JP2004332072A - Method of forming chromiumless film for grain oriented magnetic steel sheet - Google Patents

Method of forming chromiumless film for grain oriented magnetic steel sheet Download PDF

Info

Publication number
JP2004332072A
JP2004332072A JP2003131968A JP2003131968A JP2004332072A JP 2004332072 A JP2004332072 A JP 2004332072A JP 2003131968 A JP2003131968 A JP 2003131968A JP 2003131968 A JP2003131968 A JP 2003131968A JP 2004332072 A JP2004332072 A JP 2004332072A
Authority
JP
Japan
Prior art keywords
steel sheet
coating
chromium
mass
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003131968A
Other languages
Japanese (ja)
Other versions
JP4305040B2 (en
Inventor
Makoto Watanabe
誠 渡辺
Toshito Takamiya
俊人 高宮
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003131968A priority Critical patent/JP4305040B2/en
Publication of JP2004332072A publication Critical patent/JP2004332072A/en
Application granted granted Critical
Publication of JP4305040B2 publication Critical patent/JP4305040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a chromiumless film for obtaining a steel sheet having high moisture absorbing resistance and low iron loss on levels the same as those of a steel on which a chromium-containing film is formed even in the case where a film free from chromium is applied as a grain oriented magnetic steel sheet. <P>SOLUTION: The arithmetic average roughness of the surface of a grain oriented magnetic steel sheet subjected to final finish annealing is controlled to ≤0.4 μm, and thereafter, a phosphate based tension-imparted steel sheet free from chromium is formed on the surface of the steel sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、クロムを含まない被膜を方向性電磁鋼板の表面に形成するに際し、不可避的に発生する被膜欠陥を防止し、表面被膜性状を改善する方法に関するものである。
【0002】
【従来の技術】
一般に、方向性電磁鋼板においては、絶縁性、加工性、防錆性等を付与するために、その表面に被膜を施している。かかる表面被膜は、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜と、その上に被成されるりん酸塩系の上塗り被膜からなる。
【0003】
また、これらの被膜は高温で形成され、しかも低い熱膨張率を持つことから、温度が室温まで下がったときの鋼板とコーティングとの熱膨張率の違いにより鋼板に張力を付与し、鉄損を低減させる効果があるため、被膜によって、できるだけ高い張力を鋼板に付与することが望まれている。
【0004】
このような諸特性を満たすために、従来、種々のコーティング被膜が提案されている。例えば、特許文献1には、りん酸マグネシウム、コロイド状シリカおよび無水クロム酸を主体とするコーティングが、また特許文献2には、りん酸アルミニウム、コロイド状シリカおよび無水クロム酸を主体とするコーティングが、それぞれ提案されている。
【0005】
一方、近年の環境保全への関心の高まりにより、クロムや鉛等の有害物質を含まない製品に対する要望が強まっており、方向性電磁鋼板においてもクロムを含まない被膜を形成させる方法の開発が望まれていた。しかし、クロムを用いないと著しい耐吸湿性の劣化や、張力低下による鉄損改善効果の消失等、品質上の問題が発生するため、クロムを無添加とすることができなかった。ここに、被膜における耐吸湿性の劣化とは、被膜が大気中の水分により吸湿し、部分的に液化して膜厚が薄くなったり被膜のない部分ができたりして、絶縁や防錆性が劣化してしまうことである。
【0006】
この問題を解決する方法として、特許文献3に記載された、コロイド状シリカ、りん酸アルミニウム、ホウ酸および硫酸塩からなるコーティング液を塗布する方法が開発された。この方法により、従来のクロム含有被膜に近い張力効果による鉄損改善と耐吸湿性の改善とがもたらされた。しかしながら、この方法による鉄損並びに耐吸湿性の改善は、得られる効果にばらつきがあり、場合によっては問題となるレベルまで鉄損や耐吸湿性が劣化することがあった。
【0007】
また、これ以外にもクロムを含まないコーティングとして、例えば特許文献4にはクロム化合物の代りにホウ酸化含物を添加する方法が、特許文献5には酸化物コロイドを添加する方法が、特許文献6には金属有機酸塩を添加する方法が、それぞれ開示されている。ところが、いずれの技術を用いても、耐吸湿性および鉄損の改善効果に生じるばらつきは依然として大きく、完全に解決するには到らなかった。
【0008】
【特許文献1】
特公昭56−52117号公報
【特許文献2】
特公昭53−28375号公報
【特許文献3】
特公昭57−9631号公報
【特許文献4】
特開2000−169973号公報
【特許文献5】
特開2000−169972号公報
【特許文献6】
特開2000−178760号公報
【0009】
【発明が解決しようとする課題】
この発明は、上記の事情に鑑みてなされたものであり、方向性電磁鋼板にクロムを含まない被膜を適用した場合にあっても、クロム含有被膜を被成した鋼板と同レベルの高い耐吸湿性並びに低鉄損を有する鋼板を得るための、クロムレス被膜の形成方法について提案することを目的とする。
【0010】
【課題を解決するための手段】
