JP2008115443A - Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING, ITS PRODUCTION METHOD, AND SELF-FLUXING ALLOY SPRAYED COATING OBTAINED USING THE POWDER - Google Patents

Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING, ITS PRODUCTION METHOD, AND SELF-FLUXING ALLOY SPRAYED COATING OBTAINED USING THE POWDER Download PDF

Info

Publication number
JP2008115443A
JP2008115443A JP2006301118A JP2006301118A JP2008115443A JP 2008115443 A JP2008115443 A JP 2008115443A JP 2006301118 A JP2006301118 A JP 2006301118A JP 2006301118 A JP2006301118 A JP 2006301118A JP 2008115443 A JP2008115443 A JP 2008115443A
Authority
JP
Japan
Prior art keywords
mass
fluxing alloy
powder
self
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006301118A
Other languages
Japanese (ja)
Other versions
JP4653721B2 (en
Inventor
Tatsuo Shimatani
竜男 島谷
Hidekazu Hirota
英一 廣田
Tatsuo Minazu
竜夫 水津
Noriyuki Yasuo
典之 安尾
Takayuki Yoshizumi
隆幸 吉積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Tocalo Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Tocalo Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006301118A priority Critical patent/JP4653721B2/en
Publication of JP2008115443A publication Critical patent/JP2008115443A/en
Application granted granted Critical
Publication of JP4653721B2 publication Critical patent/JP4653721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide Ni-based self-fluxing alloy powder having hardness at high temperature as the index of heat resistance (high temperature hardness) as well as hardness at room temperature (room temperature hardness), wear resistance and thermal impact resistance (thermal cycle resistance), to provide its production method, and to provide a self-fluxing alloy sprayed coating. <P>SOLUTION: The Ni-based self-fluxing alloy powder for thermal spraying is composed of an Ni-based self-fluxing alloy comprising Cr, C and Co, and in which chromium carbides with a particle diameter of ≤5 μm are uniformly precipitated into the particles. The alloy powder contains, by mass, 30.0 to 65.0% Cr, 1.0 to 4.5% C, 5.0 to 20.0% Co, 0.5 to 4.0% Si, 0.5 to 4.0% B and 0.5 to 4.0% Mo, selectively comprises 0 to 5.0% Fe, and the balance Ni with inevitable impurities. Further, the powder is sorted in a grain size range of 45 to 106 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶射に用いるNi基自溶合金粉末、特にアトマイズ法により得られるNi基自溶合金粉末とその製造方法、および、該粉末を用いて得られる自溶合金溶射皮膜に関する。   The present invention relates to a Ni-based self-fluxing alloy powder used for thermal spraying, in particular, a Ni-based self-fluxing alloy powder obtained by an atomizing method, a manufacturing method thereof, and a self-fluxing alloy spray coating obtained using the powder.

溶射とは、例えば、対象物の所定部位に半溶融状態の金属粉末を吹き付け、当該部位の表面に皮膜を形成させる表面処理法の一種であり、硬質皮膜の形成が簡便かつ容易にできることから、損傷対策の最も有力な手段の一つとして多用されている。溶射による損傷対策には、予め、硬質である溶射皮膜を形成しておくことにより、損傷を予防する方法と、損傷があった後、溶射皮膜を形成することにより、損傷した部分を回復させる方法とがある。   Thermal spraying is, for example, a kind of surface treatment method in which a metal powder in a semi-molten state is sprayed on a predetermined part of an object and a film is formed on the surface of the part, and since the formation of a hard film can be easily and easily performed, It is often used as one of the most effective measures for damage prevention. In order to prevent damage by thermal spraying, a method of preventing damage by forming a hard sprayed coating in advance and a method of recovering the damaged part by forming a sprayed coating after damage has occurred There is.

近年、発電設備のボイラーチューブなどのように、耐熱性、耐食性および耐摩耗性が求められる分野においても、損傷予防や損傷した部分の回復に、溶射が適用されるようになってきている。   In recent years, thermal spraying has been applied to prevent damage and recover damaged parts even in fields where heat resistance, corrosion resistance, and wear resistance are required, such as boiler tubes of power generation equipment.

ボイラーチューブは、火力発電所やゴミ焼却炉、製鉄所のコークス乾式消火設備などにおいて、廃熱回収に用いられる。具体的には、ボイラーチューブの外側に高温の燃焼ガスを暴露させると共に、ボイラーチューブの内側に循環水を通過させることにより、燃焼ガスの熱を循環水に移行させ、循環水を高温で高圧の蒸気として、発電機のタービンを回すようにする。ボイラーチューブの外側は、高温の燃焼ガスによる腐食に加え、加熱された粉塵によるエロージョン摩耗を受けるため、耐食性と共に、耐熱性、耐摩耗性、および耐熱衝撃性が必要とされるため、溶射により溶射被膜が形成される。   Boiler tubes are used for waste heat recovery in thermal power plants, garbage incinerators, and coke dry fire extinguishing equipment at steelworks. Specifically, by exposing the high-temperature combustion gas to the outside of the boiler tube and passing the circulating water inside the boiler tube, the heat of the combustion gas is transferred to the circulating water, and the circulating water is heated to high temperature and high pressure. The steam of the generator is turned as steam. The outside of the boiler tube is subject to erosion wear due to heated dust in addition to corrosion due to high-temperature combustion gas, so heat resistance, wear resistance, and thermal shock resistance as well as corrosion resistance are required. A film is formed.

ボイラーチューブの外側の表面に溶射される材料としては、クロムカーバイド・ニッケルクロム(Cr32−NiCr)サーメット、Ni基自溶合金(JIS SFNi4種または5種)、あるいは、50Ni50Crなどの粉末が使用される。 Examples of the material sprayed on the outer surface of the boiler tube include chromium carbide / nickel chromium (Cr 3 C 2 —NiCr) cermet, Ni-based self-fluxing alloy (JIS SFNi type 4 or type 5), or powder such as 50Ni50Cr. used.

このうち、Cr32−NiCrや、タングステンカーバイト・コバルト(WC−Co)などのサーメット粉末は、硬度および融点が高く微細なCr32またはWCからなる一次粒子と、このような一次粒子のバインダ的役割を担うNi−Cr合金やCoとから構成される。サーメット粉末の製造には、造粒−焼結法が多用されている。造粒−焼結法では、Cr32またはWCなどの数μm以下の一次粒子と、CoやNi−Cr合金などの粉末(バインダ)とを、溶媒中で混練してスラリー状とし、得られたスラリーをスプレードライヤにより噴霧して、球形状とした後、溶媒を気化させ、焼結することにより、サーメット粉末を得ている。 Among these, cermet powders such as Cr 3 C 2 —NiCr and tungsten carbide / cobalt (WC—Co) have high hardness and melting point, and primary particles composed of fine Cr 3 C 2 or WC and such primary particles. It is composed of Ni—Cr alloy or Co, which plays a role of particle binder. For the production of cermet powder, a granulation-sintering method is frequently used. In the granulation-sintering method, primary particles such as Cr 3 C 2 or WC or less and powder (binder) such as Co or Ni—Cr alloy are kneaded in a solvent to obtain a slurry. The resulting slurry is sprayed with a spray dryer to form a spherical shape, and then the solvent is vaporized and sintered to obtain a cermet powder.

