JPH051387A - Formation of insulation coating on grain-oriented silicon steel sheet - Google Patents

Formation of insulation coating on grain-oriented silicon steel sheet

Info

Publication number
JPH051387A
JPH051387A JP17779491A JP17779491A JPH051387A JP H051387 A JPH051387 A JP H051387A JP 17779491 A JP17779491 A JP 17779491A JP 17779491 A JP17779491 A JP 17779491A JP H051387 A JPH051387 A JP H051387A
Authority
JP
Japan
Prior art keywords
coating
grain
steel sheet
silicon steel
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17779491A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
渡辺  誠
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17779491A priority Critical patent/JPH051387A/en
Publication of JPH051387A publication Critical patent/JPH051387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To advantageously form an insulated coat excellent in tensile force imparting effect and free from powdery oxide film. CONSTITUTION:At the time of coating the surface of a grain-oriented silicon steel sheet finished with finish annealing with a coating treating soln., then heating it to a temp. range exceeding 350 deg.C and forming an insulation coating, the above heating treatment is made to follow the temp. raising stage in which the arrival temp. T( deg.C) after the passage of t(s) from the arrival point of 350 deg.C always satisfies -0.1t<2>+17t+350<T<-0.26t<2>+80t+350, by which the generation of blisters and openings causing powdery oxide film can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は方向性けい素鋼板の表
面に、張力付与効果が高く、また粉噴きのない絶縁コー
トを形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating coat on a surface of a grain-oriented silicon steel sheet, which has a high tension-imparting effect and is free of dust.

【0002】一般に方向性けい素鋼板においては、絶縁
性を付与することのほか、加工性、防錆性、そして張力
付与による磁性等の改善のために、鋼板表面に絶縁コー
トを施す。この絶縁コートは、方向性けい素鋼板の最終
仕上焼鈍時に形成するフォルステライトセラミック被膜
とその上に施すりん酸塩系の上塗り被膜とからなるのが
通例である。これらの被膜には、鋼板との熱膨張率差を
利用し、鋼板に張力を付与することにより磁区を細分化
し、鉄損の低減に寄与する特性が求められる。従って張
力付与効果の高い被膜を得る方法の開発が重要である。
Generally, in a grain-oriented silicon steel sheet, an insulating coat is applied to the surface of the steel sheet to improve workability, rust prevention, and magnetism by imparting tension, in addition to providing insulation. This insulating coat is usually composed of a forsterite ceramic coating formed at the time of final annealing of grain-oriented silicon steel sheet and a phosphate-based top coating applied thereon. These coatings are required to have characteristics that utilize the difference in the coefficient of thermal expansion from the steel sheet and apply tension to the steel sheet to subdivide the magnetic domains and contribute to the reduction of iron loss. Therefore, it is important to develop a method for obtaining a coating having a high tension imparting effect.

【0003】また最終製品となった鋼板は、いわゆるメ
ジャリングロールと呼ばれる長さ測定用のロールを通っ
た後にシャーで切断されるが、鋼板に粉がついていると
それがメジャリングロールに付着して該ロールの見かけ
の径が変わり、長さを正確に測定できない。さらにこの
粉の発生によって作業環境も悪くなることもあり、粉噴
きのない被膜の被成は製品製造上の重要課題となってい
る。
Further, the steel sheet as the final product is cut by a shear after passing through a length measuring roll called a so-called measuring roll. If the steel sheet is dusted, it adheres to the measuring roll. The apparent diameter of the roll changes, and the length cannot be measured accurately. Furthermore, the generation of this powder may worsen the working environment, and the formation of a coating free of powder spray has become an important issue in product manufacturing.

