPH0732189A (en
Inventor
友保孝敏
橋本芳造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5196836A priority Critical patent/JP2703713B2/en
Publication of JPH0732189A publication Critical patent/JPH0732189A/en
Application granted granted Critical
Publication of JP2703713B2 publication Critical patent/JP2703713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、均一で優れた耐摩耗性
を有する肉盛層を得るための粉体プラズマ溶接用炭化物
複合粉末材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbide composite powder material for powder plasma welding for obtaining a cladding layer having uniform and excellent wear resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、鉄系材料の表面に耐摩耗性を与える手段としては、
Fe−Cr系の材料をアーク溶接で肉盛するとか、耐食性
を要求される場合には、Co−Cr−W系のいわゆるステ
ライト合金をガス溶接或いはTIGアーク溶接で肉盛す
るとか、要求される品質と経済性を考慮して様々な手段
が採られている。
2. Description of the Related Art Conventionally, means for imparting wear resistance to the surface of iron-based materials include:
When the Fe-Cr-based material is overlaid by arc welding, or when corrosion resistance is required, the so-called stellite alloy of Co-Cr-W is overlaid by gas welding or TIG arc welding. Various measures are taken in consideration of quality and economy.

【0003】その中で、最近、開発・実用化された肉盛
溶接法として粉体プラズマ溶接があり、 溶接材料としての適用範囲が非常に広い、 溶接材料は粉末であり、自動化が容易、 精密肉盛が可能で、小型部品から大型部材まで被溶接
材としての適用範囲が広い、 と肉盛溶接に適した溶接法であることから、その適用は
拡大方向にある。
Among them, powder plasma welding has recently been developed and put to practical use, and has a very wide range of applications as a welding material. The welding material is powder, which is easy to automate and precise. Since it is possible to build up and has a wide range of applications as welded materials from small parts to large parts, it is a welding method suitable for overlay welding, so its application is expanding.

【0004】特に粉末材料を使用することから、従来の
肉盛溶接では考えられなかったようなセラミックス系材
料も溶接材料として可能なことから、従来検討されなか
った分野にも適用拡大が期待されるところである。
[0004] In particular, since powder materials are used, ceramic materials that could not be considered in conventional overlay welding can be used as welding materials, so that application is expected to be expanded to fields that have not been studied before. By the way.

【0005】しかしながら、現状はというと、W炭化
物、Cr炭化物、Nb炭化物の粉末と、Ni、Co、Fe基
のアトマイズ合金粉末を混合した炭化物−合金混合粉末
材料がごく一部で使用されているにすぎない。
However, at present, carbide-alloy mixed powder materials obtained by mixing W carbide, Cr carbide, and Nb carbide powders and Ni, Co, and Fe-based atomized alloy powders are used only in a small part. It's just

【0006】これは、炭化物材料が粉砕粉で角ばった異
形粉であることから、肉盛金属内部での応力集中が大き
く、耐割れ性に問題があること、また異形炭化物と球状
合金粉末では流動性に差があり、溶接時点での混合比率
の変動が大きく、溶接方向での均一分散に問題があるこ
と、更に炭化物材料と溶融金属との比重差、濡れ性等の
問題から肉盛厚さ方向でなかなか均一に分散しないとい
う問題によるところが大きい。
[0006] This is because the carbide material is a deformed powder having a square shape by pulverized powder, so that stress concentration inside the overlay metal is large and there is a problem in crack resistance. There is a large difference in the mixing ratio at the time of welding, and there is a problem in the uniform dispersion in the welding direction.In addition, the difference in specific gravity between the carbide material and the molten metal, the wettability, etc. This is largely due to the problem that the particles are not uniformly dispersed in the directions.

【0007】本発明は、上記従来技術の問題点を解決し
て、均一で優れた耐摩耗性を有する肉盛層を得るための
粉体プラズマ溶接用炭化物複合粉末材料を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a carbide composite powder material for powder plasma welding for solving the above-mentioned problems of the prior art and obtaining a cladding layer having uniform and excellent wear resistance. Is what you do.