発明者らは、クロムを含まない被膜によってもクロム含有被膜と同程度の効果を得るための方策を鋭意究明したところ、最終仕上焼鈍後の鋼板の表面粗さを規制するのが極めて有効であることを見出し、この発明を完成するに到った。
【0011】
すなわち、この発明の要旨構成は、次のとおりである。
(1)最終仕上焼鈍済みの方向性電磁鋼板の表面を算術平均粗さで0.4μm以下とし、その後鋼板表面にクロムを含まないりん酸塩系の張力付与被膜を形成することを特徴とする方向性電磁鋼板用クロムレス被膜の形成方法。
【0012】
(2)最終仕上焼鈍済みの方向性電磁鋼板の表面を算術平均粗さで0.4μm以下とした後、クロムを含まないりん酸塩系のコーティング液を鋼板表面に塗布し、次いで200〜700℃までの昇温速度が10〜60℃/sである焼付けを行うことを特徴とする方向性電磁鋼板用クロムレス被膜の形成方法。
【0013】
【発明の実施の形態】
発明者らは、特許文献3に記載された、クロムを含まない被膜において、耐吸湿性並びに鉄損の改善効果にばらつきが生じるのは、何らかの外乱要因があって所望の特性が達成できないものと考え、この原因を究明するために膨大な実験を実施した。その結果、最終仕上焼鈍後の鋼板の表面粗さが、このばらつきを生じさせる主要因であることをつきとめた。以下に、この知見を得るに至った実験について述べる。
【0014】
C:0.045mass%、Si:3.25mass%、Mn:0.07mass%およびSe:0.02mass%を含み、残部実質的にFeよりなる珪素鋼スラブを、1380℃で30分間加熱後熱間圧延にて2.2mm厚とし、その後950℃で1分間の熱延板焼鈍を施し、1000℃で1分間の中間焼鈍を挟む冷間圧延にて0.23mmの最終板厚に仕上げたのち、鋼板表面をサンドペーパーで研磨し、表面粗さを調整した。次いで、850℃で2分、雰囲気酸化性(雰囲気における水素分圧に対する水蒸気分圧の比)が0.55の脱炭焼鈍を施した後、鋼板表面に酸化マグネシウム100質量部、酸化チタン2質量部および硫酸ストロンチウム1質量部よりなる焼鈍分離剤を、鋼板表面に両面で12g/m塗布そして乾燥して二次再結晶焼鈍を施し、引続き乾H中で1200℃で10時間の純化焼鈍を兼ねた最終仕上焼鈍を行った後、未反応の焼鈍分離剤を除去した。
【0015】
このようにして得られた鋼板を300mm×100mmのサイズにせん断し、SST試験器(単板磁気試験器)で磁気測定を行った。また、最終仕上焼鈍後の鋼板の表面粗さについても測定を行った。その後、りん酸酸洗を行った後に、コーティング処理液として、特許文献3に記載のりん酸アルミニウムを50質量部、コロイド状シリカを40質量部、ホウ酸を5質量部および硫酸マグネシウムを10質量部の配合割合になるコーティング剤を鋼板両面に対して乾燥重量で10g/m塗布したのち、乾N雰囲気において200℃〜700℃の温度域を20℃/Sの速度で昇温して800℃で2分間保持する焼付けを行った。
【0016】
また、比較として、第一りん酸アルミニウム50質量部、コロイド状シリカ40質量部および無水クロム酸10質量部からなるコーティング液を同様に塗布して同様に焼付けを行った。
【0017】
かくして得られた鋼板に対して再びSST試験器で磁気測定を行った。また、Pの溶出試験も行った。すなわち、P溶出試験は、50mm×50mmの試験片3枚を100℃蒸留水中で5分間浸漬煮沸することによって被膜表面からPを溶出させ、そのPを定量分析した。このPの溶出量によって、被膜の水分による溶解のしやすさを判別することにより、耐吸湿性が評価できる。
【0018】
以上の測定並びに評価結果について、磁気特性およびP溶出量と最終仕上焼鈍後の鋼板の表面粗さの平均値との関係として整理し、図1(a)および(b)にそれぞれ示す。
図1(b)に示すように、クロム含有被膜を形成した鋼板では、表面粗さに大きく影響されることなく良好な耐吸湿性が得られている。また、図1(a)に示すように、磁気特性についても、クロム含有被膜を用いると、表面粗さが大きくなるに従って若干の鉄損劣化が認められるものの、大きな鉄損の劣化は認められない。これに対し、クロムを含有しない被膜を形成した鋼板では、表面粗さの高い領域では十分な耐吸湿性および磁気特性が得られていないが、表面粗さの低い領域、とりわけ算術平均粗さで0.4を超えると磁気特性および耐吸湿性がともに改善し、クロム含有被膜を形成した鋼板と同等の良好な特性が得られている。
【0019】
このように、最終仕上焼鈍後の鋼板の表面粗さにより、耐吸湿性や磁気特性の変化が起こるメカニズムについて明確にするために、上記実験で被膜を形成した鋼板の表面を、走査型電子顕微鏡(SEM)にて観察した。図2に、このSEMによる画像を示す。鋼板の表面粗さ自体は被膜で隠されるために、両サンプル間でさほど大きな差はないが、耐吸湿性の良好なサンプルでは平坦で均一な表面となっているのに対し、耐吸湿性の劣ったサンプルでは、表面に膨れやクラックが多数発生していることがわかる。
【0020】
以上の点から、クロムを含有しない被膜において、表面粗さが耐吸湿性や磁気特性に影響を及ぼすメカニズムについて、発明者らは以下のように考えた。
まず、通常のクロムを含有した被膜では、りん酸塩とコロイド状シリカとの反応後に残った、フリーのりん酸分をクロムがトラップすることにより吸湿性が改善され、また、これにより強固な被膜となるために鋼板への張力効果が高まり、磁気特性が改善される。
【0021】
一方、今回用いた特許文献3に記載されたクロムを含まない被膜では、クロムの代わりに金属硫酸塩およびホウ酸にフリーのりん酸分をトラップさせる働きを持たせているが、表面粗さが高い場合には、このような効果が不十分になると考えられる。
すなわち、クロムを含まない被膜では、表面粗さが高いとコーティング液が高温で蒸発したり、りん酸塩が脱水したりする際に、激しく気泡が発生し、一部が膨れとなったり、割れとなってクラックを生じる、原因となる。また、このような膨れを分析すると、多くの場合、りんが強く濃化しSiの濃化量が少なくなっており、フリーのりん酸分が強く濃化したと考えられることから、このような膨れやクラックから、フリーのりん酸分が溶出していく。また、このようなクラックは被膜自体の強度を弱めることになり、張力効果を低下させて鉄損の改善をもたらさないものと考えられる。
【0022】
これに対し、表面粗さが低いと膨れやクラック自体の発生が抑えられるために、これに起因するフリーのりん酸分と、これが溶出する起点が無くなる結果、耐吸湿性は改善される。また、クラックが少なくなることにより、本来の張力効果が発揮されて、鉄損も効果的に低減されるのである。
【0023】
なお、クロムを含むコーティングでは、例え粗度が高い場合に乾燥中に例えクラックが発生したとしても、クロムの修復機能により最終的にはクラックは少なくなるため、吸湿性の劣化はなく、また粗度が大きいとヒステリシス損は劣化するものの、被膜の強度は保たれるために渦電流損の低下量が損なわれず、鉄損改善効果は保たれるものと考えられる。
【0024】
次に、本発明の各要件の限定理由について述べる。
この発明の素材である含珪素鋼は、方向性珪素鋼用素材であれば、特に鋼種を問わない。例えば、次の成分組成の鋼を用いることができる。
C:0.02〜0.1mass%、
Si:2.0〜4.5mass%および
Mn:0.02〜0.3mass%を含有し、さらに
インヒビターとしてAlNを用いる場合は、Al、Nに関して