得られたサーメット粉末を、15μm〜53μm前後の微細な粒度範囲に整粒し、高速ガス炎溶射法、プラズマ溶射法などの溶射法を用いて、高速で母材に衝突させることにより、溶射皮膜を得る。サーメット粉末は、一次粒子が凝集結合した多孔質な二次粒子からなり、バインダが溶融する温度で溶射が可能であることから、高融点の元素を一次粒子として多量に添加できる。よって、緻密で耐摩耗性に優れ、耐熱性を有する溶射皮膜を形成できる。   The obtained cermet powder is sized in a fine particle size range of about 15 μm to 53 μm, and is sprayed onto the base material at high speed using a spraying method such as a high-speed gas flame spraying method or a plasma spraying method. Get. The cermet powder is composed of porous secondary particles in which primary particles are aggregated and bonded, and can be sprayed at a temperature at which the binder melts. Therefore, a high melting point element can be added in a large amount as primary particles. Therefore, it is possible to form a sprayed coating that is dense and excellent in wear resistance and heat resistance.

しかしながら、得られる溶射皮膜は、マトリックスとなるバインダ中に一次粒子が点在し、不均一なものとなる。また、溶射皮膜が、溶射時の衝突圧力により、サーメット粉末と母材との機械的結合を主として形成されるため、自溶合金粉末を用いて得た皮膜と比べると、粒子間結合力が低く、耐熱衝撃性(耐熱サイクル特性)に劣るため、特に熱衝撃により、割れや剥離を生じやすいという問題がある。   However, the obtained sprayed coating is non-uniform due to the interspersed primary particles in the matrix binder. In addition, because the thermal spray coating is mainly formed by mechanical bonding between the cermet powder and the base material due to the impact pressure during thermal spraying, the interparticle bonding force is lower than the coating obtained using the self-fluxing alloy powder. Since the thermal shock resistance (thermal cycle characteristics) is inferior, there is a problem that cracking and peeling are likely to occur due to thermal shock.

一方、自溶合金粉末は、BやSiなどのフラックス成分を含むことを特徴としたNi基またはCo基の合金からなる粉末である。自溶合金粉末は、主として、原料を溶解炉で溶融して得た溶湯を、タンディッシュを介して、流量および流速を調整しつつ、高圧の水または不活性ガスと接触させ、粉砕および急速凝固させて、粉末を得るアトマイズ方法により製造される。   On the other hand, the self-fluxing alloy powder is a powder made of an Ni-based or Co-based alloy characterized by containing a flux component such as B or Si. Self-fluxing alloy powder is mainly made by bringing molten metal obtained by melting raw materials in a melting furnace into contact with high-pressure water or inert gas via a tundish while adjusting the flow rate and flow rate, and crushing and rapid solidification. The powder is produced by an atomizing method.

自溶合金粉末を、サーメット粉末と同様に整粒し、高速ガス炎溶射法、プラズマ溶射法により溶射した後、熱を加えて再溶融処理を行う。これにより、粒子間結合力が向上し、母材と溶射皮膜の界面に拡散層が形成され、得られる溶射皮膜の皮膜密度が高くなり、耐熱性の指標である高温下での硬度、密着強度(耐剥離性)および耐熱衝撃性(耐熱サイクル特性)に優れる溶射皮膜を得ることができる。   The self-fluxing alloy powder is sized in the same manner as the cermet powder, sprayed by a high-speed gas flame spraying method and a plasma spraying method, and then reheated by applying heat. As a result, the bonding force between particles is improved, a diffusion layer is formed at the interface between the base material and the sprayed coating, the coating density of the resulting sprayed coating is increased, and the hardness and adhesion strength at high temperatures that are indicators of heat resistance. A sprayed coating having excellent (peeling resistance) and thermal shock resistance (heat cycle characteristics) can be obtained.

再溶融処理が行われることからも明らかなように、公知の自溶合金を用いた溶射皮膜には、再溶融処理を行わないと耐熱性(高温硬度)が低いという問題がある。かかる耐熱性の改善を目的とするものとして、Ni−16Cr−4Si−4B−4Fe−2.4Cu−2.4Mo−2.4W−0.5C等のNi基合金からなる自溶合金が知られているが、再溶融処理を行わないと耐熱衝撃性が向上しないため、やはり再溶融処理が必要であった。   As is clear from the fact that the remelting process is performed, the thermal spray coating using a known self-fluxing alloy has a problem that the heat resistance (high temperature hardness) is low unless the remelting process is performed. A self-fluxing alloy made of a Ni-based alloy such as Ni-16Cr-4Si-4B-4Fe-2.4Cu-2.4Mo-2.4W-0.5C is known as an object for improving the heat resistance. However, if the remelting treatment is not performed, the thermal shock resistance is not improved, so that the remelting treatment is still necessary.

しかしながら、かかる自溶合金を用いて得られた再溶融処理を施した溶射皮膜であっても、近年の環境対策の一環として、発電効率を向上させ、かつダイオキシン発生を抑制するために、燃焼ガスの高温化および高圧化が要求されている状況下では、溶射皮膜の高温硬度が不十分となり、かかる要求に応えられていない。   However, even in the case of a sprayed coating that has been remelted using such a self-fluxing alloy, as part of environmental measures in recent years, in order to improve power generation efficiency and suppress dioxin generation, Under the circumstances where higher temperatures and higher pressures are required, the high-temperature hardness of the sprayed coating becomes insufficient, and this requirement cannot be met.