【0004】[0004]

【従来の技術】この種絶縁コートについては、様々な提
案がなされている。例えば特公昭56−52117 号公報に
は、コロイド状シリカ及びりん酸マグネシウムを82:20
のモル比で添加したコーティング処理液を塗布すること
により鉄損や磁気歪、さらに加工性を改善することにつ
いて、また特公昭53−28043 号公報には、コロイド状シ
リカ、りん酸アルミニウム及びクロム酸を添加したコー
ティング処理液を塗布することにより表面性状がよく、
鉄損や磁気歪の改善を寄与する被膜を得ることについ
て、さらに特開平2−267276号公報には、800 ℃までの
昇温速度を10〜60℃/sとして張力付与効果を高める方
法について、それぞれ開示されている。
2. Description of the Related Art Various proposals have been made for this type of insulating coat. For example, Japanese Patent Publication No. 56-52117 discloses colloidal silica and magnesium phosphate at 82:20.
The improvement of iron loss, magnetostriction, and workability by applying a coating treatment liquid added at a molar ratio of 50% to 50%, and Japanese Patent Publication No. 53-28043 discloses colloidal silica, aluminum phosphate and chromic acid. By applying a coating treatment liquid containing
Regarding obtaining a coating film that contributes to improvement of iron loss and magnetostriction, further, JP-A-2-267276 discloses a method of increasing the tension application effect by increasing the temperature rising rate up to 800 ° C. from 10 to 60 ° C./s. Each is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の手
法は、いずれも粉の発生を防ぐことができないところに
問題を残していた。この発明は、種々のコーティング特
性、とくに張力付与効果を損うことなしに、粉噴きのな
い絶縁コートを形成する方法について提案することを目
的とする。
However, none of the above methods has a problem in that the generation of powder cannot be prevented. It is an object of the present invention to propose a method for forming a dust-free insulating coat without compromising various coating properties, especially the tensioning effect.

【0006】[0006]

【課題を解決するための手段】発明者らは、まず被膜上
の粉の発生原因を究明したところ、被膜のふくれや穴が
粉噴きの大きな一因であることが判明した。すなわち被
膜にふくれや穴のある鋼板を搬送ロールやメジャリング
ロールに通すと、通板時のわずかな圧下力によってふく
れや穴の縁が剥離し、粉が発生することが判った。そこ
で粉噴きの原因であるふくれ及び穴の発生を防止し、し
かもその他の特性、とくに張力付与効果を損うことのな
い手法について種々の実験を行った結果、コーティング
処理液を塗布した後の加熱処理を工夫することが有効で
あるとの知見を得た。すなわち350 ℃以上の温度域にお
ける加熱時間と到達温度との関係を適切に制御すること
により、上記の目的を達成できることを見出し、この発
明を完成した。
Means for Solving the Problems The inventors first investigated the cause of the generation of powder on the coating, and found that the swelling and holes in the coating were one of the major causes of powder ejection. That is, it was found that when a steel sheet having blisters or holes in the coating was passed through a transport roll or a measuring roll, the edges of the blisters or holes were peeled off due to a slight reduction force at the time of passing, and powder was generated. Therefore, as a result of various experiments conducted on methods that prevent the generation of blisters and holes that are the cause of powder spray and do not impair other properties, especially the effect of applying tension, heating after applying the coating solution We have found that it is effective to devise a treatment. That is, the inventors have found that the above object can be achieved by appropriately controlling the relationship between the heating time and the ultimate temperature in the temperature range of 350 ° C. or higher, and completed the present invention.

【0007】すなわちこの発明は、仕上焼鈍済みの方向
性けい素鋼板の表面にコーティング処理液を塗布し、次
いで350 ℃をこえる温度域に加熱して絶縁コートを形成
するに当たり、上記加熱処理は、350 ℃以上の温度域に
おいて、350 ℃到達時からt(s)経過後の到達温度T
(℃)が、−0.1t2 +17t +350 <T<−0.26t2+80t
+350 の関係を常に満足する昇温過程に従うことを特徴
とする方向性けい素鋼板の絶縁コートの形成方法であ
る。また加熱処理における350 ℃未満の昇温速度は15℃
/s以下であることが有利に適合する。
That is, according to the present invention, when a coating treatment liquid is applied to the surface of a grain-finished grain-oriented silicon steel sheet and then heated to a temperature range exceeding 350 ° C. to form an insulating coat, the heat treatment is In the temperature range of 350 ° C or higher, the reached temperature T after the elapse of t (s) since the temperature reached 350 ° C
(℃) is -0.1t 2 + 17t +350 <T <-0.26t 2 + 80t
This is a method for forming an insulation coat of grain-oriented silicon steel, which is characterized by following a temperature rising process that always satisfies the relationship of +350. In addition, the heating rate of less than 350 ℃ in heat treatment is 15 ℃
A value of / s or less is advantageous.