Al:0.01〜0.04mass%
Nは、途中窒化させない場合0.006〜0.01mass%で、途中窒化させる場合は特に限定されない。
また、インヒビターとしてMnSe、MnSを用いる場合は、
Se、S:合計で0.01〜0.03mass%。
その他、磁気特性を改善する目的で、
B:0.002〜0.007 mass%、
Cu:0.05〜0.2 mass%、
Bi:0.005〜0.03 mass%、
Te:0.05〜0.2 mass%、
Sb:0.01〜0.05 mass%、
Sn:0.05〜0.3 mass%および
Ni:0.05〜0.2 mass%
の1種または2種以上を含有してもよい。
【0025】
次いで、含珪素鋼スラブを公知の方法で熱間圧延し、1回もしくは中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施してから、焼鈍分離剤を塗布して最終仕上焼鈍する。このとき、最終仕上焼鈍後の鋼板の表面を、その粗さが0.4μmRa以下の平滑にすることが、図1に示したように肝要である。すなわち、クロムレス被膜を施す鋼板の表面粗さが、0.4μmRaを超えると、クロムを含まないコーティング液を塗布、そして焼付けした場合に、所望の耐吸湿性や磁気特性が得られない。
【0026】
ここで、0.4μmRa以下とする鋼板の表面とは、最終仕上焼鈍後にフォルステライト被膜を有する場合はフォルステライト被膜表面の粗さであり、最終仕上焼鈍後にフォルステライト被膜を持たない、いわゆる鏡面仕上げ材の場合は、地鉄表面の粗さを意味する。なお、鏡面仕上げ材は、焼鈍分離剤にアルミナを用いたり、マグネシアに塩化物を添加した粉体を用いたりして、表面に被膜をほとんど形成させないようにして打抜性や磁気特性を改善することを意図したものである。
【0027】
また、鋼板の表面粗さを0.4μmRa以下とするための方法は、特に限定するものではないが、例えば、一次再結晶焼鈍前の冷間圧延におけるロ一ル粗度を小さくしたり、一次再結晶焼鈍前に鋼板表面を研磨したり、一次再結晶焼鈍後に塗布する焼鈍分離剤に、表面を平滑にする効果をもたらす薬剤、例えば水酸化カルシウムや水酸化ストロンチウム等、を添加したりする方法を用いることができる。特に、一次再結晶焼鈍前の冷間圧延におけるロ一ル粗度を小さくしたり、一次再結晶焼鈍前に鋼板表面を研磨したりする方法は、最終仕上焼鈍後にフォルステライト被膜を有する場合および同フォルステライト被膜を持たない場合のいずれにも適用できる。また、焼鈍分離剤に水酸化カルシウムや水酸化ストロンチウム等の、表面を平滑にする効果をもたらす薬剤を添加する手法は、フォルステライト被膜を有する場合に有効である。一方、フォルステライト被膜を持たない場合には、焼鈍分離剤の主成分であるマグネシアに塩化物を添加する際に、その添加量や塩化物の種類の選択により、表面粗さを低減することができる。
【0028】
このような表面粗さを規定した、最終仕上焼鈍済の方向性電磁鋼板に、クロムを含まないコーティング液を塗布する。このコーティング液の成分としては、従来公知のもの、例えば特許文献3に記載されたコロイド状シリカ、りん酸アルミニウム、ホウ酸及び硫酸塩からなるコーティング液、特許文献4に記載されたホウ酸化合物を添加したもの、特許文献5に記載された酸化物コロイドを添加したもの、特許文献6に記載された金属有機酸塩を添加したもの等、いずれのコーティング液も使用可能である。また、これらに、さらにシリカやアルミナ等の無機鉱物粒子を添加して、耐スティッキング性を改善することも可能である。被膜の目付け量は、鋼板両面で4〜15g/mとする。すなわち、4g/mより少ないと層間抵抗が低下し、一方15g/mより多いと占積率が低下するため、この範囲内とする。
【0029】
このコーティング液を塗布、そして乾燥した後、焼付けを兼ねて平坦化焼鈍を行う。表面粗さが低い鋼板であれば、クロムを含まないコーティング液を塗布した場合に、この平坦化焼鈍中にクラックや膨れが発生することなく、良好な被膜が得られる。
【0030】
なお、平坦化焼鈍の条件は特に限定されるものではないが、望ましくは200℃〜700℃の温度域での昇温速度を10〜60℃/sとする。この昇温速度が遅すぎると、水蒸気等のガスが発生した時に、これが膨れとして残りやすい。また、この昇温速度が60℃/sを超えると、クラックが残りやすくなる。この昇温後の焼鈍温度は700℃〜950℃の温度範囲で2〜120秒程度の均熱時間とするのが望ましい。この温度が低すぎ、また時間が短すぎると、平坦化が不十分で形状不良のために歩留まりが低下し、一方温度が高すぎて時間が長すぎると、平坦化焼鈍の効果が強すぎてクリープ変形して磁気特性が劣化するため、この範囲とすることが好ましい。
【0031】
【実施例】
実施例1
mass%で、C:0.06%、Si:3.3%、Mn:0.06%、Al:0.023%、N:0.007%、Se:0.020%、Sb:0.026%、Cu:0.08%を含有する鋼スラブを熱間圧延そして冷間圧延し、次いで脱炭焼鈍を施して得た、板厚0.23mmの脱炭焼鈍板に、焼鈍分離剤として、凹凸を増大させることを狙いとして100質量部のマグネシア、6質量部の酸化チタン及び0.05質量部の塩化マグネシウムを添加した粉体と、鋼板表面の凹凸を低下させることを狙いとして100質量部のマグネシア、6質量部の酸化チタン及び0.05質量部の水酸化バリウムを添加した粉体とを、それぞれ塗布して、900〜1050℃までの昇温速度を20℃/h、雰囲気を75%Hと75%Nとする最終仕上焼鈍を行い、引き続き1150℃,10hの純化焼鈍を行った。その後未反応の焼鈍分離剤を除去することにより、表面粗さが0.32μm Raと0.42μm Raの2種類の鋼板を準備した。これをりん酸酸洗処理した後に、成分組成が乾固固形分比率で、コロイド状シリカ:50mass%、りん酸マグネシウム:40mass%、硫酸マンガン9.5mass%および微粉末シリカ粒子:0.5mass%である、コーティング液を鋼板の両面で10g/mで施した。なお、最終仕上焼鈍後の鋼板の磁束密度はいずれもBで1.92(T)であった。その後、200〜700℃までの昇温速度を5〜100℃/sの各昇温速度で850℃、30秒、乾N雰囲気の焼付け処理を施した。
【0032】
このようにして得られた鋼板の諸特性について調査した結果を、表1に示す。特許文献3に記載の方法に従って、ホウ酸を用いずに硫酸Mnのみを用いたが、昇温速度10〜60℃/sの範囲で、良好な耐吸湿性と鉄損が得られた。特に、表面粗さが0.32μm Raの鋼板を用いたときに、この昇温速度域で焼付けすることにより、優れた特性が得られている。
【0033】
【表1】

Figure 2004332072
【0034】
実施例2
実施例1と同様に最終冷間圧延を終了した後、部分的にエッチング処理を施すことにより、最終仕上焼鈍後の鋼板の表面粗さを0.27μm Ra及び0.45μm Raに変更した。なお、最終仕上焼鈍後の鋼板の磁束密度はBでいずれも1.89(T)であった。その後、未反応の焼鈍分離剤を除去してりん酸酸洗処理した後に、成分組成が乾固固形分比率で、コロイド状シリカ:50mass%、各種第1りん酸塩化合物:40mass%、無機化合物:9.5mass%および微粉末シリカ粒子:0.5mass%である、コーティング液を鋼板の両面で10g/m施した。その後、200〜700℃までの昇温速度を8℃/sまたは200℃/sの昇温速度で850℃および30秒の乾N雰囲気の焼付け処理を施した。このようにして得られた鋼板の諸特性を調査した結果を、表2に示す。