一方、溶射用自溶合金の改善材料として、例えば、特開平08−311630号公報に記載された、Ni基自溶合金粉末に、WCを混合した材料がある。WCは、Ni基自溶合金粉末との比重差により不均一な分布とならないようにするため、WC−CoやWC−NiCrなどのサーメットの状態で、自溶合金粉末に近い粒径で混合される。得られた混合粉末を用いて形成された溶射皮膜は、自溶合金マトリックス中に、WC系サーメット粒子が点在した状態となる。WC系サーメット粒子の存在により、耐摩耗性が通常の自溶合金を用いた溶射皮膜よりも向上し、従来、相反するとされてきた耐食性と耐磨耗性の両方の特性で良好な結果が得られる。   On the other hand, as a material for improving the self-fluxing alloy for thermal spraying, for example, there is a material in which WC is mixed with Ni-based self-fluxing alloy powder described in JP-A-08-31630. WC is mixed in a cermet such as WC-Co or WC-NiCr with a particle size close to that of the self-fluxing alloy powder so as not to have a non-uniform distribution due to the difference in specific gravity with the Ni-based self-fluxing alloy powder. The The thermal spray coating formed using the obtained mixed powder is in a state where WC cermet particles are scattered in the self-fluxing alloy matrix. Due to the presence of WC cermet particles, the wear resistance is improved compared to the sprayed coating using ordinary self-fluxing alloys, and good results are obtained in both the corrosion resistance and wear resistance characteristics that have been considered to be contradictory. It is done.

しかしながら、マトリックスである自溶合金の特性を反映して、耐熱性に乏しく、高温環境下で使用するには不十分であるという問題がある。
特開平08−311630号公報
However, reflecting the characteristics of the self-fluxing alloy that is a matrix, there is a problem that it has poor heat resistance and is insufficient for use in a high temperature environment.
JP 08-31630 A

本発明は、再溶融処理を行わなくても、室温での硬度(室温硬度)、耐摩耗性、耐熱衝撃性(耐熱サイクル特性)に加え、耐熱性の指標である高温下での硬度(高温硬度)に優れた、Ni基自溶合金を用いた溶射皮膜を提供することを目的とする。   In the present invention, hardness at room temperature (room temperature hardness), wear resistance, thermal shock resistance (heat cycle characteristics), and high temperature hardness (high temperature), which is an index of heat resistance, can be used without performing remelting treatment. An object is to provide a thermal spray coating using a Ni-based self-fluxing alloy having excellent hardness.

本発明者らは、前述の課題を解決すべく、鋭意研究を重ねた結果、アトマイズ法を用いて得られるNi基自溶合金に対して、Cr、CおよびCoを含ませることにより、粒径5μm以下の微細なCr32やCr73などのクロムカーバイドが、粒子内部に均一に析出しているNi基自溶合金粉末が得られ、該Ni基自溶合金粉末を用いた溶射皮膜は、再溶融処理を行わなくても、公知の溶射皮膜と比較して、同等以上の室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性を示すことを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have incorporated Cr, C, and Co into the Ni-based self-fluxing alloy obtained by using the atomizing method, thereby reducing the particle size. Ni-based self-fluxing alloy powder in which chromium carbide such as fine Cr 3 C 2 or Cr 7 C 3 of 5 μm or less is uniformly deposited inside the particles is obtained, and thermal spraying using the Ni-based self-fluxing alloy powder In order to complete the present invention, it is found that the film exhibits room temperature hardness, high temperature hardness, abrasion resistance, and thermal shock resistance equal to or higher than those of known thermal sprayed coatings without remelting treatment. It came.

すなわち、本発明の溶射用Ni基自溶合金粉末は、少なくともCr、CおよびCoを含み、粒径5μm以下のクロムカーバイドが、粒子内部に均一に析出していることを特徴とする。   That is, the Ni-based self-fluxing alloy powder for thermal spraying of the present invention is characterized in that chromium carbide containing at least Cr, C, and Co and having a particle size of 5 μm or less is uniformly precipitated inside the particles.

該溶射用Ni記事用合金粉末の具体的な組成は、30.0質量%〜65.0質量%のCrと、1.0質量%〜4.5質量%のCと、5.0質量%〜20.0質量%のCoと、0.5質量%〜4.0質量%のSiと、0.5質量%〜4.0質量%のBと、0.5質量%〜4.0質量%のMoとを含み、残部がNiおよび不可避的不純物であることが望ましい。   The specific composition of the Ni article alloy powder for thermal spraying is 30.0 mass% to 65.0 mass% Cr, 1.0 mass% to 4.5 mass% C, and 5.0 mass%. ~ 20.0 wt% Co, 0.5 wt% to 4.0 wt% Si, 0.5 wt% to 4.0 wt% B, 0.5 wt% to 4.0 wt% % Of Mo and the balance being Ni and inevitable impurities.

あるいは、30.0質量%〜65.0質量%のCrと、1.0質量%〜4.5質量%のCと、5.0質量%〜20.0質量%のCoと、0.5質量%〜4.0質量%のSiと、0.5質量%〜4.0質量%のBと、0.5質量%〜4.0質量%のMoと、5.0質量%以下のFeを含み、残部がNiおよび不可避的不純物であることが望ましい。   Alternatively, 30.0 mass% to 65.0 mass% Cr, 1.0 mass% to 4.5 mass% C, 5.0 mass% to 20.0 mass% Co, 0.5 % By mass to 4.0% by mass of Si, 0.5% by mass to 4.0% by mass of B, 0.5% by mass to 4.0% by mass of Mo, and Fe of 5.0% by mass or less It is desirable that the balance be Ni and inevitable impurities.

さらに、該溶射用Ni基自溶粉末の粒度範囲は、45μm〜106μmであることが望ましい。   Furthermore, the particle size range of the Ni-based self-fluxing powder for thermal spraying is desirably 45 μm to 106 μm.

本発明のNi基自溶合金粉末は、所定の比率で原料を混合し、得られた混合物を溶融し、アトマイズ法により粉末とすることにより製造される。   The Ni-based self-fluxing alloy powder of the present invention is manufactured by mixing raw materials at a predetermined ratio, melting the obtained mixture, and forming the powder by an atomizing method.

該溶射用Ni基合金粉末を公知の溶射法により溶射することにより、本発明の自溶合金溶射皮膜は、前記のいずれかの溶射用Ni基自溶合金粉末を用いて得られる。   By spraying the Ni-based alloy powder for thermal spraying by a known thermal spraying method, the self-fluxing alloy spray coating of the present invention can be obtained using any of the above-mentioned Ni-based self-fluxing alloy powders for thermal spraying.

本発明の溶射用Ni基自溶合金粉末を溶射して得られる自溶合金溶射皮膜は、再溶融処理を行わなくても、公知の自溶合金粉末、サーメット粉末を用いて得られる溶射皮膜と比較して、室温での硬度(室温硬度)、高温硬度、耐摩耗性、耐熱衝撃性(耐熱サイクル特性)のいずれもが、同等または同等以上であり、かつ、高い高温硬度を有しているため優れた耐高温エロージョン摩耗性を有する。   The self-fluxing alloy spray coating obtained by spraying the Ni-based self-fluxing alloy powder for thermal spraying of the present invention includes a spray coating obtained by using a known self-fluxing alloy powder and cermet powder without performing remelting treatment. In comparison, all of the hardness at room temperature (room temperature hardness), high temperature hardness, wear resistance, and thermal shock resistance (heat resistance cycle characteristics) are equivalent or equivalent, and have high high temperature hardness. Therefore, it has excellent high temperature erosion wear resistance.