【0008】次にこの発明を導くに到った実験結果につ
いて詳しく述べる。まず被膜の表面性状に影響を与え
る、コーティング処理液塗布後の加熱処理について検討
した。すなわちサンプルとして0.23mm厚の方向性けい素
鋼の最終仕上げ焼鈍板を用い、これにコロイド状シリカ
37wt%、第1りん酸マグネシウム51wt%、無水クロム酸
12wt%を含有するコーティング処理液を8g/m2で塗布
し、これを表1に示す昇温パターンで焼付けた。このと
きのふくれ発生状況を表1に併記する。
Next, the experimental results leading to the present invention will be described in detail. First, the heat treatment after coating the coating treatment liquid, which affects the surface properties of the coating, was examined. That is, a 0.23 mm thick grain-finished grain-finished annealed steel sheet was used as a sample.
37wt%, primary magnesium phosphate 51wt%, chromic anhydride
A coating treatment liquid containing 12 wt% was applied at 8 g / m 2 and baked in the temperature rising pattern shown in Table 1. Table 1 also shows the occurrence of blisters at this time.

【0009】上記の実験結果から、加熱処理における昇
温速度を変化する、特に昇温速度を途中で速くするの
が、ふくれ及び穴の発生を防止するのに有効であること
が判明した。
From the above experimental results, it has been found that changing the rate of temperature rise in the heat treatment, in particular, increasing the rate of temperature rise is effective in preventing the formation of blisters and holes.

【0010】次にサンプルとして0.23mm厚の方向性けい
素鋼の最終仕上げ焼鈍板を用い、該鋼板表面に、コロイ
ド状シリカ:37wt%、第1りん酸塩:51wt%及び無水ク
ロム酸:11wt%を含有するコーティング処理液を8g/m2
で塗布し、昇温速度を10℃/s次いで30℃/sとし800
℃まで加熱する焼鈍を施し、被膜を焼付けて絶縁コート
を形成した。この処理を、昇温速度の切替え温度を種々
に変化して行い、得られた絶縁コートの表面を顕微鏡で
観察した結果を図1に示す。
Next, as a sample, a 0.23 mm-thick grain-finished grain-finished annealed steel plate was used. On the surface of the steel plate, colloidal silica: 37 wt%, primary phosphate: 51 wt% and chromic anhydride: 11 wt%. % Coating solution containing 8% / m 2
And apply a temperature rise rate of 10 ℃ / s and then 30 ℃ / s to 800
Annealing was performed by heating to 0 ° C., and the coating was baked to form an insulating coat. This treatment is performed by changing the temperature change rate switching temperature variously, and the result of observing the surface of the obtained insulation coat with a microscope is shown in FIG.

【0011】同図から、350 ℃を昇温速度の切替え点と
した加熱処理によって得られた絶縁コートは、ふくれ発
生率が最も低いことがわかる。これは塗膜の乾燥後の脱
水反応が350 ℃前後で開始し、350 ℃からの昇温速度を
速めることで適切な加熱処理が実現できたためと考えら
れる。
From the figure, it can be seen that the insulating coating obtained by the heat treatment with 350 ° C. as the switching point of the heating rate has the lowest swelling rate. This is considered to be because the dehydration reaction after drying the coating film started at around 350 ° C, and an appropriate heat treatment could be realized by increasing the heating rate from 350 ° C.