【0035】
【表2】
Figure 2004332072
【0036】
特許文献3、4、5および6に記載のいずれのクロムを含まないコーティング液に対しても、鋼板の表面粗さを低下させ、より好ましくは焼付け時の昇温速度を適切な範囲内に収めることにより優れた磁気特性並びに被膜特性が得られている。
【0037】
【実施例3】
実施例1と同様に得られた、板厚0.23mmの最終冷延後を、サンドペーパーで研磨した後脱炭焼鈍し、焼鈍分離剤として100質量部のマグネシアおよび3質量部の塩化ニッケルを添加した焼鈍分離剤を塗布して、実施例1と同様の条件で最終仕上焼鈍を行い、その後未反応の焼鈍分離剤を除去することにより、表面粗さが0.30μm Raおよび0.46μm Raの2種類の下地被膜を有しない鋼板を準備した。なお、最終仕上焼鈍後の鋼板の磁束密度はいずれもBで1.94(T)であった。これにコロイド状シリカ:50mass%、りん酸マグネシウム:40mass%、硫酸鉄:6mass%およびホウ酸4mass%となるコーティング液を、鋼板両面で10g/m施した。その後、200〜700℃までの昇温速度を20℃/sとして850℃で30秒の保持を乾N雰囲気で行う焼付け処理を施した。
【0038】
このようにして得られた鋼板の諸特性を調査した結果を、表3に示すように、下地被膜を持たない鋼板においても表面粗さを低下させ、焼付け時の昇温速度を適切な範囲内に収めることにより、優れた磁気特性並びに被膜特性が得られていることがわかる。
【0039】
【表3】
Figure 2004332072
【0040】
【発明の効果】
この発明によれば、クロムを含まない被膜を適用した場合にあっても、磁気特性および被膜特性ともに優れた電磁鋼板を安定して提供することができる。
【図面の簡単な説明】
【図1】最終仕上焼鈍板の表面粗さと被膜形成後の鉄損、そして耐吸湿性との関係を示した図である。
【図2】表面粗さの異なる最終仕上焼鈍板にクロムを含まない被膜を形成したときの鋼板表面のSEM像を示す写真である。[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing inevitable coating defects when forming a coating containing no chromium on the surface of a grain-oriented electrical steel sheet and improving the surface coating properties.
[0002]
[Prior art]
Generally, in order to provide insulation, workability, rust prevention, etc., a coating is applied to the surface of a grain-oriented electrical steel sheet. Such a surface coating comprises a base coating mainly composed of forsterite formed at the time of final finish annealing, and a phosphate-based top coating formed thereon.
[0003]
In addition, since these films are formed at a high temperature and have a low coefficient of thermal expansion, the difference in the coefficient of thermal expansion between the steel sheet and the coating when the temperature drops to room temperature imparts tension to the steel sheet to reduce iron loss. Since it has an effect of reducing, it is desired that the steel sheet be given as high a tension as possible.
[0004]
In order to satisfy such properties, various coating films have been proposed. For example, Patent Document 1 discloses a coating mainly composed of magnesium phosphate, colloidal silica and chromic anhydride, and Patent Document 2 discloses a coating mainly composed of aluminum phosphate, colloidal silica and chromic anhydride. , Has been proposed respectively.
[0005]
On the other hand, with the growing interest in environmental protection in recent years, there has been an increasing demand for products that do not contain harmful substances such as chromium and lead, and the development of a method for forming a coating that does not contain chromium on grain-oriented electrical steel sheets is also expected. Had been rare. However, if chromium is not used, quality problems such as remarkable deterioration of moisture absorption resistance and loss of iron loss improvement effect due to decrease in tension occur, so that chromium could not be added without addition. Here, the deterioration of the moisture absorption resistance of the coating means that the coating absorbs moisture due to the moisture in the atmosphere and is partially liquefied, resulting in a thinner film or the formation of a portion without a coating. Is deteriorated.