本発明の溶射用Ni基自溶合金粉末における構成成分について、以下に、それぞれに係る限定理由を説明する。   Regarding the constituent components in the Ni-based self-fluxing alloy powder for thermal spraying of the present invention, the reasons for limitation will be described below.

Crは、Cと結合して複炭化物を形成し、さらに、Bと結合して複硼化物を形成して、得られる溶射皮膜の硬度を高め、耐熱性、耐食性および耐磨耗性を著しく向上させる効果を持つ元素である。   Cr combines with C to form double carbides, and further combines with B to form double borides, increasing the hardness of the resulting sprayed coating and significantly improving heat resistance, corrosion resistance and wear resistance. It is an element that has an effect to make.

Crの含有率は、30.0質量%〜65.0質量%が好ましい。Crの含有率が30.0質量%未満では、複炭化物や複硼化物の形成が不充分となり、前述の特性が充分に得られない。また、65.0質量%を超えると、得られる溶射皮膜の靱性が低下したり、融点が上昇したりするとともに、加工面にブローホール等の欠陥を招き易くなる。   The content of Cr is preferably 30.0 mass% to 65.0 mass%. If the Cr content is less than 30.0% by mass, the formation of double carbides and double borides becomes insufficient, and the above-mentioned characteristics cannot be obtained sufficiently. On the other hand, if it exceeds 65.0% by mass, the toughness of the resulting sprayed coating will decrease, the melting point will increase, and defects such as blow holes will easily be caused on the processed surface.

Cは、主にCrまたはMoと結合して、複炭化物を形成することにより、得られる溶射皮膜の硬度および耐摩耗性の向上に寄与する元素である。   C is an element which contributes to the improvement of the hardness and wear resistance of the sprayed coating obtained by mainly combining with Cr or Mo to form double carbides.

Cの含有率は、1.0質量%〜4.5質量%が好ましい。Cの含有率が1.0質量%未満になると、粉末の融点が高くなり、溶射時の粉末付着歩留まりが低下して作業効率が低下する。また、得られる溶射皮膜がポーラスとなるばかりか、溶射皮膜中に晶出する複炭化物の量が少なくなり、十分な耐摩耗性が得られない。また、4.5質量%を超えると、硬度が過度に高くなると共に、靭性が低下し、加工時や使用時にクラックが発生しやすくなる。   As for the content rate of C, 1.0 mass%-4.5 mass% are preferable. When the C content is less than 1.0% by mass, the melting point of the powder becomes high, the powder adhesion yield at the time of thermal spraying decreases, and the working efficiency decreases. In addition, the resulting sprayed coating becomes porous, and the amount of double carbides crystallized in the sprayed coating decreases, so that sufficient wear resistance cannot be obtained. Moreover, when it exceeds 4.5 mass%, while hardness will become high too much, toughness will fall and it will become easy to generate | occur | produce a crack at the time of a process or use.

Coは、Cr、Mo、FeおよびNiと合金を形成することにより、溶射皮膜の硬度、高温硬度および耐熱性を向上させる効果を持つ元素である。   Co is an element having an effect of improving the hardness, high temperature hardness and heat resistance of the thermal spray coating by forming an alloy with Cr, Mo, Fe and Ni.

Coの含有率は、5.0質量%〜20.0質量%が好ましい。Coの含有率が5.0質量%未満になると、形成される合金相が不充分となり、前述の特性が充分に得られない。また、20.0質量%を超えると、靭性が低下し、加工時や使用時にクラックが発生しやすくなる。   The content of Co is preferably 5.0% by mass to 20.0% by mass. When the Co content is less than 5.0% by mass, the formed alloy phase becomes insufficient, and the above-mentioned characteristics cannot be obtained sufficiently. Moreover, when it exceeds 20.0 mass%, toughness will fall and it will become easy to generate | occur | produce a crack at the time of a process or use.

Siは、後述するBと共に、溶射用の自溶合金材料として重要な元素であり、脱酸材として溶射皮膜中の酸化物や気孔を低減させて、耐熱衝撃性を向上させると共に、粉末の融点を低下させる効果を持つ。加えて、マトリックス中に固溶して、得られる溶射皮膜の硬さや耐摩耗性の向上に寄与する。   Si, together with B described later, is an important element as a self-fluxing alloy material for thermal spraying, and as a deoxidizer, it reduces oxides and pores in the thermal spray coating, thereby improving thermal shock resistance and melting point of the powder. Has the effect of lowering. In addition, it contributes to improving the hardness and wear resistance of the resulting sprayed coating by dissolving in the matrix.

Siの含有率は、0.5質量%〜4.0質量%が好ましい。Siの含有率が0.5質量%未満では、前述の効果が充分に得られない。また、4.0質量%を超えると、硬くなりすぎて脆くなり、加工時や使用時にクラックが発生しやすくなる。   The content of Si is preferably 0.5% by mass to 4.0% by mass. If the Si content is less than 0.5% by mass, the above-described effects cannot be obtained sufficiently. On the other hand, if it exceeds 4.0% by mass, it becomes too hard and brittle, and cracks are likely to occur during processing and use.

Bは、Siと同様に、溶射用の自溶合金材料として重要な元素であり、粉末の融点を低下させる。加えて、CrおよびMoと結合して、Cr−Mo−B系複硼化物を形成して、得られる溶射皮膜の硬度を高め、耐摩耗性の向上に寄与する。   B, like Si, is an important element as a self-fluxing alloy material for thermal spraying, and lowers the melting point of the powder. In addition, it combines with Cr and Mo to form a Cr—Mo—B double boride, which increases the hardness of the resulting sprayed coating and contributes to improved wear resistance.

Bの含有率は、0.5質量%〜4.0質量%が好ましい。Bの含有率が0.5質量%未満では、Cr−Mo−B系複硼化物の形成量が少ないために、充分な効果が得られない。また、4.0質量%を超えると、Cr−Mo−B系複硼化物の形成量が過多となり、得られる溶射皮膜の靭性が低下する。   The content of B is preferably 0.5% by mass to 4.0% by mass. When the B content is less than 0.5% by mass, a sufficient amount of Cr—Mo—B double boride is not formed, so that a sufficient effect cannot be obtained. Moreover, when it exceeds 4.0 mass%, the formation amount of Cr-Mo-B type double boride becomes excessive, and the toughness of the sprayed coating obtained will fall.