【0012】そこで350 ℃以上の温度域での加熱処理に
ついて、さらに検討を行った。すなわち図1に結果を示
した実験に供したと同様の鋼板の表面に、同様のコーテ
ィング処理液を8g/m2で塗布し、その後350℃未満の温
度域では10℃/sの昇温速度で加熱し、引続き350 ℃以
上の温度域では5〜80℃/sの範囲で種々の昇温速度で
加熱して得た絶縁コートを、それぞれ顕微鏡で観察し
た。この観察結果を図2に示すように、350 ℃を起点と
した加熱時間t(s)における到達温度T(℃)が、T
=−0.1t2 +17t +350 を境とする上の領域Iの範囲か
ら外れることなしに加熱処理を終了して得た絶縁コート
はふくれの発生がなく、一方T=−0.26t2+80t +350
を境とする下の領域IIの範囲から外れることなしに加熱
処理を終了して得た絶縁コートは穴の発生がなかった。
この実験結果から、上記到達温度T(℃)が、上記の領
域Iと領域IIとが重複する領域III から、常に外れるこ
となしに加熱処理を終了することによって、ふくれ及び
穴のない絶縁コートを得られることが判明した。
Therefore, the heat treatment in the temperature range of 350 ° C. or higher was further examined. That is, the same coating solution was applied at 8 g / m 2 on the surface of a steel plate similar to that used in the experiment whose results are shown in FIG. 1, and thereafter, in a temperature range of less than 350 ° C., a heating rate of 10 ° C./s. The insulating coatings obtained by heating at various heating rates in the range of 5 to 80 ° C / s in a temperature range of 350 ° C or higher were observed under a microscope. As shown in FIG. 2 as a result of this observation, the temperature T (° C.) reached at the heating time t (s) starting from 350 ° C. is
= −0.1t 2 + 17t +350 The insulation coat obtained by finishing the heat treatment without deviating from the range of the above region I has no swelling, while T = −0.26t 2 + 80t +350
The insulating coat obtained by finishing the heat treatment without deviating from the range of the lower region II with respect to the boundary had no hole.
From the results of this experiment, it is possible to obtain an insulating coat having no blisters and holes by terminating the heat treatment without constantly deviating from the region III where the reached temperature T (° C.) overlaps the region I and the region II. It turned out to be obtained.

【0013】なおふくれの発生は、塗膜の乾燥時に塗膜
成分が高粘度化して起こる脱水反応によって被膜が持上
がるためと考えられ、上記の領域Iでは塗膜成分が高粘
度化しないうちに脱水が進み、水蒸気が外側の気相中に
拡散するため、ふくれが発生しないと推察される。この
ふくれは製品の占積率を低下することもあり、ふくれの
発生を回避し得る、この発明は有意義である。一方上記
の領域IIの範囲外では、塗膜が急激な乾燥速度に耐えら
れないため、クラックが発生して穴に発展するものと考
えられる。
It is considered that the occurrence of swelling is caused by the dehydration reaction which occurs when the coating film component becomes highly viscous during drying, and in the above-mentioned region I, before the coating film component becomes highly viscous. It is presumed that swelling does not occur because water vapor diffuses into the outer gas phase as dehydration progresses. This blister may reduce the space factor of the product, and the occurrence of blister can be avoided. The present invention is significant. On the other hand, outside the range of the above-mentioned region II, it is considered that the coating film cannot withstand the rapid drying rate, and thus cracks are generated to develop into holes.