[0006]
As a method for solving this problem, a method for applying a coating liquid composed of colloidal silica, aluminum phosphate, boric acid and sulfate described in Patent Document 3 has been developed. According to this method, an improvement in iron loss and an improvement in moisture absorption resistance due to a tension effect close to that of a conventional chromium-containing coating were obtained. However, improvements in iron loss and moisture absorption resistance by this method vary in the obtained effects, and in some cases, the iron loss and moisture absorption resistance may deteriorate to a problematic level.
[0007]
In addition, as a coating containing no chromium, for example, Patent Document 4 discloses a method of adding a boride-containing substance instead of a chromium compound, and Patent Document 5 discloses a method of adding an oxide colloid. No. 6 discloses a method of adding a metal organic acid salt. However, no matter which technique is used, the variation in the effect of improving the moisture absorption resistance and the iron loss is still large, and has not been completely solved.
[0008]
[Patent Document 1]
JP-B-56-52117 [Patent Document 2]
JP-B-53-28375 [Patent Document 3]
JP-B-57-9631 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2000-169973 [Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-169972 [Patent Document 6]
JP 2000-178760 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and even when a chromium-free coating is applied to a grain-oriented electrical steel sheet, the moisture absorption resistance is as high as that of a steel sheet coated with a chromium-containing coating. It is an object of the present invention to propose a method of forming a chromium-less coating to obtain a steel sheet having low iron loss and heat resistance.
[0010]
[Means for Solving the Problems]
The inventors have intensively investigated a method for obtaining the same effect as a chromium-containing coating even with a chromium-free coating, and it is extremely effective to regulate the surface roughness of the steel sheet after final finish annealing. This led to the completion of the present invention.
[0011]
That is, the gist configuration of the present invention is as follows.
(1) The surface of the grain-oriented electrical steel sheet subjected to the final finish annealing is made to have an arithmetic average roughness of 0.4 μm or less, and then a chromium-free phosphate-based tension-imparting coating is formed on the steel sheet surface. A method for forming a chromeless coating for grain-oriented electrical steel sheets.
[0012]
(2) After making the surface of the grain-oriented electrical steel sheet after the final finish annealing have an arithmetic average roughness of 0.4 μm or less, a phosphate-based coating solution containing no chromium is applied to the steel sheet surface, and then 200 to 700 A method for forming a chromeless coating for grain-oriented electrical steel sheets, comprising performing baking at a rate of temperature increase to 10 ° C / s from 10 to 60 ° C / s.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors have found that, in the chromium-free coating described in Patent Document 3, the variation in the effect of improving moisture absorption resistance and iron loss is caused by the fact that desired characteristics cannot be achieved due to some disturbance factors. Thinking and conducting extensive experiments to determine the cause. As a result, it has been found that the surface roughness of the steel sheet after the final finish annealing is the main factor causing this variation. Hereinafter, an experiment which led to this finding will be described.
[0014]
A silicon steel slab containing 0.045 mass% of C, 3.25 mass% of Si, 0.07 mass% of Mn and 0.02 mass% of Mn, and substantially consisting of Fe, is heated at 1380 ° C. for 30 minutes and then heated. After hot rolling at 950 ° C. for 1 minute, hot rolling is performed at 950 ° C. for 1 minute, followed by cold rolling with intermediate annealing at 1000 ° C. for 1 minute to finish to a final thickness of 0.23 mm. The surface of the steel sheet was polished with sandpaper to adjust the surface roughness. Then, after performing decarburizing annealing at 850 ° C. for 2 minutes and an atmosphere oxidizing property (ratio of a partial pressure of water vapor to a partial pressure of hydrogen in the atmosphere) of 0.55, 100 parts by mass of magnesium oxide and 2 parts by mass of titanium oxide are applied to the surface of the steel sheet. Separator and 1 part by mass of strontium sulfate were coated on the surface of the steel sheet at 12 g / m 2 on both sides, dried and subjected to secondary recrystallization annealing, followed by purification annealing at 1200 ° C. for 10 hours in dry H 2. After performing the final finish annealing also serving as, the unreacted annealing separating agent was removed.
[0015]
The steel sheet thus obtained was sheared to a size of 300 mm × 100 mm, and a magnetic measurement was performed using an SST tester (single-plate magnetic tester). Further, the surface roughness of the steel sheet after the final finish annealing was also measured. Then, after phosphoric acid pickling was performed, 50 parts by mass of aluminum phosphate described in Patent Document 3, 40 parts by mass of colloidal silica, 5 parts by mass of boric acid, and 10 parts by mass of magnesium sulfate were used as a coating solution. Parts of the coating agent in a dry weight of 10 g / m 2 were applied to both sides of the steel sheet, and then the temperature was increased from 200 ° C. to 700 ° C. in a dry N 2 atmosphere at a rate of 20 ° C./S. Baking was performed at 800 ° C. for 2 minutes.
[0016]
For comparison, a coating solution comprising 50 parts by mass of aluminum phosphate, 40 parts by mass of colloidal silica and 10 parts by mass of chromic anhydride was similarly applied and baked in the same manner.
[0017]
The steel sheet thus obtained was again subjected to magnetic measurement with an SST tester. Further, a dissolution test of P was also performed. That is, in the P elution test, three test pieces of 50 mm × 50 mm were immersed and boiled in distilled water at 100 ° C. for 5 minutes to elute P from the coating surface, and the P was quantitatively analyzed. The moisture absorption resistance can be evaluated by judging the ease of dissolution of the coating film by moisture based on the amount of P eluted.
[0018]
The above measurement and evaluation results are arranged as a relationship between the magnetic properties and the P elution amount and the average value of the surface roughness of the steel sheet after the final finish annealing, and are shown in FIGS. 1 (a) and 1 (b), respectively.
As shown in FIG. 1 (b), in the steel sheet on which the chromium-containing film is formed, good moisture absorption resistance is obtained without being largely affected by the surface roughness. Further, as shown in FIG. 1 (a), with respect to the magnetic properties, when the chromium-containing coating is used, the iron loss is slightly deteriorated as the surface roughness is increased, but the iron loss is not largely deteriorated. . On the other hand, in a steel sheet with a coating containing no chromium, sufficient moisture absorption resistance and magnetic properties are not obtained in a region with a high surface roughness, but in a region with a low surface roughness, especially in an arithmetic average roughness. When it exceeds 0.4, both the magnetic properties and the moisture absorption resistance are improved, and good properties equivalent to those of the steel sheet on which the chromium-containing film is formed are obtained.