Moは、Crと同様に、Cと結合して複炭化物を形成し、また、Bと結合して複硼化物を形成することにより、得られる溶射皮膜の耐磨耗性を大幅に向上させる効果を持つ元素である。また、一部は、Ni、Coマトリックス中に固溶して硫化物や塩化物などに対する耐食性を向上させる。   Mo, like Cr, combines with C to form double carbides, and combines with B to form double borides, thereby greatly improving the wear resistance of the resulting sprayed coating. It is an element with Some of them are dissolved in Ni and Co matrices to improve the corrosion resistance against sulfides and chlorides.

Moの含有率は、0.5質量%〜4.0質量%が好ましい。Moの含有率が0.5質量%未満では、前述の複炭化物および複硼化物の形成が不充分で、効果が充分に得られない。また、4.0質量%を超えても、さらなる効果の向上は大きく期待できず、却って、得られる溶射皮膜の靱性や、粉末の自溶性の低下を招く。   The content of Mo is preferably 0.5% by mass to 4.0% by mass. If the Mo content is less than 0.5% by mass, the above-mentioned double carbide and double boride are not sufficiently formed, and the effect cannot be sufficiently obtained. Moreover, even if it exceeds 4.0 mass%, the further improvement of an effect cannot be anticipated greatly, and on the contrary, the toughness of the sprayed coating obtained and the fall of the self-flux of the powder are caused.

Niは、本発明の溶射用Ni基自溶合金粉末のマトリックスを形成する元素である。   Ni is an element that forms a matrix of the Ni-based self-fluxing alloy powder for thermal spraying according to the present invention.

本発明の溶射用Ni基自溶合金粉末の特性を、より向上させるために、さらにFeを添加することが可能である。Feは、Niマトリックス中に固溶して、得られる溶射皮膜の強度をより向上させる元素であり、このような効果を目的として添加することが可能である。   In order to further improve the characteristics of the Ni-based self-fluxing alloy powder for thermal spraying of the present invention, it is possible to further add Fe. Fe is an element that is solid-dissolved in the Ni matrix and further improves the strength of the resulting sprayed coating, and can be added for the purpose of such an effect.

Feの含有率は、5.0質量%以下とする。Feの含有率が、5.0質量%を超えると、得られる溶射皮膜の硬さと耐食性が低下し、耐摩耗性と耐食性の劣化を招く。   The content rate of Fe shall be 5.0 mass% or less. When the Fe content exceeds 5.0% by mass, the hardness and corrosion resistance of the resulting sprayed coating are lowered, leading to deterioration of wear resistance and corrosion resistance.

前述のように、本発明の組成範囲内で混合されて得られる混合物は、いったん、溶融されて溶融物とされる。そして、例えば、ガスアトマイズ法や水アトマイズ法により、粉末とされる。これらのアトマイズ法では、アトマイズ条件のうち、溶融物と気体や液体との比率を変化させることにより、得られる粉末の粒度を調整することが可能である。   As described above, the mixture obtained by mixing within the composition range of the present invention is once melted into a melt. And it is set as powder by the gas atomization method or the water atomization method, for example. In these atomization methods, it is possible to adjust the particle size of the obtained powder by changing the ratio of the melt to gas or liquid among the atomization conditions.

溶射用Ni基自溶合金粉末の分級粒度範囲は、使用する溶射ガンの種類により異なるが、パウダーガンおよびプラズマ溶射ガンを使用する場合には、45μm〜125μm、45μm〜106μm、45μm〜90μm、20μm〜75μm、および10μm〜53μmが好適であり、中でも45μm〜106μmが好ましい。また、高速ガス炎溶射ガンを使用する場合には、5μm〜30μm、5μm〜38μm、5μm〜45μm、10μm〜45μm、15μm〜45μm、および20μm〜53μmが適切である。   The classification particle size range of the Ni-based self-fluxing alloy powder for thermal spraying varies depending on the type of thermal spray gun used, but when using a powder gun and a plasma spray gun, 45 μm to 125 μm, 45 μm to 106 μm, 45 μm to 90 μm, 20 μm -75 micrometers and 10 micrometers-53 micrometers are suitable, and 45 micrometers-106 micrometers are especially preferable. When a high-speed gas flame spray gun is used, 5 μm to 30 μm, 5 μm to 38 μm, 5 μm to 45 μm, 10 μm to 45 μm, 15 μm to 45 μm, and 20 μm to 53 μm are appropriate.

得られる粉末の粒度が、それぞれの粒度範囲よりも粗い場合には、溶射により緻密な溶射皮膜を形成させることが困難であり、硬度の低い溶射皮膜しか得られない。また、それぞれの粒度範囲よりも微細である場合には、粉末の流動性が低下するとともに、受熱効率の高い微細粉末が溶融して、溶射ガンのノズル内面に堆積するために、溶射の作業性が著しく損なわれる。   When the particle size of the obtained powder is coarser than the respective particle size ranges, it is difficult to form a dense sprayed coating by thermal spraying, and only a sprayed coating with low hardness can be obtained. In addition, when the particle size is finer than the respective particle size ranges, the flowability of the powder is lowered, and the fine powder with high heat receiving efficiency is melted and deposited on the inner surface of the nozzle of the spray gun. Is significantly impaired.

原料を1550〜1700℃といった高温で溶解、均一化し、その後アトマイズ法により急冷し粉末を作製することにより、親和力の強いCrとCが結合し、粒径5μm以下のクロムカーバイド粒子が晶出し、それがマトリックス合金相内部に均一に分散し、析出する。なお、CoはNiやCrと結合し、NiCoCrマトリックス合金相を形成する。粉末粒子内部のクロムカーバイトの粒径が5μmを超えて粗大化すると、溶射被膜が脆くなり、耐磨耗性や耐熱衝撃性等が低下するため、好ましくない。また、内部に不均一に析出しても硬度のバラツキが発生するため、耐摩耗性、耐熱衝撃性、耐熱性を低下させるので好ましくない。   The raw material is melted and homogenized at a high temperature of 1550 to 1700 ° C., and then rapidly cooled by an atomizing method to produce a powder. As a result, strong affinity Cr and C are combined, and chromium carbide particles having a particle size of 5 μm or less crystallize. Are uniformly dispersed and precipitated in the matrix alloy phase. Co is combined with Ni or Cr to form a NiCoCr matrix alloy phase. If the particle size of the chromium carbide inside the powder particles is larger than 5 μm, the sprayed coating becomes brittle and wear resistance, thermal shock resistance and the like are deteriorated. In addition, even if it deposits unevenly inside, variation in hardness occurs, which is not preferable because it reduces wear resistance, thermal shock resistance, and heat resistance.