【0014】以上述べたように、350 ℃以上の温度域で
の加熱処理を上記領域III の範囲内で行うことによって
ふくれ及び穴の発生を回避できることが判明したが、さ
らに350 ℃未満の温度域での加熱処理は鉄損の低減に有
効であることも、次の実験によって判明した。すなわち
上記した実験と同様にコーティング処理液を塗布した
後、350 ℃未満の温度域は種々の昇温速度で加熱し、引
続き350 ℃以上の温度域での加熱は図2の領域III の範
囲内で行って絶縁コートを形成した鋼板について、絶縁
コートの形成前後の磁気特性を調べた。その結果を表2
に示す。
As described above, it was found that the heat treatment in the temperature range of 350 ° C. or higher can be avoided by performing the heat treatment in the range of the above range III, but the temperature range of 350 ° C. or lower can be avoided. It was also proved by the following experiment that the heat treatment at 1 is effective in reducing iron loss. That is, after applying the coating solution in the same manner as in the above experiment, heating was performed at various heating rates in a temperature range of less than 350 ° C, and subsequently heating in a temperature range of 350 ° C or higher was within the range III in Fig. 2. The magnetic properties before and after the formation of the insulating coat were examined for the steel sheet on which the insulating coat was formed by performing. The results are shown in Table 2.
Shown in.

【0015】 [0015]

【0016】同表からわかるように、350 ℃未満の温度
域での昇温速度を15℃/s以下にすることによって、鉄
損低減の効果が大きくなる。これは350 ℃未満の温度域
における昇温速度が15℃/s以下の加熱処理によって、
被膜の張力付与効果が増大するためと考えられる。
As can be seen from the table, the effect of reducing iron loss becomes large by setting the rate of temperature rise in the temperature range of less than 350 ° C. to 15 ° C./s or less. This is due to the heat treatment at a temperature rise rate of 15 ° C / s or less in the temperature range of less than 350 ° C.
It is considered that this is because the effect of applying tension to the coating increases.

【0017】[0017]

【作用】次にこの発明の方法における限定理由について
述べる。まずこの発明に従う絶縁コートが被成される鋼
板は方向性けい素鋼板であり、通常熱間圧延、冷間圧
延、脱炭焼鈍及び仕上焼鈍の一連の工程を経た鋼板であ
る。
Next, the reasons for limitation in the method of the present invention will be described. First, the steel sheet on which the insulating coat according to the present invention is formed is a grain-oriented silicon steel sheet, which is usually a steel sheet that has undergone a series of steps of hot rolling, cold rolling, decarburization annealing and finish annealing.

【0018】また絶縁コートを形成するためのコーティ
ング処理液は、コロイド状シリカを30〜50wt%、Mg, A
l, Ca, Sr及びMnから選ばれる1種または2種以上の第
1りん酸塩を20〜60wt%及び無水クロム酸を3〜10wt%
含有するものが好適である。すなわちコロイド状シリカ
が30wt%未満であるか第1りん酸塩が60wt%を超える
と、張力付与効果を期待できず、一方コロイド状シリカ
が50wt%を超えるか第1りん酸塩が20wt%未満である
と、被膜が均質にならないため密着性が低下する。そし
て無水クロム酸は吸湿性を低下するために、3〜10wt%
の範囲で添加するのが好ましい。さらにその他の成分と
しては、シリカ粉末やアルミナ粉末を0.1 wt%以上で添
加すれば耐スティッキング性(歪取焼鈍における被膜融
着に対する耐性)を改善できるが、1wt%をこえると表
面性状が劣化するため、0.1 〜1wt%の範囲で添加する
ことが好ましい。なお目付量は4〜15g/m2の範囲に調整
するのが望ましい。なぜなら4g/m2より少ないと絶縁性
が問題になり、一方15g/m2をこえると占積率が低下する
ので好ましくない。
The coating treatment liquid for forming the insulating coat contains colloidal silica in an amount of 30 to 50 wt%, Mg, A
20-60 wt% of one or more primary phosphates selected from l, Ca, Sr and Mn and 3-10 wt% of chromic anhydride
Those containing are preferable. That is, if the colloidal silica is less than 30 wt% or the primary phosphate exceeds 60 wt%, the effect of imparting tension cannot be expected, while the colloidal silica exceeds 50 wt% or the primary phosphate is less than 20 wt%. When it is, the coating film is not uniform, and thus the adhesiveness is deteriorated. And since chromic anhydride decreases hygroscopicity, 3-10 wt%
It is preferable to add in the range of. As other components, if silica powder or alumina powder is added in an amount of 0.1 wt% or more, the sticking resistance (resistance to film fusion during stress relief annealing) can be improved, but if it exceeds 1 wt%, the surface properties deteriorate. Therefore, it is preferable to add it in the range of 0.1 to 1 wt%. The basis weight is preferably adjusted within the range of 4 to 15 g / m 2 . If it is less than 4 g / m 2 , the insulating property becomes a problem, while if it exceeds 15 g / m 2 , the space factor is lowered, which is not preferable.

【0019】次にコーティング処理液を塗布した後は、
まず350 ℃未満の温度域での昇温速度を好ましくは15℃
/s以下とした加熱処理を施し、引続く350 ℃以上の温
度域での加熱処理を上記した図2の領域IIIの範囲内で
行うことによってふくれ及び穴の発生を回避する。なお
焼付けは、膜質の良好な被膜を得るために、700 〜950
℃の温度域に10s以上保持して行うことが好ましい。
Next, after applying the coating treatment liquid,
First, increase the heating rate in the temperature range below 350 ° C to 15 ° C.
By carrying out the heat treatment at a temperature of / s or less and subsequently performing the heat treatment in the temperature range of 350 ° C. or higher within the range of the region III of FIG. 2 described above, the generation of blisters and holes is avoided. Note that baking is performed at 700 to 950 to obtain a film with good film quality.
It is preferable to hold the temperature in the temperature range of ℃ for 10 seconds or more.

【0020】[0020]

【実施例】通常の工程を経て得られた方向性けい素鋼の
最終仕上げ焼鈍板(0.23mm厚) の未反応分離剤を除去
し、次いで歪取り焼鈍及びりん酸酸洗を行った後、各種
のコーティング処理液を塗布し、その後10℃/sの昇温
速度で350 ℃まで加熱し、次いで図3に示すA〜Eに従
う加熱処理を施した。かくして得られた絶縁コートにお
ける種々の特性について調べた結果を表3に示すよう
に、この発明方法では耐粉噴き性や張力付与効果に優れ
ることは勿論、その他のコーティング特性も従来のもの
に比べて劣ることはなかった。
[Example] After removing the unreacted separating agent of the final finish annealed plate (0.23 mm thickness) of the grain-oriented silicon steel obtained through a normal process, and then performing strain relief annealing and phosphoric acid pickling, Various coating liquids were applied, heated to 350 ° C. at a temperature rising rate of 10 ° C./s, and then heat-treated according to A to E shown in FIG. As shown in Table 3 as a result of examining various characteristics of the thus-obtained insulating coat, the method of the present invention is excellent in the powder spray resistance and the effect of imparting tension, and other coating characteristics are also superior to those of the conventional one. Was not inferior.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】この発明によれば、種々のコーティング
特性、特に張力付与効果を損なうことなく、耐粉噴き性
のよい絶縁コートを形成でき、変圧器や発電機の鉄芯材
料に好適な製品を高い寸法精度の下に提供し得る。
EFFECTS OF THE INVENTION According to the present invention, an insulating coat having good dust-spraying resistance can be formed without impairing various coating characteristics, particularly the effect of imparting tension, and a product suitable as an iron core material for transformers and generators. Can be provided with high dimensional accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】ふくれ発生率と昇温パターン切替え温度との関
係を示すグラフである。
FIG. 1 is a graph showing a relationship between a swelling occurrence rate and a temperature rising pattern switching temperature.

【図2】350 ℃以上の温度域における、経過時間と到達
温度との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the elapsed time and the reached temperature in the temperature range of 350 ° C. or higher.