[0019]
Thus, in order to clarify the mechanism by which the change in the moisture absorption resistance and the magnetic properties occurs due to the surface roughness of the steel sheet after the final annealing, the surface of the steel sheet on which the film was formed in the above experiment was scanned. (SEM). FIG. 2 shows an image by this SEM. Since the surface roughness of the steel sheet itself is hidden by the coating, there is not much difference between the two samples, but the sample with good moisture absorption has a flat and uniform surface, whereas the sample with good moisture absorption has In the inferior sample, it can be seen that a large number of blisters and cracks have occurred on the surface.
[0020]
In view of the above, the inventors considered the mechanism by which the surface roughness affects the moisture absorption resistance and the magnetic properties of a chromium-free film as follows.
First, in the case of ordinary chromium-containing coatings, chromium traps free phosphate remaining after the reaction between phosphate and colloidal silica, thereby improving the hygroscopicity. Therefore, the effect of tension on the steel sheet is increased, and the magnetic properties are improved.
[0021]
On the other hand, the chromium-free coating described in Patent Document 3 used this time has a function of trapping free phosphoric acid in metal sulfate and boric acid instead of chromium. When it is high, such an effect is considered to be insufficient.
In other words, in the case of a film containing no chromium, if the surface roughness is high, when the coating solution evaporates at a high temperature or when the phosphate is dehydrated, vigorous bubbles are generated, and some of the film becomes swollen or cracked As a result, cracks may be caused. In addition, when such swelling is analyzed, in many cases, phosphorus is strongly concentrated and the amount of Si is reduced, and it is considered that free phosphoric acid is strongly concentrated. Free phosphoric acid elutes from the cracks. In addition, it is considered that such cracks weaken the strength of the coating film itself, reduce the tension effect, and do not bring about an improvement in iron loss.
[0022]
On the other hand, if the surface roughness is low, the occurrence of blisters and cracks themselves is suppressed, and as a result, free phosphoric acid due to this and the starting point of elution thereof are eliminated, resulting in improved moisture absorption resistance. In addition, by reducing the number of cracks, the original tension effect is exhibited, and the iron loss is effectively reduced.
[0023]
In the case of a coating containing chromium, even if cracks occur during drying when the roughness is high, cracks will eventually be reduced by the chromium repair function, so there is no deterioration in hygroscopicity, and If the degree is large, the hysteresis loss is deteriorated, but the strength of the coating is maintained, so that the reduction amount of the eddy current loss is not impaired, and it is considered that the iron loss improving effect is maintained.
[0024]
Next, the reasons for limiting the requirements of the present invention will be described.
The silicon-containing steel as the material of the present invention is not particularly limited as long as it is a material for oriented silicon steel. For example, steel having the following composition can be used.
C: 0.02 to 0.1 mass%,
Si: 2.0 to 4.5 mass% and Mn: 0.02 to 0.3 mass%, and when AlN is used as an inhibitor, Al: 0.01 to 0.04 mass% for Al and N
N is 0.006 to 0.01 mass% when not being nitrided in the middle, and is not particularly limited when being nitrided in the middle.
When MnSe or MnS is used as an inhibitor,
Se, S: 0.01 to 0.03 mass% in total.
In addition, for the purpose of improving magnetic properties,
B: 0.002 to 0.007 mass%,
Cu: 0.05 to 0.2 mass%,
Bi: 0.005 to 0.03 mass%,
Te: 0.05 to 0.2 mass%,
Sb: 0.01 to 0.05 mass%,
Sn: 0.05-0.3 mass% and Ni: 0.05-0.2 mass%
May be contained.
[0025]
Next, the silicon-containing steel slab is hot-rolled by a known method, and finished to a final thickness by one or a plurality of times of cold rolling sandwiching intermediate annealing, and then subjected to primary recrystallization annealing, and then subjected to an annealing separator. Is applied and final finish annealing is performed. At this time, it is important to smooth the surface of the steel sheet after the final finish annealing to have a roughness of 0.4 μmRa or less, as shown in FIG. That is, if the surface roughness of the steel sheet on which the chromeless coating is applied exceeds 0.4 μmRa, the desired moisture absorption resistance and magnetic properties cannot be obtained when a coating solution containing no chromium is applied and baked.
[0026]
Here, the surface of the steel sheet having a thickness of 0.4 μmRa or less is the roughness of the forsterite film surface when the forsterite film is formed after the final finish annealing, and has no forsterite film after the final finish annealing. In the case of material, it means the roughness of the surface of the ground iron. The mirror-finished material uses alumina as an annealing separating agent, or uses powder obtained by adding chloride to magnesia to improve punching properties and magnetic properties by hardly forming a coating on the surface. It is intended.
[0027]
Further, the method for reducing the surface roughness of the steel sheet to 0.4 μmRa or less is not particularly limited. For example, the roll roughness in cold rolling before primary recrystallization annealing is reduced, A method of polishing the surface of a steel sheet before recrystallization annealing or adding an agent having an effect of smoothing the surface, such as calcium hydroxide or strontium hydroxide, to an annealing separator applied after primary recrystallization annealing. Can be used. In particular, the method of reducing the roll roughness in the cold rolling before the primary recrystallization annealing or polishing the steel sheet surface before the primary recrystallization annealing is the same as the method having a forsterite coating after the final finish annealing. It can be applied to any case without a forsterite film. Further, a method of adding an agent having an effect of smoothing the surface, such as calcium hydroxide or strontium hydroxide, to the annealing separator is effective when a forsterite film is provided. On the other hand, when the forsterite film is not provided, when chloride is added to magnesia, which is the main component of the annealing separator, the surface roughness can be reduced by selecting the amount of addition and the type of chloride. it can.
[0028]
A coating solution containing no chromium is applied to a grain-oriented electrical steel sheet that has been subjected to final finish annealing and that has such a surface roughness. As components of the coating liquid, conventionally known ones, for example, a coating liquid composed of colloidal silica, aluminum phosphate, boric acid and sulfate described in Patent Document 3, and a boric acid compound described in Patent Document 4 can be used. Any of the coating liquids can be used, such as the one added, the one added with an oxide colloid described in Patent Document 5, and the one added with a metal organic acid salt described in Patent Document 6. In addition, it is also possible to further improve the sticking resistance by adding inorganic mineral particles such as silica and alumina. The basis weight of the coating is 4 to 15 g / m 2 on both sides of the steel sheet. That is, when the amount is less than 4 g / m 2 , the interlayer resistance decreases, while when the amount is more than 15 g / m 2 , the space factor decreases.