【0008】[0008]

【課題を解決するための手段】本発明者は、粉体プラズ
マ肉盛溶接に適した炭化物複合粉末材料の開発によって
前記課題を解決するべく試みた。その結果、炭化物材料
としては溶接性、均一分散性に優れ、高硬度で高温でも
比較的安定なWとTiの固溶体炭化物に着目し、これに
Ni或いはCoを適量加え、造粒、焼結することによっ
て、前記問題点をクリアできる材料開発に成功した。
The present inventors have attempted to solve the above problems by developing a carbide composite powder material suitable for powder plasma overlay welding. As a result, we focus on solid solution carbides of W and Ti, which are excellent in weldability and uniform dispersibility as a carbide material, are high in hardness, and are relatively stable even at high temperatures, and add an appropriate amount of Ni or Co to this, and granulate and sinter. As a result, the development of a material capable of solving the above-mentioned problems has been successful.

【0009】すなわち、本発明は、必須成分として、1
次粒子の粒径が1〜10μmである(W、Ti)固溶体炭化
物或いは(W、Ti、Ta)固溶体炭化物をTi炭化物に換
算して10〜30%と、Ni及びCoの1種又は2種を1
0〜40%含み、球状に造粒、焼結してなることを特徴
とする粉体プラズマ溶接用複合粉末材料を要旨としてい
る。
[0009] That is, the present invention provides 1
(W, Ti) solid solution carbide or (W, Ti, Ta) solid solution carbide whose primary particles have a particle size of 1 to 10 μm is 10 to 30% in terms of Ti carbide, and one or two of Ni and Co 1
The gist of the present invention is a composite powder material for powder plasma welding, comprising 0 to 40% and granulated and sintered into a spherical shape.

【0010】以下に本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

【作用】[Action]

【0011】本発明のポイントは、1次粒子の粒径が1
0μm以下で、WとTi或いはWとTiとTaの固溶体炭化
物に、Ni或いはCoを炭化物粒子のバインダーとして添
加し、球状に造粒、焼結する点にある。これらの規定理
由を以下に示す。
The point of the present invention is that the particle size of the primary particles is 1
When the thickness is 0 μm or less, Ni or Co is added as a binder of carbide particles to a solid solution carbide of W and Ti or W and Ti and Ta, and granulation and sintering are performed in a spherical shape. The reasons for these provisions are shown below.

【0012】本発明において、(W、Ti)固溶体炭化物
或いは(W、Ti、Ta)固溶体炭化物を必須成分としたの
は、高硬度、高温安定性、溶接性及び均一分散性を考慮
したものであり、常温から800℃付近の高温域での耐
摩耗性を考慮したものである。したがって、補助成分と
しては、これら以外の炭化物、或いは硼化物、酸化物等
セラミック原料を適用添加することも有効である。
In the present invention, the (W, Ti) solid solution carbide or the (W, Ti, Ta) solid solution carbide is used as an essential component in consideration of high hardness, high temperature stability, weldability and uniform dispersibility. Yes, considering the wear resistance in a high temperature range from room temperature to around 800 ° C. Therefore, it is also effective to apply and add other ceramic materials such as carbides, borides and oxides as auxiliary components.

【0013】(W、Ti)固溶体炭化物或いは(W、Ti、
Ta)固溶体炭化物の量をTi炭化物に換算した量とした
のは、Ti炭化物が特性上最も重要な成分であるためで
ある。このTi炭化物換算量が10%未満では耐摩耗性
等の特性向上効果が小さく、また、30%を超えると溶
接性が劣り、粉体プラズマ溶接用として実用的でないた
め、Ti炭化物換算量で10〜30%とする。
(W, Ti) solid solution carbide or (W, Ti,
The reason that the amount of Ta) solid solution carbide is converted to Ti carbide is that Ti carbide is the most important component in characteristics. If the Ti carbide conversion amount is less than 10%, the effect of improving properties such as wear resistance is small, and if it exceeds 30%, the weldability is poor and it is not practical for powder plasma welding. To 30%.

【0014】更に、上記固溶体炭化物の1次粒子(焼結
前の粒子)の大きさの規定も重要である。これらの1次
粒子を1〜10μmとしたのは、限りなく球状に近い粉
末を作るためである。10μmを超えると球状造粒が困
難であり、1μm未満では焼結性が悪くなって製造上の
問題も生じてくる。また1次粒子1μm未満ではいかに
融点の高い炭化物といえども溶接時に容易に溶融し、均
一な炭化物分散が期待できなくなる。
Further, it is also important to define the size of the primary particles of the solid solution carbide (particles before sintering). The reason why these primary particles are set to 1 to 10 μm is to produce an almost spherical powder. If it exceeds 10 μm, spherical granulation is difficult, and if it is less than 1 μm, sinterability deteriorates and a production problem arises. Further, if the primary particles are less than 1 μm, even if the carbide has a high melting point, it is easily melted at the time of welding, and uniform carbide dispersion cannot be expected.

【0015】Ni及びCoの1種又は2種を10〜40%
としたのは、10%未満では、焼結時のバインダー効果
が小さく焼結性が不良となり、結果的に溶接性も悪くな
り、また40%を超えると、焼結時軟化し易く球形状を
保持できなくなるなど製造上の問題が生じるためであ
る。
[0015] One or two of Ni and Co are 10 to 40%
If it is less than 10%, the binder effect at the time of sintering is small and the sinterability is poor, resulting in poor weldability. If it exceeds 40%, it tends to soften at the time of sintering and has a spherical shape. This is because manufacturing problems such as inability to hold the battery occur.

【0016】なお、Ni及びCoはバインダー効果に優れ
ているため、これらの1種又は2種を必須成分とした
が、これ以外の補助成分としてMo、Cr、Fe等を適量
添加することもできる。
Since Ni and Co have an excellent binder effect, one or two of Ni and Co are used as essential components, but Mo, Cr, Fe, etc. may be added in appropriate amounts as other auxiliary components. .

【0017】製品粒径は45〜180μmの範囲が好ま
しい。これは、この範囲が粉末流動性、溶接性、肉盛金
属の炭化物均一分散の観点から最適であることが実験的
に確認したためである。しかし、45μm未満では粉末
の流動性に問題を生じ、また溶接時に1次粒子が溶融し
易く、また180μmを超えると溶接時泡立ち現象が生
じて溶接性を損ねる。
The product particle size is preferably in the range of 45 to 180 μm. This is because it was experimentally confirmed that this range was optimal from the viewpoint of powder flowability, weldability, and uniform dispersion of the metal of the build-up metal. However, if it is less than 45 μm, there is a problem in the fluidity of the powder, and the primary particles are liable to be melted at the time of welding.

【0018】また、本発明の造粒焼結粉末は、組成によ
ってはそのままでも溶接材料として適用できるが、多く
の場合は、既存のCo基又はNi基、或いはFe基の合金
粉末材料と混合して特性向上を図るものである。したが
って、用途に応じた金属系粉末材料を選んで、本発明の
造粒焼結粉末を混合して使用することが可能である。そ
の際、金属系粉末材料の混合比率を10〜90%とした
のは、10%未満では混合の均一性が期待できず、また
90%を超えると混合の不均一性の他に特性向上効果が
小さいためである。
The granulated sintered powder of the present invention can be used as a welding material depending on its composition, but in many cases, it is mixed with an existing Co-based, Ni-based or Fe-based alloy powder material. To improve the characteristics. Therefore, it is possible to select a metal-based powder material according to the application and mix and use the granulated sintered powder of the present invention. At this time, the mixing ratio of the metal-based powder material is set to 10 to 90%. If the mixing ratio is less than 10%, uniformity of mixing cannot be expected. Is small.

【0019】次に本発明の実施例を示す。Next, an embodiment of the present invention will be described.

【実施例】【Example】

【0020】表1に示す造粒焼結粉末を作製した。使用
した固溶体炭化物は、固溶比率(重量%)が70:30の
(W、Ti)C、50:50の(W、Ti)C、及び70:2
0:10の(W、Ti、Ta)Cである。この造粒焼結粉末
を用い、表2に示す溶接材料を粉体プラズマ溶接によ
り、図1に示す試験片の表面に1層2パスで肉盛溶接
し、溶接性、肉盛層の断面組織、耐摩耗性の評価を行っ
た。これらの結果を表2に示す。なお、耐摩耗性は図2
に示す摩耗減量データで評価した。図3に耐摩耗性テス
トの要領を示す。
The granulated sintered powder shown in Table 1 was prepared. The solid solution carbide used had a solid solution ratio (% by weight) of 70:30.
(W, Ti) C, 50:50 (W, Ti) C, and 70: 2
0:10 (W, Ti, Ta) C. Using the granulated sintered powder, the welding materials shown in Table 2 were powder-welded to the surface of the test piece shown in FIG. 1 by powder plasma welding in one layer and two passes. , And abrasion resistance were evaluated. Table 2 shows the results. The wear resistance is shown in FIG.
The evaluation was made based on the data on loss of wear shown in FIG. FIG. 3 shows the procedure of the wear resistance test.

【0021】表2において、試験No.1〜3は本発明例
であり、このうちNo.1及び3は市販のNi−50Cr系
溶接用粉末をそれぞれ50%及び40%混合したもの
で、耐食、耐熱、耐摩耗用途を狙ったものである。いず
れも溶接作業性が良好で溶接部の割れもなく、断面組織
も均一で、図2に示すように耐摩耗性も非常に優れてい
る。
In Table 2, Test Nos. 1 to 3 are examples of the present invention. Among them, Nos. 1 and 3 are samples obtained by mixing 50% and 40% of commercially available Ni-50Cr welding powder, respectively. It is intended for heat and wear resistant applications. In each case, the welding workability is good, there is no crack in the welded portion, the cross-sectional structure is uniform, and as shown in FIG. 2, the wear resistance is very excellent.

【0022】試験No.4(比較例)はNi−50Cr系金属
粉末のみを用いて溶接したもので、耐摩耗性の比較のた
めテストしたものである。
Test No. 4 (comparative example) was welded using only Ni-50Cr-based metal powder and tested for comparison of wear resistance.

【0023】試験No.5(比較例)はW炭化物(粉砕粉)と
Ni−50Cr系金属粉末40%を混合したものであり、
従来の手法による材料である。粉末流動性の差によるも
のと思われるが、作業性が不安定であり、ビード外観か
らも溶接方向の炭化物分散性が悪いことが伺え、一部で
溶接割れ発生した。
Test No. 5 (Comparative Example) is a mixture of W carbide (crushed powder) and 40% of Ni-50Cr-based metal powder.
This is a material obtained by a conventional method. It is thought to be due to the difference in powder fluidity, but the workability was unstable, and the bead appearance indicated that the carbide dispersibility in the welding direction was poor, and welding cracks occurred in some parts.

【0024】試験No.6(比較例)はTi炭化物(粉砕粉)
とNi−50Cr系金属粉末70%を混合したものである
が、Ti炭化物が表面に浮きビードのなじみが悪くなっ
て作業性が悪い。
Test No. 6 (comparative example) was Ti carbide (crushed powder).
And 70% of Ni-50Cr-based metal powder are mixed. However, Ti carbide floats on the surface, the bead does not fit well, and the workability is poor.

【0025】試験No.7(比較例)はNo.3(本発明例)と
同じ組成の造粒焼結粉末であるが、造粒焼結粉末製品の
粒度を75〜250μmと粗目に調整したものであり、
溶接時泡立つような感じとなり、結果としてブローホー
ル欠陥を生じて耐摩耗性も本発明例のレベルから若干劣
る結果となった。
Test No. 7 (Comparative Example) is a granulated sintered powder having the same composition as No. 3 (Example of the present invention), but the particle size of the granulated sintered powder product was coarsely adjusted to 75 to 250 μm. Things,
At the time of welding, it felt like foaming, and as a result, a blow hole defect was generated, and the abrasion resistance was slightly inferior to the level of the present invention.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【発明の効果】以上詳述したように、本発明の粉体プラ
ズマ溶接用炭化物複合粉末材料によれば、均一で優れた
耐摩耗性を有する肉盛層を得ることができる。
As described in detail above, according to the carbide composite powder material for powder plasma welding of the present invention, a build-up layer having uniform and excellent wear resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に使用した試験片の形状を示す図であ
る。
FIG. 1 is a view showing a shape of a test piece used in an example.

【図2】耐摩耗性テストデータを示す図である。FIG. 2 is a diagram showing wear resistance test data.

【図3】耐摩耗性テストの要領を示す図である。FIG. 3 is a diagram showing a procedure of a wear resistance test.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、必須成分とし
て、1次粒子の粒径が1〜10μmである(W、Ti)固溶
体炭化物或いは(W、Ti、Ta)固溶体炭化物をTi炭化
物に換算して10〜30%と、Ni及びCoの1種又は2
種を10〜40%含み、球状に造粒、焼結してなること
を特徴とする粉体プラズマ溶接用複合粉末材料。
1. A (W, Ti) solid solution carbide or a (W, Ti, Ta) solid solution carbide in which the primary particles have a particle size of 1 to 10 μm in weight percent (hereinafter the same). 10-30% in terms of Ni and Co or one or two of Ni and Co
A composite powder material for powder plasma welding, comprising 10 to 40% of seeds, granulated and sintered into a spherical shape.
【請求項2】 製品粒径の範囲が45〜180μmであ
る請求項1に記載の粉体プラズマ溶接用複合粉末材料。
2. The composite powder material for powder plasma welding according to claim 1, wherein the range of the product particle size is 45 to 180 μm.
【請求項3】 請求項1又は2に記載の粉体プラズマ溶
接用複合粉末にCo基、Ni基、Fe基の粉末材料の1種
又は2種以上を10〜90%混合してなる粉体プラズマ
溶接用複合粉末。
3. A powder obtained by mixing 10 to 90% of one or more of Co-based, Ni-based and Fe-based powder materials with the composite powder for powder plasma welding according to claim 1 or 2. Composite powder for plasma welding.
JP5196836A 1993-07-14 1993-07-14 Composite powder materials for powder plasma welding Expired - Lifetime JP2703713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5196836A JP2703713B2 (en) 1993-07-14 1993-07-14 Composite powder materials for powder plasma welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5196836A JP2703713B2 (en) 1993-07-14 1993-07-14 Composite powder materials for powder plasma welding

Publications (2)

Publication Number Publication Date
JPH0732189A JPH0732189A (en) 1995-02-03
JP2703713B2 true JP2703713B2 (en) 1998-01-26

Family

ID=16364477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5196836A Expired - Lifetime JP2703713B2 (en) 1993-07-14 1993-07-14 Composite powder materials for powder plasma welding

Country Status (1)

Country Link
JP (1) JP2703713B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345517B1 (en) * 2000-03-21 2002-07-26 재단법인 포항산업과학연구원 Method for welding
KR100345518B1 (en) * 2000-03-21 2002-07-24 재단법인 포항산업과학연구원 Welding electrode
CA2644915C (en) 2006-03-30 2011-02-01 Komatsu Ltd. Wear resisting particle and wear resisting structural member
JP5207922B2 (en) * 2008-11-04 2013-06-12 日本新金属株式会社 Binderless powder for surface hardening
WO2015019518A1 (en) * 2013-08-07 2015-02-12 日鉄住金ハード株式会社 Welding material for building-up, straightening roll, guide roll, conveyance roll and anvil

Also Published As

Publication number Publication date
JPH0732189A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
US4029476A (en) Brazing alloy compositions
US3313633A (en) High temperature flame spray powder
US5063021A (en) Method for preparing powders of nickel alloy and molybdenum for thermal spray coatings
CN108690946B (en) Spray welding powder material and preparation method and application thereof
CN106929735B (en) High-intensitive molybdenum-iron boron ternary boride material and its production preparation method
JP2008115443A (en) Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING, ITS PRODUCTION METHOD, AND SELF-FLUXING ALLOY SPRAYED COATING OBTAINED USING THE POWDER
US7309374B2 (en) Diffusion bonded nickel-copper powder metallurgy powder
US2238382A (en) Formation of ferrous metal powders and formation of articles by sintering
DE616840C (en)
CN110385430B (en) 3D printed powder material
JP2703713B2 (en) Composite powder materials for powder plasma welding
US3246981A (en) Homogenous ductile nickel base alloy weld deposit and method for producing same
JP2001503105A (en) Coated powder and method for producing the same
CN101596657B (en) Ultra-low-carbon heat-resistant steel flux-cored wire capable of carrying out all-position welding
JPS5910473A (en) Surface hardening method for iron group alloy base body by vanadium carbide and improved flux composition
US20030200835A1 (en) Diffusion-brazing filler powder for parts made of an alloy based on nickel, cobalt or iron
JP4328715B2 (en) Ni-based self-fluxing alloy powder for thermal spraying and manufacturing method thereof
US4702772A (en) Sintered alloy
JPH01230759A (en) Composite powder for thermal spraying
GB2037320A (en) Wear resistant alloys
JPH06285675A (en) Compound powder material for powder plasma welding
JPH02179843A (en) Tool material for hot tube making
US2279003A (en) Hard facing material and method of making the same
US3029165A (en) Malleable-cored hard surfacing welding electrode
US3028235A (en) Cobalt base brazing alloy