【図3】350 ℃以上の温度域における、昇温パターンを
示すグラフである。
FIG. 3 is a graph showing a temperature rising pattern in a temperature range of 350 ° C. or higher.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 仕上焼鈍済みの方向性けい素鋼板の表面
にコーティング処理液を塗布し、次いで350 ℃をこえる
温度域に加熱して絶縁コートを形成するに当たり、上記
加熱処理は、350 ℃以上の温度域において、350 ℃到達
時からt(s)経過後の到達温度T(℃)が、 −0.1t2 +17t +350 <T<−0.26t2+80t +350 の関係を常に満足する昇温過程に従うことを特徴とする
方向性けい素鋼板の絶縁コートの形成方法。
1. A method of applying a coating treatment liquid to the surface of a grain-finished grain-oriented silicon steel sheet and then heating it to a temperature range exceeding 350 ° C. to form an insulating coat, wherein the heat treatment is 350 ° C. or more. In the temperature range of, the temperature reached T (℃) after the elapse of t (s) from the point of 350 ℃ always follows the temperature rising process that satisfies the relationship of −0.1t 2 + 17t +350 <T <−0.26t 2 + 80t +350. A method for forming an insulating coat of a grain-oriented silicon steel sheet, comprising:
【請求項2】 加熱処理における350 ℃未満の昇温速度
は15℃/s以下である請求項1記載の方向性けい素鋼板
の絶縁コートの形成方法。
2. The method for forming an insulation coat of a grain-oriented silicon steel sheet according to claim 1, wherein the rate of temperature increase below 350 ° C. in the heat treatment is 15 ° C./s or less.
JP17779491A 1991-06-24 1991-06-24 Formation of insulation coating on grain-oriented silicon steel sheet Pending JPH051387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17779491A JPH051387A (en) 1991-06-24 1991-06-24 Formation of insulation coating on grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17779491A JPH051387A (en) 1991-06-24 1991-06-24 Formation of insulation coating on grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH051387A true JPH051387A (en) 1993-01-08

Family

ID=16037212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17779491A Pending JPH051387A (en) 1991-06-24 1991-06-24 Formation of insulation coating on grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH051387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099274A1 (en) * 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
JP2019137874A (en) * 2018-02-06 2019-08-22 日本製鉄株式会社 Oriented electrical steel sheet and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099274A1 (en) * 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
JP5532185B2 (en) * 2011-12-28 2014-06-25 Jfeスチール株式会社 Oriented electrical steel sheet and method for improving iron loss thereof
CN104024455A (en) * 2011-12-28 2014-09-03 杰富意钢铁株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
US10062483B2 (en) 2011-12-28 2018-08-28 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
JP2019137874A (en) * 2018-02-06 2019-08-22 日本製鉄株式会社 Oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101896046B1 (en) Method for producing an insulation coating on a grain-oriented electrical steel flat product and electrical steel flat product coated with such an insulation coating
KR101677883B1 (en) Grain-oriented electrical steel sheet, and method for manufacturing same
EP2799566B1 (en) Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
JP6394837B1 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JP7151773B2 (en) Method for manufacturing grain-oriented electrical steel sheet and equipment for applying annealing separator
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JPH051387A (en) Formation of insulation coating on grain-oriented silicon steel sheet
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
JP3651213B2 (en) Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JP2004332072A (en) Method of forming chromiumless film for grain oriented magnetic steel sheet
KR102583079B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US5045350A (en) Applying tension to light gage grain-oriented silicon electrical steel of less than 7-mil by stress coating to reduce core losses.
RU2779376C1 (en) Electrical steel sheet with oriented grain structure and its manufacturing method
JPH06108300A (en) Production of low core loss grain-oriented silicon steel sheet
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3300117B2 (en) Method of forming insulating coating on grain-oriented silicon steel sheet
JPH02267276A (en) Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPS63111604A (en) Forming method for insulating film for electromagnetic steel plate not seized at strain removing annealing time
JPH0617513B2 (en) Method for flattening annealing of unidirectional silicon steel sheet with excellent magnetic properties and coating adhesion
KR20220067546A (en) Film formation method and manufacturing method of electrical steel sheet with insulating film