[0029]
After applying and drying this coating liquid, flattening annealing is performed also as baking. If the steel sheet has a low surface roughness, when a coating solution containing no chromium is applied, a good coating can be obtained without generating cracks or blisters during the flattening annealing.
[0030]
The conditions for the flattening annealing are not particularly limited, but the temperature rising rate in a temperature range of 200 ° C. to 700 ° C. is desirably 10 to 60 ° C./s. If the rate of temperature rise is too slow, when gas such as water vapor is generated, it tends to remain as blisters. On the other hand, if the temperature rise rate exceeds 60 ° C./s, cracks tend to remain. The annealing temperature after the temperature rise is desirably set to a soaking time of about 2 to 120 seconds in a temperature range of 700 ° C to 950 ° C. If the temperature is too low and the time is too short, the yield is lowered due to insufficient planarization and shape defects, while if the temperature is too high and the time is too long, the effect of the flattening annealing is too strong. Since the magnetic properties are deteriorated due to the creep deformation, it is preferable to be within this range.
[0031]
【Example】
Example 1
mass%, C: 0.06%, Si: 3.3%, Mn: 0.06%, Al: 0.023%, N: 0.007%, Se: 0.020%, Sb: 0. A steel slab containing 026% and Cu: 0.08% is hot-rolled and cold-rolled, and then subjected to decarburizing annealing. Powder with the addition of 100 parts by mass of magnesia, 6 parts by mass of titanium oxide and 0.05 parts by mass of magnesium chloride with the aim of increasing the irregularities, and 100 masses with the aim of reducing the irregularities of the steel sheet surface Parts of magnesia, 6 parts by mass of titanium oxide, and powder to which 0.05 parts by mass of barium hydroxide were added, respectively, and the temperature was raised from 900 to 1050 ° C. at a rate of 20 ° C./h. final finish and 75% H 2 and 75% N 2 Performs a blunt, continue to 1150 ℃, the purification annealing of 10h were carried out. Thereafter, by removing the unreacted annealing separating agent, two types of steel plates having surface roughnesses of 0.32 μm Ra and 0.42 μm Ra were prepared. After this is pickled with phosphoric acid, the composition of the components is 50% by mass of colloidal silica, 40% by mass of magnesium phosphate, 9.5% by mass of manganese sulfate, and 0.5% by mass of finely divided silica particles in terms of the dry solid content. Was applied at 10 g / m 2 on both sides of the steel sheet. Incidentally, the magnetic flux density of the final finish steel sheet after annealing was both at B 8 1.92 (T). Thereafter, baking treatment was performed at 850 ° C. for 30 seconds at a rate of temperature increase from 200 to 700 ° C. at a rate of 5 to 100 ° C./s in a dry N 2 atmosphere.
[0032]
Table 1 shows the results of investigation on various properties of the steel sheet obtained in this manner. According to the method described in Patent Document 3, only Mn sulfate was used without using boric acid, but good moisture absorption resistance and iron loss were obtained at a temperature rising rate of 10 to 60 ° C / s. In particular, when a steel sheet having a surface roughness of 0.32 μm Ra is used, excellent characteristics are obtained by baking in this heating rate range.
[0033]
[Table 1]
Figure 2004332072
[0034]
Example 2
After finishing the final cold rolling in the same manner as in Example 1, the surface roughness of the steel sheet after the final finish annealing was changed to 0.27 μm Ra and 0.45 μm Ra by partially performing an etching treatment. Incidentally, the magnetic flux density of the final finish steel sheet after annealing were all also 1.89 (T) at B 8. Then, after removing the unreacted annealing separating agent and performing a phosphoric acid pickling treatment, the composition of the components is 50 mass% of colloidal silica, 50 mass% of various first phosphate compounds, 40 mass% of inorganic compounds, in terms of solid content on a dry basis. : 9.5 mass% and fine powder silica particles: 0.5 mass%, a coating liquid was applied at 10 g / m 2 on both sides of the steel plate. Thereafter, a baking treatment in a dry N 2 atmosphere was performed at 850 ° C. for 30 seconds at a temperature rising rate of 200 to 700 ° C. at a rate of 8 ° C./s or 200 ° C./s. Table 2 shows the results of investigating various properties of the steel sheet obtained in this manner.
[0035]
[Table 2]
Figure 2004332072
[0036]
For any of the chromium-free coating liquids described in Patent Documents 3, 4, 5, and 6, the surface roughness of the steel sheet is reduced, and more preferably, the heating rate during baking is kept within an appropriate range. As a result, excellent magnetic properties and coating properties are obtained.
[0037]
Embodiment 3
The final cold-rolled sheet having a thickness of 0.23 mm obtained in the same manner as in Example 1 was polished with sandpaper, decarburized and annealed, and 100 parts by weight of magnesia and 3 parts by weight of nickel chloride were used as an annealing separator. The added annealing separator was applied, the final finishing annealing was performed under the same conditions as in Example 1, and then the unreacted annealing separator was removed, so that the surface roughness was 0.30 μm Ra and 0.46 μm Ra. The two types of steel sheets having no undercoating were prepared. Incidentally, the magnetic flux density of the final finish steel sheet after annealing was both at B 8 1.94 (T). A coating liquid containing 50 mass% of colloidal silica, 40 mass% of magnesium phosphate, 6 mass% of iron sulfate, and 4 mass% of boric acid was applied to both surfaces of the steel sheet at 10 g / m 2 . Thereafter, a baking treatment was performed in which the temperature was raised from 200 to 700 ° C at a rate of 20 ° C / s at 850 ° C for 30 seconds in a dry N 2 atmosphere.
[0038]
As shown in Table 3, the results of investigating various properties of the steel sheet obtained in this manner show that, even in a steel sheet without an undercoat, the surface roughness is reduced and the heating rate during baking is set within an appropriate range. It can be seen that excellent magnetic properties and coating properties were obtained by setting the values in.