以下、本発明の実施例を比較例と対比しつつ説明するが、本発明は下記の実施例に限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples, but the present invention is not limited to the following examples.

[実施例1]
まず、表1に示した組成となるように配合した原料を、高周波誘導真空溶解炉を用いて溶融した。得られた約1650℃の溶湯を、ガス−水アトマイズ法によって粉末にした。得られた粉末を、熱風乾燥後、振動式分級機にて45μm〜106μmに分級し、本実施例の溶射用Ni基自溶合金粉末を作製した。得られた溶射用Ni基自溶合金粉末の化学組成および分級粒度範囲は、表1に示した組成と同じであった。
[Example 1]
First, the raw materials blended so as to have the composition shown in Table 1 were melted using a high frequency induction vacuum melting furnace. The obtained molten metal at about 1650 ° C. was powdered by a gas-water atomization method. The obtained powder was dried with hot air and then classified into 45 μm to 106 μm with a vibration classifier to prepare a Ni-based self-fluxing alloy powder for thermal spraying of this example. The chemical composition and the classified particle size range of the obtained Ni-based self-fluxing alloy powder for thermal spraying were the same as those shown in Table 1.

得られた溶射用Ni基自溶合金粉末の断面を、村上試薬(フェロシアン化カリと苛性カリを含むエッチング液)でエッチングし、電子顕微鏡で観察したところ、粒径5μm以下のCr32、Cr73、Cr236からなるクロムカーバイド粒子が、NiCoCrマトリックス合金相内部に均一に分散し、析出していた。 When the cross section of the obtained Ni-based self-fluxing alloy powder for thermal spraying was etched with Murakami reagent (etching solution containing ferrocyanide and caustic potash) and observed with an electron microscope, Cr 3 C 2 having a particle size of 5 μm or less, Chromium carbide particles composed of Cr 7 C 3 and Cr 23 C 6 were uniformly dispersed and precipitated inside the NiCoCr matrix alloy phase.

次に、得られた溶射用Ni基自溶合金粉末を用いて、プラズマ溶射ガンにより、SS400軟鋼板上に溶射して、厚さ450μmの溶射皮膜を得た。さらに、得られた溶射皮膜の表面を、切削および研磨することにより平滑にし、室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性を次のように、測定した。   Next, the obtained Ni-based self-fluxing alloy powder for thermal spraying was sprayed onto an SS400 mild steel plate with a plasma spray gun to obtain a thermal sprayed coating having a thickness of 450 μm. Furthermore, the surface of the obtained thermal spray coating was smoothed by cutting and polishing, and room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance were measured as follows.

室温硬度および高温硬度は、ビッカース硬度計(荷重:0.3kgf)を用いて、断面および表面について測定した。高温硬度は、200℃、400℃、および600℃に加熱保持して、測定した。   The room temperature hardness and the high temperature hardness were measured for the cross section and the surface using a Vickers hardness tester (load: 0.3 kgf). The high temperature hardness was measured by heating and holding at 200 ° C, 400 ° C, and 600 ° C.

耐摩耗性は、スガ式往復運動摩耗試験機を用い、荷重:3.25kgf、往復回数(DS):1600回、相手材:SiC#320研磨紙とし、JIS H 8503(めっきの耐摩耗性試験方法)の第9項(往復運動摩耗試験法)に規定された試験方法に準じて、耐摩耗量(DS/mg)を測定した。   Abrasion resistance was measured using a suga type reciprocating wear tester, load: 3.25 kgf, number of reciprocations (DS): 1600 times, mating material: SiC # 320 abrasive paper, JIS H 8503 (plating wear resistance test) The amount of wear resistance (DS / mg) was measured according to the test method defined in Item 9 (Method of Reciprocating Wear Test).

耐熱衝撃性は、熱サイクル試験で評価した。熱サイクル試験は、600℃の電気炉中に30分間保持した後、強制空冷する熱サイクルを30回繰り返し、1回ごとに、溶射皮膜に生ずる亀裂や剥離の有無を、目視およびカラーチェックにより、観察した。   Thermal shock resistance was evaluated by a thermal cycle test. The thermal cycle test was held in an electric furnace at 600 ° C. for 30 minutes, and then the thermal cycle for forced air cooling was repeated 30 times, and at each time, the presence or absence of cracks and peeling occurring in the sprayed coating was visually and color-checked. Observed.

室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性の測定結果を、表2に示す。   Table 2 shows the measurement results of room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance.

[実施例2〜4]
原料を、表1に示した組成となるように配合した以外は、実施例1と同様にして、溶射用Ni基自溶合金粉末を得た。得られた溶射用Ni基自溶合金粉末の化学組成および分級粒度範囲は、表1に示した組成と同じであった。また、得られた粉末を分析したところ、実施例1と同様に、いずれも粒径5μm以下のクロムカーバイドが、粒子内部に均一に析出していた。
[Examples 2 to 4]
A Ni-based self-fluxing alloy powder for thermal spraying was obtained in the same manner as in Example 1 except that the raw materials were blended so as to have the composition shown in Table 1. The chemical composition and the classified particle size range of the obtained Ni-based self-fluxing alloy powder for thermal spraying were the same as those shown in Table 1. Further, when the obtained powder was analyzed, as in Example 1, chromium carbide having a particle size of 5 μm or less was uniformly deposited inside the particles.

次に、溶射皮膜を実施例1と同様に得て、得られた溶射皮膜について、実施例1と同様に、室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性を測定した。室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性の測定結果を、表2に示す。   Next, a thermal spray coating was obtained in the same manner as in Example 1, and the obtained thermal spray coating was measured for room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance in the same manner as in Example 1. Table 2 shows the measurement results of room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance.

[比較例1]
Crのみを50%添加し残部がNiである粉末を作製した。
[Comparative Example 1]
A powder in which only 50% of Cr was added and the balance was Ni was produced.

次に、溶射皮膜を実施例1と同様に得て、得られた溶射皮膜について、実施例1と同様に、室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性を測定した。室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性の測定結果を、表2に示す。   Next, a thermal spray coating was obtained in the same manner as in Example 1, and the obtained thermal spray coating was measured for room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance in the same manner as in Example 1. Table 2 shows the measurement results of room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance.

[比較例2]
一般的に使用されている材料として、原料を、表1に示した組成となるように配合した以外は、実施例1と同様にして、溶射用Ni基自溶合金粉末を得た。得られた溶射用Ni基自溶合金粉末の化学組成および分級粒度範囲は、表1に示した組成と同じであった。
[Comparative Example 2]
As a commonly used material, a Ni-based self-fluxing alloy powder for thermal spraying was obtained in the same manner as in Example 1 except that the raw materials were blended so as to have the composition shown in Table 1. The chemical composition and the classified particle size range of the obtained Ni-based self-fluxing alloy powder for thermal spraying were the same as those shown in Table 1.

次に、溶射皮膜を実施例1と同様に得て、得られた溶射皮膜について、実施例1と同様に、室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性を測定した。室温硬度、高温硬度、耐摩耗性、および耐熱衝撃性の測定結果を、表2に示す。   Next, a thermal spray coating was obtained in the same manner as in Example 1, and the obtained thermal spray coating was measured for room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance in the same manner as in Example 1. Table 2 shows the measurement results of room temperature hardness, high temperature hardness, wear resistance, and thermal shock resistance.

Figure 2008115443
Figure 2008115443

Figure 2008115443
Figure 2008115443

以上の結果より、本発明の実施例1〜4で得られた溶射用Ni基自溶合金粉末を使用して得られた溶射皮膜は、再溶融処理を行わなくても、従来、使用されてきた公知の溶射皮膜と、同等もしくは同等以上の室温硬度、高温硬度、耐摩耗性、耐熱衝撃性(耐熱サイクル性)を有し、さらに、高い高温硬度を有しているため耐高温エロージョン摩耗性を有することが明らかである。   From the above results, the thermal spray coating obtained by using the Ni-based self-fluxing alloy powder for thermal spraying obtained in Examples 1 to 4 of the present invention has been conventionally used without remelting treatment. It has the same or better room temperature hardness, high temperature hardness, wear resistance, thermal shock resistance (heat cycle resistance) as the known thermal spray coating, and also has high high temperature hardness, so it has high temperature erosion wear resistance. It is clear that

Claims (6)

少なくともCr、CおよびCoを含み、粒径5μm以下のクロムカーバイドが、粒子内部に均一に析出していることを特徴とする溶射用Ni基自溶合金粉末。   A Ni-based self-fluxing alloy powder for thermal spraying, characterized in that chromium carbide containing at least Cr, C, and Co and having a particle size of 5 μm or less is uniformly precipitated inside the particles. 30.0質量%〜65.0質量%のCrと、1.0質量%〜4.5質量%のCと、5.0質量%〜20.0質量%のCoと、0.5質量%〜4.0質量%のSiと、0.5質量%〜4.0質量%のBと、0.5質量%〜4.0質量%のMoとを含み、残部がNiおよび不可避的不純物である請求項1に記載の溶射用Ni基自溶合金粉末。   30.0 mass% to 65.0 mass% Cr, 1.0 mass% to 4.5 mass% C, 5.0 mass% to 20.0 mass% Co, and 0.5 mass% -4.0% by mass of Si, 0.5% -4.0% by mass of B, 0.5% -4.0% by mass of Mo, the balance being Ni and inevitable impurities The Ni-based self-fluxing alloy powder for thermal spraying according to claim 1. 30.0質量%〜65.0質量%のCrと、1.0質量%〜4.5質量%のCと、5.0質量%〜20.0質量%のCoと、0.5質量%〜4.0質量%のSiと、0.5質量%〜4.0質量%のBと、0.5質量%〜4.0質量%のMoと、5.0質量%以下のFeを含み、残部がNiおよび不可避的不純物である請求項1に記載の溶射用Ni基自溶合金粉末。   30.0 mass% to 65.0 mass% Cr, 1.0 mass% to 4.5 mass% C, 5.0 mass% to 20.0 mass% Co, and 0.5 mass% -4.0 mass% Si, 0.5 mass% -4.0 mass% B, 0.5 mass% -4.0 mass% Mo, and 5.0 mass% or less Fe are included. The Ni-based self-fluxing alloy powder for thermal spraying according to claim 1, wherein the balance is Ni and inevitable impurities. 粒度範囲が45μm〜106μmであることを特徴とする請求項1〜3のいずれかに記載の溶射用Ni基自溶合金粉末。   4. The Ni-based self-fluxing alloy powder for thermal spraying according to claim 1, wherein a particle size range is 45 μm to 106 μm. 請求項1〜4のいずれかに記載の溶射用Ni基自溶合金粉末を製造する方法であって、所定の比率で原料を混合し、得られた混合物を溶融し、アトマイズ法により粉末を得ることを特徴とするNi基自溶合金粉末の製造方法。   A method for producing a Ni-based self-fluxing alloy powder for thermal spraying according to any one of claims 1 to 4, wherein raw materials are mixed at a predetermined ratio, the obtained mixture is melted, and a powder is obtained by an atomizing method. A method for producing a Ni-based self-fluxing alloy powder characterized by the above. 請求項1〜4のいずれかに記載の溶射用Ni基自溶合金粉末を用いて得られた自溶合金溶射皮膜。   A self-fluxing alloy spray coating obtained by using the Ni-based self-fluxing alloy powder for thermal spraying according to any one of claims 1 to 4.
JP2006301118A 2006-11-07 2006-11-07 Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder Active JP4653721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301118A JP4653721B2 (en) 2006-11-07 2006-11-07 Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301118A JP4653721B2 (en) 2006-11-07 2006-11-07 Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder

Publications (2)

Publication Number Publication Date
JP2008115443A true JP2008115443A (en) 2008-05-22
JP4653721B2 JP4653721B2 (en) 2011-03-16

Family

ID=39501634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301118A Active JP4653721B2 (en) 2006-11-07 2006-11-07 Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder

Country Status (1)

Country Link
JP (1) JP4653721B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510074A (en) * 2006-11-21 2010-04-02 ハンチントン、アロイス、コーポレーション Filler composition and method for low NOx power boiler tube overlay
CN102240811A (en) * 2011-04-12 2011-11-16 南京寒锐钴业有限公司 Production method of granulated cobalt powder
JP2012047349A (en) * 2010-08-24 2012-03-08 Tocalo Co Ltd Injection tube for soot blower, and soot blower device
CN103305838A (en) * 2013-06-24 2013-09-18 叶绿均 Tube stock with Ni-based self-molten alloy laser cladding coating
CN103305840A (en) * 2013-06-24 2013-09-18 叶绿均 Preparation method of Ni-based self-fluxing alloy laser cladding coating
CN103305839A (en) * 2013-06-24 2013-09-18 叶绿均 Ni-based self-fluxing alloy laser cladding coating
JP2016503125A (en) * 2012-12-12 2016-02-01 アーベーベー ターボ システムズ アクチエンゲゼルシャフト Abrasion resistant layer and method for producing the abrasion resistant layer
CN106975748A (en) * 2017-04-18 2017-07-25 沈益明 A kind of preparation method of Wear-resistant, high-temperature resistant nickel-base alloy turbo blade
WO2018088251A1 (en) * 2016-11-10 2018-05-17 荏原環境プラント株式会社 Boiler water pipe for waste incinerator and production method therefor
CN113523288A (en) * 2021-07-13 2021-10-22 济南大学 Internal gear for high-salt environment and preparation method thereof
CN114438426A (en) * 2022-01-24 2022-05-06 郑州大学 Hard alloy for PCB micro-drilling/micro-milling cutter and preparation method thereof
CN115142003A (en) * 2021-04-16 2022-10-04 浙江福腾宝家居用品有限公司 Alloy wire material, application method thereof and cooking utensil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112435B3 (en) * 2011-09-06 2012-10-25 H.C. Starck Gmbh Cermet powder, process for producing a cermet powder, use of the cermet powder, process for producing a coated part, coated part

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274509A (en) * 1975-12-18 1977-06-22 Mitsubishi Metal Corp Ni-base sintered alloy
JPS55125249A (en) * 1979-03-22 1980-09-26 Taihei Kinzoku Kogyo Kk Heat and wear resistant self-fluxing alloy
JPS569361A (en) * 1979-06-30 1981-01-30 Taihei Kinzoku Kogyo Kk Heat/wear resistant spray coating material
JPS60103169A (en) * 1983-11-11 1985-06-07 Showa Denko Kk Composite powder for thermal spraying
JPS6233089A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder
JPH07331408A (en) * 1994-06-10 1995-12-19 Nkk Corp High damping alloy steel member having wear resistance and its production
JP2006161131A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Co-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
JP2006161132A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274509A (en) * 1975-12-18 1977-06-22 Mitsubishi Metal Corp Ni-base sintered alloy
JPS55125249A (en) * 1979-03-22 1980-09-26 Taihei Kinzoku Kogyo Kk Heat and wear resistant self-fluxing alloy
JPS569361A (en) * 1979-06-30 1981-01-30 Taihei Kinzoku Kogyo Kk Heat/wear resistant spray coating material
JPS60103169A (en) * 1983-11-11 1985-06-07 Showa Denko Kk Composite powder for thermal spraying
JPS6233089A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder
JPH07331408A (en) * 1994-06-10 1995-12-19 Nkk Corp High damping alloy steel member having wear resistance and its production
JP2006161131A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Co-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
JP2006161132A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510074A (en) * 2006-11-21 2010-04-02 ハンチントン、アロイス、コーポレーション Filler composition and method for low NOx power boiler tube overlay
US8568901B2 (en) 2006-11-21 2013-10-29 Huntington Alloys Corporation Filler metal composition and method for overlaying low NOx power boiler tubes
JP2012047349A (en) * 2010-08-24 2012-03-08 Tocalo Co Ltd Injection tube for soot blower, and soot blower device
CN102240811A (en) * 2011-04-12 2011-11-16 南京寒锐钴业有限公司 Production method of granulated cobalt powder
JP2016503125A (en) * 2012-12-12 2016-02-01 アーベーベー ターボ システムズ アクチエンゲゼルシャフト Abrasion resistant layer and method for producing the abrasion resistant layer
CN103305838A (en) * 2013-06-24 2013-09-18 叶绿均 Tube stock with Ni-based self-molten alloy laser cladding coating
CN103305840A (en) * 2013-06-24 2013-09-18 叶绿均 Preparation method of Ni-based self-fluxing alloy laser cladding coating
CN103305839A (en) * 2013-06-24 2013-09-18 叶绿均 Ni-based self-fluxing alloy laser cladding coating
TWI749097B (en) * 2016-11-10 2021-12-11 日商荏原環境工程股份有限公司 Boiler water pipe of waste incinerator and manufacturing method thereof
WO2018088251A1 (en) * 2016-11-10 2018-05-17 荏原環境プラント株式会社 Boiler water pipe for waste incinerator and production method therefor
CN110062815A (en) * 2016-11-10 2019-07-26 荏原环境工程株式会社 The boiler water tube and its manufacturing method of incinerator
CN106975748A (en) * 2017-04-18 2017-07-25 沈益明 A kind of preparation method of Wear-resistant, high-temperature resistant nickel-base alloy turbo blade
CN115142003A (en) * 2021-04-16 2022-10-04 浙江福腾宝家居用品有限公司 Alloy wire material, application method thereof and cooking utensil
CN115142003B (en) * 2021-04-16 2023-09-15 浙江福腾宝家居用品有限公司 Alloy wire, application method thereof and cooking utensil
CN113523288A (en) * 2021-07-13 2021-10-22 济南大学 Internal gear for high-salt environment and preparation method thereof
CN114438426A (en) * 2022-01-24 2022-05-06 郑州大学 Hard alloy for PCB micro-drilling/micro-milling cutter and preparation method thereof
CN114438426B (en) * 2022-01-24 2022-07-15 郑州大学 Hard alloy for PCB micro-drilling/micro-milling cutter and preparation method thereof

Also Published As

Publication number Publication date
JP4653721B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4653721B2 (en) Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder
JP3952252B2 (en) Powder for thermal spraying and high-speed flame spraying method using the same
TWI661058B (en) Novel powder
US6482534B2 (en) Spray powder, thermal spraying process using it, and sprayed coating
DK2066822T3 (en) Cermet powder
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
JP6180427B2 (en) Metal powder for HVOF spraying and method for coating the surface thereby
JP7341582B2 (en) NiCrBSi-ZrB2 cermet powder for high temperature protection, composite coating and manufacturing method thereof
CN101818343A (en) Laser cladding method of composite coating containing spherical tungsten carbide
CN112191857B (en) Method for preparing iron-based powder by using high-energy-density plasma rotating electrode
Li et al. Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings
WO2012002475A1 (en) Powder for thermal spraying and process for formation of sprayed coating
CN108690946A (en) A kind of surfacing dusty material and its preparation method and application
CN1331634C (en) Nickel-base spraying smelting alloy powder and its preparation process
CN103725945A (en) High hardness tungsten carbide base wear-resistant coating material and preparation method thereof
US20080113105A1 (en) Coating Formed By Thermal Spraying And Methods For The Formation Thereof
JP4328715B2 (en) Ni-based self-fluxing alloy powder for thermal spraying and manufacturing method thereof
JP4762583B2 (en) Ni-based self-fluxing alloy powder and corrosion and wear resistant parts using the powder
JP4652792B2 (en) Co-based self-fluxing alloy powder for thermal spraying
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JP2004124129A (en) Powder for thermal spraying
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JP2011026666A (en) Powder of boride-based cermet for thermal spraying
JP2001234323A (en) Thermal spraying powder material, and thermal spraying method and sprayed coating film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250