[0039]
[Table 3]
Figure 2004332072
[0040]
【The invention's effect】
According to the present invention, it is possible to stably provide an electromagnetic steel sheet having excellent magnetic properties and coating properties even when a coating containing no chromium is applied.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the surface roughness of a final finish-annealed sheet, iron loss after film formation, and moisture absorption resistance.
FIG. 2 is a photograph showing an SEM image of a steel sheet surface when a film containing no chromium is formed on final finish-annealed sheets having different surface roughnesses.

Claims (2)

最終仕上焼鈍済みの方向性電磁鋼板の表面を算術平均粗さで0.4μm以下とし、その後鋼板表面にクロムを含まないりん酸塩系の張力付与被膜を形成することを特徴とする方向性電磁鋼板用クロムレス被膜の形成方法。The grain-oriented electromagnetic steel sheet is characterized in that the surface of the grain-oriented electrical steel sheet after the final finish annealing has an arithmetic average roughness of 0.4 μm or less, and then a phosphate-based tension-imparting coating containing no chromium is formed on the steel sheet surface. Method of forming chromeless coating for steel sheet. 最終仕上焼鈍済みの方向性電磁鋼板の表面を算術平均粗さで0.4μm以下とした後、クロムを含まないりん酸塩系のコーティング液を鋼板表面に塗布し、次いで200〜700℃までの昇温速度が10〜60℃/sである焼付けを行うことを特徴とする方向性電磁鋼板用クロムレス被膜の形成方法。After the surface of the grain-oriented electrical steel sheet having been subjected to the final finish annealing is made to have an arithmetic average roughness of 0.4 μm or less, a chromium-free phosphate-based coating solution is applied to the steel sheet surface. A method for forming a chromeless coating for grain-oriented electrical steel sheets, comprising performing baking at a rate of temperature increase of 10 to 60 ° C / s.
JP2003131968A 2003-05-09 2003-05-09 Method for forming chromeless coating for grain-oriented electrical steel sheet Expired - Fee Related JP4305040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131968A JP4305040B2 (en) 2003-05-09 2003-05-09 Method for forming chromeless coating for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131968A JP4305040B2 (en) 2003-05-09 2003-05-09 Method for forming chromeless coating for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004332072A true JP2004332072A (en) 2004-11-25
JP4305040B2 JP4305040B2 (en) 2009-07-29

Family

ID=33507011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131968A Expired - Fee Related JP4305040B2 (en) 2003-05-09 2003-05-09 Method for forming chromeless coating for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4305040B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217758A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Grain oriented magnetic steel sheet and insulating film treatment method therefor
JP2008240080A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Insulating film treatment liquid for grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
JP2018066061A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Directional electromagnetic steel sheet, and manufacturing method thereof
JP2021075769A (en) * 2019-11-12 2021-05-20 日本製鉄株式会社 Directional electrical steel sheet, and manufacturing method of directional electrical steel sheet
WO2021171766A1 (en) * 2020-02-28 2021-09-02 Jfeスチール株式会社 Insulating-coated oriented electromagnetic steel sheet and method for producing same
CN115151681B (en) * 2020-02-28 2024-07-02 杰富意钢铁株式会社 Grain-oriented electrical steel sheet with insulating film and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217758A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Grain oriented magnetic steel sheet and insulating film treatment method therefor
JP2008240080A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Insulating film treatment liquid for grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
JP2018066061A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Directional electromagnetic steel sheet, and manufacturing method thereof
JP2020063510A (en) * 2016-10-18 2020-04-23 Jfeスチール株式会社 Directional electromagnetic steel sheet, and manufacturing method thereof
JP2021075769A (en) * 2019-11-12 2021-05-20 日本製鉄株式会社 Directional electrical steel sheet, and manufacturing method of directional electrical steel sheet
JP7356017B2 (en) 2019-11-12 2023-10-04 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JPWO2021171766A1 (en) * 2020-02-28 2021-09-02
JP7131693B2 (en) 2020-02-28 2022-09-06 Jfeスチール株式会社 Grain-oriented electrical steel sheet with insulation coating and its manufacturing method
CN115151681A (en) * 2020-02-28 2022-10-04 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet with insulating coating film and method for producing same
US20230106127A1 (en) * 2020-02-28 2023-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet with insulating film and method for manufacturing the same
EP4095284A4 (en) * 2020-02-28 2023-06-28 JFE Steel Corporation Insulating-coated oriented electromagnetic steel sheet and method for producing same
WO2021171766A1 (en) * 2020-02-28 2021-09-02 Jfeスチール株式会社 Insulating-coated oriented electromagnetic steel sheet and method for producing same
CN115151681B (en) * 2020-02-28 2024-07-02 杰富意钢铁株式会社 Grain-oriented electrical steel sheet with insulating film and method for producing same

Also Published As

Publication number Publication date
JP4305040B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US8535455B2 (en) Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating
JP5181571B2 (en) Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film
US20210310096A1 (en) Method for manufacturing a grain-oriented electrical steel sheet
JP6031951B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2006051923A1 (en) Grain oriented electromagnetic steel plate and method for producing the same
KR102545563B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2005240079A (en) Grain oriented silicon steel sheet low in iron loss deterioration ratio
JP4682590B2 (en) Directional electrical steel sheet with chromeless coating and method for producing the same
JP2004332072A (en) Method of forming chromiumless film for grain oriented magnetic steel sheet
JP6881581B2 (en) Directional electrical steel sheet
JP2008240080A (en) Insulating film treatment liquid for grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
JP4321181B2 (en) Method for forming an overcoat insulating film containing no chromium
WO2019013352A1 (en) Oriented electromagnetic steel plate
JP2008106367A (en) Double oriented silicon steel sheet
JP7329049B2 (en) Electrical steel sheet and manufacturing method thereof
JP4810820B2 (en) Directional electrical steel sheet with chromeless coating and method for producing the same
WO2022215709A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
JP4677765B2 (en) Directional electrical steel sheet with chromeless coating and method for producing the same
JP4626155B2 (en) Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same
JP7131693B2 (en) Grain-oriented electrical steel sheet with insulation coating and its manufacturing method
WO2022215714A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
WO2022215710A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
WO2020149342A1 (en) Grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4305040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees