JP4677765B2 - Directional electrical steel sheet with chromeless coating and method for producing the same - Google Patents
Directional electrical steel sheet with chromeless coating and method for producing the same Download PDFInfo
- Publication number
- JP4677765B2 JP4677765B2 JP2004326579A JP2004326579A JP4677765B2 JP 4677765 B2 JP4677765 B2 JP 4677765B2 JP 2004326579 A JP2004326579 A JP 2004326579A JP 2004326579 A JP2004326579 A JP 2004326579A JP 4677765 B2 JP4677765 B2 JP 4677765B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- mass
- steel sheet
- film
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000576 coating method Methods 0.000 title claims description 58
- 239000011248 coating agent Substances 0.000 title claims description 56
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000000137 annealing Methods 0.000 claims description 73
- 239000010936 titanium Substances 0.000 claims description 42
- 229910052719 titanium Inorganic materials 0.000 claims description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 41
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- 229910052804 chromium Inorganic materials 0.000 claims description 38
- 239000011651 chromium Substances 0.000 claims description 38
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 37
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000012298 atmosphere Substances 0.000 claims description 15
- 239000000395 magnesium oxide Substances 0.000 claims description 14
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 10
- 229910019142 PO4 Inorganic materials 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 9
- 239000010452 phosphate Substances 0.000 claims description 9
- 239000004408 titanium dioxide Substances 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 7
- 238000001953 recrystallisation Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 68
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 229910052742 iron Inorganic materials 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 8
- 239000008119 colloidal silica Substances 0.000 description 8
- 230000035515 penetration Effects 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 4
- 229910052839 forsterite Inorganic materials 0.000 description 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- -1 boric acid compound Chemical class 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000007922 dissolution test Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 2
- 239000004137 magnesium phosphate Substances 0.000 description 2
- 229960002261 magnesium phosphate Drugs 0.000 description 2
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 2
- 235000010994 magnesium phosphates Nutrition 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
Images
Landscapes
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、クロムを含まない被膜を方向性電磁鋼板の表面に形成させるに際し、不可避的に発生する被膜欠陥を防止し、表面被膜性状を改善させるとともに鋼板に付与する張力を高めて鉄損を改善する方法に関するものである。 The present invention, core loss increased upon forming a coating film containing no chromium on the surface of the square oriented electrical steel sheet, to prevent the inevitable coating defects occurring, the tension applied to the steel sheet along with improving the surface coating properties It is about the method of improving.
一般に、方向性電磁鋼板においては、絶縁性、加工性および防錆性等を付与するために、その表面に被膜が施されている。かかる被膜は、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地膜と、その上に被成されるリン酸塩系の上塗り被膜とからなるのが通例である。これらの被膜は、高温で形成され、しかも低い熱膨張率を持つことから、温度が室温まで低下した鋼板と被膜との間で熱膨張率に大きな差異が生じて、鋼板に張力を付与することになるため、鉄損の低減に有効である。従って、被膜には、できるだけ高い張力を鋼板に付与する機能が望まれている。 In general, in a grain-oriented electrical steel sheet, a coating is applied to the surface thereof in order to provide insulation, workability, rust prevention, and the like. Such a film is usually composed of a base film mainly composed of forsterite formed at the time of final finish annealing and a phosphate-based topcoat film formed thereon. Since these coatings are formed at high temperatures and have a low coefficient of thermal expansion, there is a large difference in the coefficient of thermal expansion between the steel sheet whose temperature has dropped to room temperature and the film, thereby imparting tension to the steel sheet. Therefore, it is effective in reducing iron loss. Therefore, the coating is desired to have a function of imparting as high tension as possible to the steel sheet.
従来、上記の諸特性を満たすために、被膜について種々の提案がなされている。例えば、特許文献1にはリン酸マグネシウム、コロイド状シリカおよび無水クロム酸を主体とする被膜が、また特許文献2にはリン酸アルミニウム、コロイド状シリカおよび無水クロム酸を主体とする被膜が、それぞれ提案されている。 Conventionally, various proposals have been made for coatings in order to satisfy the above-mentioned various characteristics. For example, Patent Document 1 has a film mainly composed of magnesium phosphate, colloidal silica and chromic anhydride, and Patent Document 2 has a film mainly composed of aluminum phosphate, colloidal silica and chromic anhydride. Proposed.
ところで、近年の環境保全への関心の高まりにより、クロムや鉛等の有害物質を含まない製品に対する要望が強まっており、方向性電磁鋼の分野においても、クロムを含まない被膜を形成させる方法の開発が望まれていた。しかし、クロムを用いないと、著しい耐吸湿性の劣化や張力低下によって鉄損改善効果が消失する等の、品質上の問題が発生するため、クロムを無添加とすることができなかった。ここに、被膜における耐吸湿性の劣化とは、被膜が大気中の水分を吸収し、この水分が部分的に液化して膜厚が薄くなったり被膜のない部分ができたりして、絶縁性や防錆性が劣化してしまうことである。 By the way, due to the recent increase in interest in environmental conservation, there is an increasing demand for products that do not contain harmful substances such as chromium and lead. In the field of grain-oriented electrical steel, a method for forming a film that does not contain chromium. Development was desired. However, if chromium is not used, quality problems such as significant loss of moisture absorption and loss of iron loss due to a decrease in tension occur, so it was not possible to add no chromium. Here, the deterioration of moisture absorption resistance of the coating means that the coating absorbs moisture in the atmosphere, and this moisture is partially liquefied, resulting in a thin film thickness or a portion without the coating. And the rust prevention property is deteriorated.
この問題を解決する方法として、コロイド状シリカ、リン酸アルミニウム、ホウ酸及び硫酸塩からなるコーティング液を塗布する方法が、特許文献3に記載されている。この方法により、従来のクロム含有被膜に近い張力効果による鉄損改善と耐吸湿性の改善とがもたらされた。
しかしながら、この方法による鉄損ならびに耐吸湿性の改善は、効果にばらつきがあり、場合によっては問題となるレベルまで鉄損や耐吸湿性が劣化することがあった。このような品質のばらつきは同一コイル内においても著しく、不均一部分は巻き直しラインを用いて除去しなければならないために、大きな歩留まりロスになる上、巻き直しラインの操業を圧迫して生産量を低下させる主因となっていた。
As a method for solving this problem, Patent Document 3 discloses a method of applying a coating liquid composed of colloidal silica, aluminum phosphate, boric acid and sulfate. This method resulted in an improvement in iron loss and an improvement in moisture absorption resistance due to a tension effect similar to that of a conventional chromium-containing coating.
However, the improvement of the iron loss and moisture absorption resistance by this method varies in the effect, and in some cases, the iron loss and moisture absorption resistance may be deteriorated to a problematic level. Such variations in quality are significant even within the same coil, and non-uniform portions must be removed using a rewinding line, resulting in a large yield loss and pressure on the operation of the rewinding line. It was the main cause of lowering.
さらに、クロムを含まない被膜に関して、特許文献4にはクロム化合物の代りにホウ酸化合物を添加する方法が、特許文献5には酸化物コロイドを添加する方法が、特許文献6には金属有機酸塩を添加する方法が、それぞれ開示されているが、いずれの技術を用いても吸湿性並びに鉄損を改善する効果がコイル内で大きくばらつくために、完全な解決には至っていない。
そこで、本発明は、上記の事情に鑑みてなされたものであり、方向性電磁鋼板にクロムを含まない被膜を適用した場合にあっても、クロム含有被膜を形成した鋼板と同レベルの高い耐吸湿性と低い鉄損を実現するクロムレス被膜付き方向性電磁鋼板を、その製造方法に併せて提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and even when a coating containing no chromium is applied to a grain-oriented electrical steel sheet, it has a high resistance to the same level as a steel sheet on which a chromium-containing coating is formed. It aims at providing the grain-oriented electrical steel sheet with a chromeless film which implement | achieves a hygroscopic property and a low iron loss together with the manufacturing method.
発明者らは、前掲の特許文献3に記載された、クロムを含まない被膜において、耐吸湿性および鉄損の改善効果がばらつくのは、何らかの外乱要因があって所望の特性が達成できないものと考え、この原因を究明するために膨大な実験を実施した。その結果、最終仕上焼鈍後に被成されるセラミック質の下地膜におけるチタン含有量に応じて、ばらつきが生じることを見出した。このチタンは、焼鈍分離剤助剤に用いる酸化チタンが最終仕上焼鈍中に分解することにより被膜中に侵入してくるものである。酸化チタンは、被膜形成を促進するとともに、下地膜中にチタンを侵入させて強固な下地膜をつくるのに有効であるため、よく用いられている。
以下に、この知見を得るに至った実験について述べる。
The inventors have found that the effect of improving the moisture absorption resistance and the iron loss varies in the coating film not containing chromium described in the above-mentioned Patent Document 3 because there are some disturbance factors and the desired characteristics cannot be achieved. I thought and carried out an enormous experiment to find out the cause. As a result, it was found that variations occur depending on the titanium content in the ceramic base film formed after the final finish annealing. This titanium penetrates into the coating film by the decomposition of titanium oxide used for the annealing separator auxiliary agent during the final finish annealing. Titanium oxide is often used because it promotes film formation and is effective for making titanium penetrate into the base film to form a strong base film.
The following describes the experiments that led to this finding.
C:0.045mass%、Si:3.25mass%、Mn:0.07mass%およびSe:0.02mass%を含み、残部が鉄および不可避的不純物の成分組成になるスラブを、1380℃で30分間加熱後熱間圧延にて2.2mm厚とし、次いで950℃で1分間の熱延板焼鈍を施してから、1000℃で1分間の中間焼鈍を挟む冷間圧延にて0.23mmの最終板厚に仕上げたのち、脱炭焼鈍を850℃で2分間施した。その後、鋼板表面に酸化マグネシウム100質量部、酸化チタン0〜20質量部および硫酸ストロンチウム1質量部よりなる焼鈍分離剤を鋼板表面に両面で12g/m2塗布し、乾燥して最終仕上焼鈍を施した。最終仕上焼鈍は、850℃から1150℃の領域で100%の湿H2雰囲気において、その水素分圧(PH2)に対する水蒸気分圧(PH20)の比PH20/PH2を0.001から0.2まで変更して実施した。その後、未反応の焼鈍分離剤を除去した。
C: 0.045mass%, Si: 3.25mass%, Mn: 0.07mass% and Se: 0.02mass%, with the balance being iron and unavoidable impurity composition, heated at 1380 ° C for 30 minutes, hot After rolling to 2.2 mm thickness by rolling and then hot-rolled sheet annealing at 950 ° C for 1 minute, after finishing to a final sheet thickness of 0.23 mm by cold rolling with intermediate annealing at 1000 ° C for 1 minute, Decarburization annealing was performed at 850 ° C. for 2 minutes. Thereafter, an annealing separator consisting of 100 parts by mass of magnesium oxide, 0 to 20 parts by mass of titanium oxide and 1 part by mass of strontium sulfate is applied to the surface of the steel sheet on both sides at 12 g / m 2 , and dried and subjected to final finish annealing. did. Final annealing is at 100% humidity atmosphere of H 2 in the region of 1150 ° C. from 850 ° C., the
かくして得られた鋼板を、300mm×100mmのサイズにせん断し、SST(Single Sheet Tester)試験機で磁気測定を行った。同時に、鋼板の一部を採取して下地膜におけるチタンの侵入量を化学分析にて測定し、測定値を鋼板両面当たりの目付け量に換算した。 The steel plate thus obtained was sheared to a size of 300 mm × 100 mm and subjected to magnetic measurement with an SST (Single Sheet Tester) tester. At the same time, a part of the steel sheet was sampled, the amount of titanium intrusion into the base film was measured by chemical analysis, and the measured value was converted to the basis weight per both surfaces of the steel sheet.
その後、リン酸酸洗を行った後にコーティング処理液として前掲の特許文献3に記載された、リン酸アルミニウム50質量部、コロイド状シリカ40質量部、ホウ酸5質量部および硫酸マンガン10質量部の配合割合になるコーティング剤を鋼板両面に乾燥重量で10g/m2塗布したのち、乾N2雰囲気にて800℃で2分間の焼付けを行った。なお、比較として、リン酸アルミニウム50質量部、コロイド状シリカ40質量部および無水クロム酸10質量部からなるコーティング液を用いて、同様に塗布そして焼付けを行った。 Then, after carrying out phosphoric acid pickling, 50 parts by mass of aluminum phosphate, 40 parts by mass of colloidal silica, 5 parts by mass of boric acid and 10 parts by mass of manganese sulfate described in the above-mentioned Patent Document 3 as a coating treatment liquid. A coating agent having a blending ratio was applied to both surfaces of the steel sheet at a dry weight of 10 g / m 2 and then baked at 800 ° C. for 2 minutes in a dry N 2 atmosphere. For comparison, coating and baking were similarly performed using a coating solution comprising 50 parts by mass of aluminum phosphate, 40 parts by mass of colloidal silica, and 10 parts by mass of chromic anhydride.
かくして得られた鋼板に対して、再びSST試験機にて磁気測定を行った。また、Pの溶出試験も行った。すなわち、P溶出試験は、50mm×50mmの試験片3枚を100℃の蒸留水中で5分間浸漬して煮沸することによって被膜表面からPを溶出させ、そのPを定量分析した。このPの溶出量は、被膜の水分による溶解のしやすさを判別する目安になり、耐吸湿性を評価できる。さらに、被膜の耐食性について、50mm×100mmの試験片を温度50℃および湿度50%の雰囲気に50時間暴露した後、鋼板に発生した錆を面積率として評価した。 The steel plate thus obtained was again subjected to magnetic measurement with an SST testing machine. Further, a dissolution test of P was also performed. That is, in the P dissolution test, three 50 mm × 50 mm test pieces were immersed in 100 ° C. distilled water for 5 minutes and boiled to elute P from the coating surface and quantitatively analyze the P. The P elution amount serves as a standard for discriminating the easiness of dissolution of the film by moisture, and the moisture absorption resistance can be evaluated. Further, regarding the corrosion resistance of the coating, a 50 mm × 100 mm test piece was exposed to an atmosphere at a temperature of 50 ° C. and a humidity of 50% for 50 hours, and then rust generated on the steel sheet was evaluated as an area ratio.
以上の測定並びに評価結果について、錆発生率、磁気特性およびP溶出量と最終仕上焼鈍後の下地膜のチタン含有量との関係で整理して、図1、図2および図3にそれぞれ示す。 The above measurement and evaluation results are shown in FIG. 1, FIG. 2, and FIG. 3, respectively, organized by the relationship between the rust occurrence rate, the magnetic properties, the P elution amount, and the titanium content of the underlying film after the final finish annealing.
まず、図1に示すように、クロム含有コーティングを用いると全体的に錆発生率は低く、錆発生率の下地膜チタン含有量の依存性も低い。ただし、下地膜のチタン含有量が0.02g/m2を下回ったり0.4g/m2を上回ったりすると、錆発生率が若干劣化する傾向がある。
これに対してクロムを含まないコーティングでは、多くの領域で錆発生率が高くなるが、下地膜のチタン含有量が0.05〜0.5g/m2の範囲では良好な耐食性を示し、クロム含有被膜に遜色ない性能が得られている。
First, as shown in FIG. 1, when a chromium-containing coating is used, the overall rust generation rate is low, and the dependency of the rust generation rate on the content of the underlying film titanium is also low. However, if the titanium content of the base film is less than 0.02 g / m 2 or more than 0.4 g / m 2 , the rust generation rate tends to be slightly deteriorated.
On the other hand, in the coating containing no chromium, the rust occurrence rate is high in many areas. However, when the titanium content of the base film is in the range of 0.05 to 0.5 g / m 2 , it shows good corrosion resistance, Inferior performance is obtained.
これは、鉄損およびP溶出量についても同様であり、図2および3に示すとおり、クロムを含有しない被膜であっても下地膜のチタン含有量が0.05〜0.5g/m2の範囲内にあれば、クロムを含有する被膜の場合と同等の優れた鉄損および耐久性の改善効果が認められた。 This is the same for the iron loss and the amount of elution of P. As shown in FIGS. 2 and 3, even if the coating does not contain chromium, the titanium content of the base film is within the range of 0.05 to 0.5 g / m 2. If present, excellent iron loss and durability improvement effects equivalent to those of the coating film containing chromium were observed.
以上の実験結果から、クロムを含有しない被膜を形成した場合、その下地膜のチタン含有量がクロムレス被膜の吸湿性や磁気特性および耐食性に及ぼす影響について、本発明者らは以下のとおり推察した。
まず、下地膜は一般にフォルステライトを主体とするセラミックの多結晶体となっているが、チタンはこのセラミック粒子の粒界中に濃化することにより粒界強度を高め、下地膜特性を改善する働きがある。チタンの被膜中への侵入量が低下すると下地膜の強度が弱くなるため部分的に剥離する。このような状態でコーティングを施しても、この部分剥離により張力効果が弱くなったり雰囲気に対する保護性が低下して、吸湿性、耐食性および張力による鉄損改善効果が低下するものと考えられる。
From the above experimental results, when a coating containing no chromium was formed, the present inventors inferred the influence of the titanium content of the base film on the hygroscopicity, magnetic properties, and corrosion resistance of the chromiumless coating as follows.
First, the underlying film is generally a ceramic polycrystalline body mainly composed of forsterite, but titanium concentrates in the grain boundaries of the ceramic particles to increase the grain boundary strength and improve the characteristics of the underlying film. There is work. When the penetration amount of titanium into the coating is reduced, the strength of the base film is weakened, so that it partially peels off. Even if the coating is applied in such a state, it is considered that this partial peeling weakens the tension effect or lowers the protection against the atmosphere and reduces the iron loss improvement effect due to hygroscopicity, corrosion resistance and tension.
逆に、チタンの下地膜中侵入量が多過ぎる場合には、チタンがセラミック粒子の粒界以外の場所でも存在するようになる。これは、主にフォルステライト中に取り込まれ、酸溶解性を促進させる効果を持つ。従って、このような下地膜上に、リン酸塩系の被膜を施すと、そのコーティング液によりフォルステライト粒子がエッチングされて一部が溶解するために、下地膜に薄い部分が生じる結果、やはり吸湿性、耐食性および張力効果が劣化してしまう。 On the contrary, when the penetration amount of titanium into the base film is too large, titanium is present in places other than the grain boundaries of the ceramic particles. This is mainly incorporated into forsterite and has the effect of promoting acid solubility. Therefore, when a phosphate-based film is applied on such a base film, the forsterite particles are etched and partly dissolved by the coating solution, resulting in a thin part in the base film, which also absorbs moisture. , Corrosion resistance and tension effect will deteriorate.
以上のことから、優れた被膜特性を得るためには、下地膜におけるチタン含有量を適正化することが肝要である。 From the above, in order to obtain excellent film properties, it is important to optimize the titanium content in the base film.
ここで、クロムを含有する被膜と含有しない被膜とを比較すると、クロムを含有する被膜はクロムがフリーのPをトラップするとともに、コーティング中のSi,OおよびPの結合中に入り込むことにより、被膜を強固にして吸湿性および耐食性の改善や張力による鉄損の改善をもたらすのに対し、クロムを含有しない被膜を用いた場合は、被膜強化効果がクロム入り被膜よりも小さいため、下地膜における僅かな不均一でも耐食性等を損ねることになる。従って、クロムを含有しない被膜の場合は、その下地膜の酸素目付け量の制御をより厳密に行う必要がある。 Here, when the film containing chromium is compared with the film not containing chromium, the chromium-containing film traps free P and enters into the bonding of Si, O and P in the coating. Strengthening the moisture resistance and corrosion resistance, and improving iron loss due to tension, but when using a film that does not contain chromium, the effect of strengthening the film is less than that of the film containing chromium, Even if it is uneven, corrosion resistance and the like are impaired. Therefore, in the case of a coating that does not contain chromium, it is necessary to more strictly control the amount of oxygen in the base film.
また、従来用いられているクロムを含有するコーティング液を塗布すると、クロムは腐食性の強い元素でもあるため、下地膜のエッチング効果がクロムを含有しないコーティングよりも強くなる。従って、クロム含有コーティングを塗布した場合では、よりエッチング効果が強くなりすぎて被膜の溶解が進行してしまうので、チタン含有量を少なくする必要があるが、クロムを含有しない場合は、上述の点から、むしろチタン含有量は多いほうが良いのである。 Further, when a conventionally used coating solution containing chromium is applied, chromium is also a highly corrosive element, so that the etching effect of the underlying film becomes stronger than the coating containing no chromium. Therefore, when a chromium-containing coating is applied, the etching effect becomes too strong and dissolution of the coating proceeds, so it is necessary to reduce the titanium content. Therefore, the higher the titanium content, the better.
以上の点から、クロムを含有しない被膜では、その下地膜におけるチタン侵入により製品品質に大きな影響が及ぼされるようになるとともに、クロムを含有する被膜よりもチタン侵入量が多い側に最適値をもつことになる。 In view of the above, the coating film not containing chromium has a great influence on the product quality due to the penetration of titanium in the base film, and has an optimum value on the side where the amount of penetration of titanium is larger than the coating film containing chromium. It will be.
従来、クロムを含有しない被膜では、コイル内での品質のばらつきが大きくなるという問題があったが、上記した知見により、この品質がばらつく原因とその対策が、ここに明らかになった。すなわち、コイル内で品質が不均一になるのは、箱焼鈍中のコイル内部での層間雰囲気に差異が生じることに起因する。コイル内巻き部では、一般にコイルの熱膨張による面圧が強まり、これにより層間内で発生したガスが滞留しやすくなる。この発生したガスとしては焼鈍分離剤主剤のMgOが持ち込む水和水が主体であり、この水蒸気が雰囲気に滞留すると、分離剤添加物の二酸化チタンがMgOおよび水分と反応して中間生成物を生成し、鋼板表面への侵入が促進される。すると、下地膜中のチタンの侵入量が外巻き部よりも内巻き部のほうが多くなり、その結果下地膜のチタン含有量がコイル内巻き部よりも外巻き部で多くなって、図1ないし3に示した適正範囲を外れてしまうのである。かようにチタン侵入量に差異が生じたため、チタン侵入量依存性の強いクロムレス被膜では品質にばらつきが生じるものと考えられる。従って、これを防ぐには、内巻き部および外巻き部の雰囲気差を解消するように、最終仕上焼鈍中の雰囲気酸化性である比PH20/PH2をできるだけ低いレベルで一定の範囲に収めることが必要となる。
Conventionally, coatings that do not contain chromium have had the problem of large variations in quality within the coil. However, the above-mentioned findings have revealed the cause of this quality variation and countermeasures. That is, the non-uniform quality in the coil is due to the difference in the interlayer atmosphere inside the coil during box annealing. In the coil inner winding portion, generally, the surface pressure due to the thermal expansion of the coil is increased, and thereby the gas generated in the interlayer is likely to stay. The generated gas is mainly hydrated water brought in by MgO, the main ingredient of the annealing separator, and when this water vapor stays in the atmosphere, titanium dioxide, the additive of the separating agent, reacts with MgO and moisture to produce an intermediate product. And penetration into the steel sheet surface is promoted. Then, the penetration amount of titanium in the base film is larger in the inner winding portion than in the outer winding portion, and as a result, the titanium content in the base film is larger in the outer winding portion than in the coil inner winding portion. The appropriate range shown in FIG. Thus, since the difference in the amount of intrusion of titanium occurs, it is considered that the quality of the chromeless coating having a strong dependency on the amount of intrusion of titanium varies. Therefore, in order to prevent this, the
本発明は、以上の知見に基いてなされたものであり、その要旨構成は、次のとおりである。
(1)鋼板の表面に、セラミック質の下地膜を介して、クロムを含まないリン酸塩系の張力付与被膜を有する方向性電磁鋼板であって、Si:2.0〜4.0mass%を含有する鋼スラブに熱間圧延を施し、1回又は中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げ、その後一次再結晶焼鈍を施し、次いで鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布してから最終仕上焼鈍を行ったのち、クロムを含まないリン酸塩系の張力付与被膜を形成する一連の工程において、酸化マグネシウム:100質量部および二酸化チタン:1質量部以上12質量部以下を含有する焼鈍分離剤を塗布し、最終仕上焼鈍の少なくとも850℃から1150℃までの温度域の雰囲気における水素分圧(PH 2 )に対する水蒸気分圧(PH 2 0)の比PH 2 0/PH 2 を0.06以下に、かつ前記温度域のうちの少なくとも50℃にわたる温度域でのPH 2 0/PH 2 を0.01以上0.06以下に調整して得られる、下地膜におけるチタン含有量が鋼板両面当り0.05g/m2以上0.5g/m2以下であることを特徴とするクロムレス被膜付き方向性電磁鋼板。
This invention is made | formed based on the above knowledge, The summary structure is as follows.
(1) A grain- oriented electrical steel sheet having a phosphate-based tension-imparting film containing no chromium via a ceramic base film on the surface of the steel sheet, and containing Si: 2.0 to 4.0 mass% The slab is hot-rolled and then cold-rolled once or multiple times with intermediate annealing to finish to the final thickness, followed by primary recrystallization annealing, and then the annealing separation with magnesia as the main component on the steel plate surface After the final finish annealing after applying the agent, in a series of steps of forming a phosphate-based tension-imparting film containing no chromium, magnesium oxide: 100 parts by mass and titanium dioxide: 1 part by mass or more and 12 parts by mass The ratio of the steam partial pressure (PH 2 0) to the hydrogen partial pressure (PH 2 ) in an atmosphere in the temperature range of at least 850 ° C. to 1150 ° C. of the final finish annealing is applied
(2)Si:2.0〜4.0mass%を含有する鋼スラブに熱間圧延を施し、1回又は中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げ、その後一次再結晶焼鈍を施し、次いで鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布してから最終仕上焼鈍を行ったのち、クロムを含まないリン酸塩系の張力付与被膜を形成する一連の工程によって、方向性電磁鋼板を製造するに当たり、酸化マグネシウム:100質量部および二酸化チタン:1.0質量部以上12.0質量部以下を含有する焼鈍分離剤を塗布し、最終仕上焼鈍の少なくとも850℃から1150℃までの温度域の雰囲気における水素分圧(PH2)に対する水蒸気分圧(PH20)の比PH20/PH2を0.06以下に、かつ前記温度域のうちの少なくとも50℃にわたる温度域でのPH20/PH2を0.01以上0.06以下に調整することを特徴とするクロムレス被膜付き方向性電磁鋼板の製造方法。
(2) Hot rolling is applied to a steel slab containing Si: 2.0 to 4.0 mass%, and then cold rolling is performed once or multiple times sandwiching intermediate annealing to finish to the final plate thickness, and then primary recrystallization annealing is performed. Then, after applying final annealing after applying an annealing separator mainly composed of magnesia to the steel plate surface, the directionality is determined by a series of steps to form a phosphate-based tension-imparting film that does not contain chromium. In producing the electrical steel sheet, an annealing separator containing magnesium oxide: 100 parts by mass and titanium dioxide: 1.0 part by mass or more and 12.0 parts by mass or less is applied, and at a temperature range of at least 850 ° C. to 1150 ° C. of the final finish annealing. Ratio of water vapor partial pressure (PH 2 0) to hydrogen partial pressure (PH 2 ) in the
本発明によれば、クロムを含まない被膜を適用した場合にあっても、磁気特性並びに被膜特性がともに優れた方向性電磁鋼板を安定して提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the film which does not contain chromium is applied, the grain-oriented electrical steel sheet which was excellent in both the magnetic characteristic and the film characteristic can be provided stably.
次に、本発明の各構成要件を限定した理由について詳しく述べる。
まず、本発明が対象とする鋼板は、方向性電磁鋼用素材であれば、特に鋼種を問わない。この電磁鋼スラブを公知の方法で熱間圧延し、1回もしくは中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施し、焼鈍分離剤を塗布して最終仕上焼鈍を施す。このとき、最終仕上焼鈍後の下地膜のチタン含有量を0.05g/m2以上0.5g/m2以下となるように制御することが肝要である。
Next, the reason why each constituent element of the present invention is limited will be described in detail.
First, the steel sheet which this invention makes object does not ask | require steel grade especially if it is a raw material for grain-oriented electrical steel. This electromagnetic steel slab is hot-rolled by a known method, finished to the final sheet thickness by cold rolling multiple times with one or more intermediate annealings, then subjected to primary recrystallization annealing, and an annealing separator is applied. Apply final finish annealing. At this time, a titanium content of the final finish underlying film after annealing essential to control such that the 0.05 g / m 2 or more 0.5 g / m 2 or less.
この範囲に下地膜のチタン含有量を制御するためには、まず成分としてSi:2.0〜4.0mass%を含有させる。すなわち、Si量が2.0mass%未満では鉄損が劣化し、一方4.0mass%を超えると圧延性が低下する。なお、残部は鉄および不可避的不純物の組成でよいが、必要に応じて、一次再結晶組織を改善して磁気特性を改善するためにCを0.02〜0.10mass%、インヒビターとしてAlNを用いる場合はAlを0.01〜0.03mass%およびNを0.006〜0.012mass%、インヒビターとしてMnSまたはMnSeを用いる場合はMnを0.04〜0.20mass%およびSまたはSeを0.01〜0.03mass%、補助インヒビターとしてCu,Ni,Mo,Cr,Bi,SbおよびSnを単独もしくは複数で使用する場合にはそれぞれ0.01〜0.2mass%などを含有することができる。 In order to control the titanium content of the undercoat within this range, first, Si: 2.0 to 4.0 mass% is contained as a component. That is, when the Si content is less than 2.0 mass%, the iron loss is deteriorated, while when it exceeds 4.0 mass%, the rollability is lowered. The balance may be composed of iron and inevitable impurities, but if necessary, 0.02 to 0.10 mass% for C and AlN as an inhibitor to improve the primary recrystallization structure and improve the magnetic properties. 0.01 to 0.03 mass% for Al and 0.006 to 0.012 mass% for N. When MnS or MnSe is used as an inhibitor, 0.04 to 0.20 mass% for Mn and 0.01 to 0.03 mass% for S or Se, Cu, Ni as auxiliary inhibitors When Mo, Cr, Bi, Sb and Sn are used singly or in combination, 0.01 to 0.2 mass% can be contained.
かような成分組成になる鋼スラブを加熱後に熱間圧延を施し、1回又は中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げ、次いで一次再結晶焼鈍を施す。その後、焼鈍分離剤を塗布した後最終仕上焼鈍を行う。この焼鈍分離剤中には酸化マグネシウム100質量部に対して二酸化チタンを1.0質量部以上12.0質量部以下で含有させる。すなわち、二酸化チタンの含有率が1.0質量部未満ではチタンの侵入量が少なすぎ、一方12質量部よりも多いとチタンの侵入量が多くなりすぎるために不適である。 The steel slab having such a component composition is heated and then hot-rolled, subjected to one time or a plurality of cold rolling sandwiching intermediate annealing to finish the final thickness, and then subjected to primary recrystallization annealing. Thereafter, the final finish annealing is performed after applying the annealing separator. In this annealing separator, titanium dioxide is contained in an amount of 1.0 to 12.0 parts by mass with respect to 100 parts by mass of magnesium oxide. That is, when the content of titanium dioxide is less than 1.0 part by mass, the amount of intrusion of titanium is too small. On the other hand, when the content is more than 12 parts by mass, the amount of infiltration of titanium is too large, which is not suitable.
最終仕上焼鈍における850℃から1150℃までの温度域は、その後のチタンの鋼板表面への侵入量を決定する重要な領域である。ここでは雰囲気中にH2を含有させることによって比PH20/PH2を0.06以下となるように調整する。この雰囲気における比PH20/PH2が0.06を超えると、下地膜にチタンが侵入しすぎるとともにコイルの内巻き部と外巻き部での層間雰囲気の酸化性の差が大きくなりすぎて、コイル層間で均一なチタン侵入が達成されなくなる。
The temperature range from 850 ° C. to 1150 ° C. in the final finish annealing is an important region for determining the subsequent penetration amount of titanium into the steel plate surface. Here, the
さらに、この850℃から1150℃までの温度域のうちの少なくとも50℃にわたる温度域で雰囲気の比PH20/PH2を0.01以上0.06以下の範囲に調整することも重要である。すなわち、ここでの比PH20/PH2が0.01よりも高い値をとることにより鋼板表面にチタンを侵入させやすくして品質を改善する。かような雰囲気制御の後、引き続き純化焼鈍を行って、同時に下地膜の形成も完了させる。
Furthermore, it is also important to adjust the
以上の工程により最終仕上焼鈍後の下地膜のチタン含有量を鋼板両面当り0.05〜0.5g/m2とした後、未反応の焼鈍分離剤を除去し、リン酸などにより酸洗してからクロムを含まないリン酸塩系コーティング液を塗布する。
コーティング液成分としては、従来公知のもの、例えば前掲の特許文献3に記載された、コロイド状シリカとリン酸アルミニウム、ホウ酸及び硫酸塩からなるコーティング液、或いは前掲の特許文献4に記載されたホウ酸化含物を添加したもの、特許文献5に記載された酸化物コロイドを添加したもの、特許文献6に記載された金属有機酸塩を添加したもの等々、いずれのコーティング液においても使用可能である。また、これらコーティング液に、さらにシリカやアルミナ等の無機鉱物粒子を添加して、耐スティッキング性を改善することも可能である。コーティング液の目付け量は鋼板両面で4〜15g/m2とする。すなわち、4g/m2より少ないと層間抵抗が低下し、15g/m2より多いと占積卒が低下するためにこの範囲内とする。
Chromium after removing the unreacted annealing separator and pickling with phosphoric acid, etc., after the titanium content of the base film after final finish annealing is 0.05 to 0.5 g / m 2 per both sides of the steel plate by the above process Apply a phosphate coating solution that does not contain
As the coating liquid component, a conventionally known one, for example, a coating liquid composed of colloidal silica and aluminum phosphate, boric acid and sulfate described in Patent Document 3 described above, or described in Patent Document 4 described above. Can be used in any coating solution, such as those containing borated inclusions, those containing oxide colloids described in Patent Document 5, and those containing metal organic acid salts described in Patent Document 6. is there. Moreover, it is also possible to improve sticking resistance by adding inorganic mineral particles such as silica and alumina to these coating solutions. The basis weight of the coating solution is 4 to 15 g / m 2 on both sides of the steel plate. That is, if it is less than 4 g / m 2 , the interlayer resistance is lowered, and if it is more than 15 g / m 2 , the occupational graduation is lowered.
このコーティング液を塗布、そして乾燥した後、焼付けを兼ねて平坦化焼鈍を行う。なお、平坦化焼鈍の条件は、特に限定されるものではないが、焼鈍温度は700℃〜950℃の温度範囲で2〜120秒程度の均熱時間とするのが望ましい。焼鈍温度が700℃未満であったり均熱時間が2秒より短いと、平坦化が不十分になる結果、形状不良のために歩留まりが低下し、一方温度が950℃を超えたり均熱時間が120秒より長いと、平坦化焼鈍の効果が強すぎる結果、クリープ変形して磁気特性が劣化するため、上記の範囲とすることが好ましい。 After this coating liquid is applied and dried, flattening annealing is also performed for baking. In addition, although the conditions of planarization annealing are not specifically limited, As for annealing temperature, it is desirable to set it as the soaking time of about 2-120 second in the temperature range of 700 to 950 degreeC. If the annealing temperature is less than 700 ° C or the soaking time is shorter than 2 seconds, flattening will be insufficient, resulting in poor yield due to shape defects, while the temperature exceeds 950 ° C or soaking time. If the time is longer than 120 seconds, the effect of the flattening annealing is too strong, resulting in creep deformation and deterioration of the magnetic properties. Therefore, the above range is preferable.
C:0.06mass%、Si:3.3mass%、Mn:0.07mass%、Se:0.02mass%、Al:0.03mass%およびN:0.008mass%の成分になる鋼スラブを、熱間圧延し、次いで1050℃で1分間の中間焼鈍を挟む2回の最終冷延を行い、その後850℃で2分間の脱炭焼鈍を施して得た板厚0.23mmの脱炭焼鈍板に、焼鈍分離剤としてマグネシア100質量部に対して酸化チタンの量を変化させて添加した粉体を塗布して、各種の温度パターンで最終仕上焼鈍を行い、その後未反応の焼鈍分離剤を除去することにより、下地膜のチタン含有量が種々に異なる鋼板を準備した。これをリン酸酸洗処理した後に、成分組成が乾固固形分比率で、コロイド状シリカ:50mass%、リン酸マグネシウム:40 mass%、硫酸マンガン:9.5 mass%および微粉末シリカ粒子:0.5 mass%になるコーティング液を鋼板両面で10g/m2の塗布量にて施した。なお、最終仕上焼鈍後の鋼板の磁束密度はいずれもB8で1.92(T)であった。その後、850℃で30秒、乾N2雰囲気の焼付け処理を施した。
A steel slab having components of C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, Se: 0.02 mass%, Al: 0.03 mass% and N: 0.008 mass% is hot-rolled, and then 1050 A 0.23mm-thick decarburized annealed sheet obtained by performing two final cold rollings with intermediate annealing for 1 minute at 850 ° C, followed by decarburizing annealing at 850 ° C for 2 minutes, and
かくして得られた鋼板の諸特性を調査した結果を、表1に示す。なお、下地膜のチタン含有量は、化学分析により測定した値を目付量換算した。
同表に示すように、前掲の特許文献1の記載に従って、単純に無水クロム酸の代わりに硫酸Mnを用いたのみの条件でも、下地膜のチタン含有量が0.05〜0.5g/m2の範囲にあれば、良好な被膜特性並びに鉄損が得られることがわかる。
Table 1 shows the results of investigation of various properties of the steel sheet thus obtained. In addition, the titanium content of the base film was converted to a basis weight by a value measured by chemical analysis.
As shown in the table, according to the description in the above-mentioned Patent Document 1, the titanium content of the base film is in the range of 0.05 to 0.5 g / m 2 even under the condition that Mn sulfate is simply used instead of chromic anhydride. It can be seen that good film properties and iron loss can be obtained.
実施例1の条件No.5と9の方法で処理した、最終仕上焼鈍後の下地膜のチタン含有量が0.18g/m2及び0.04g/m2で磁束密度がB8でいずれも1.92(T)の鋼板に、未反応の焼鈍分離剤を除去してから、リン酸酸洗処理を施した後に、成分組成が乾固固形分比率で、コロイド状シリカ:50 mass%、各種第1リン酸塩化合物:40 mass%及び無機化合物:9.5 mass%、そして微粉末シリカ粒子:0.5 mass%からなるコーティング液を鋼板両面で10g/m2にて施し、次いで乾N2雰囲気の焼付け処理を850℃および30秒で施した。 The titanium content of the base film after final finish annealing, which was processed by the methods of conditions No. 5 and 9 of Example 1, was 0.18 g / m 2 and 0.04 g / m 2 , and the magnetic flux density was B 8 , both of which were 1.92 ( After removing the unreacted annealing separator from the steel plate T), and then subjecting it to a phosphoric acid pickling treatment, the component composition is in the proportion of dry solids, colloidal silica: 50 mass%, various primary phosphorus A coating liquid comprising 40 mass% of an acid salt compound and 9.5 mass% of an inorganic compound and 0.5 mass% of fine powder silica particles is applied at 10 g / m 2 on both sides of the steel plate, and then baked in a dry N 2 atmosphere. It was applied at ℃ and 30 seconds.
かくして得られた鋼板の諸特性を調査した結果を、表2に示す。前掲の特許文献3ないし6に記載されたクロムを含まないいずれのコーティング液でも、下地膜のチタン含有量を適正範囲に制御することにより、優れた磁気特性および被膜特性が得られている。 Table 2 shows the results of investigating various properties of the steel sheet thus obtained. In any of the coating liquids not containing chromium described in Patent Documents 3 to 6 described above, excellent magnetic properties and coating properties are obtained by controlling the titanium content of the base film within an appropriate range.
実施例1と同様に脱炭焼鈍工程までを経た後、マグネシア100質量部に対し8質量部の二酸化チタンを含む焼鈍分離剤を塗布したコイルを2分割し、それぞれ箱焼鈍を行った。その際、焼鈍雰囲気は850℃から1150℃までを雰囲気の比PH20/PH2が0.05および0.12の2条件に変更して行った。
次いで、最終仕上焼鈍後にコイルをリン酸酸洗してからコーティング液を塗布し、焼付けを兼ねて800℃で30秒のヒートフラットニング処理を施した。その後、コイルの内、中および外巻き部よりサンプルを採取し、磁気特性および被膜特性を評価した。この評価結果を、表3に示す。
After passing through the decarburization annealing process similarly to Example 1, the coil which apply | coated the annealing separator containing 8 mass parts titanium dioxide with respect to 100 mass parts of magnesia was divided into 2, and box annealing was performed, respectively. At that time, the annealing atmosphere was changed from 850 ° C. to 1150 ° C. under two conditions of the
Next, after the final finish annealing, the coil was washed with phosphoric acid, and then a coating solution was applied, followed by a heat flattening treatment at 800 ° C. for 30 seconds. Thereafter, samples were taken from the inside, inside and outside of the coil, and the magnetic properties and the coating properties were evaluated. The evaluation results are shown in Table 3.
同表よりわかるように、雰囲気の比PH20/PH2が0.12の条件で処理したものは全体に品質が劣化傾向にあるとともに内巻と外巻とでの品質差が激しいのに対して、比PH20/PH2が0.05の条件では内巻き〜外巻きの全長で均一な磁気特性および被膜特性を得ることができる。
As can be seen from the table, the quality of the product processed under the condition of the
Claims (2)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004326579A JP4677765B2 (en) | 2004-11-10 | 2004-11-10 | Directional electrical steel sheet with chromeless coating and method for producing the same |
TW094138622A TWI270578B (en) | 2004-11-10 | 2005-11-03 | Grain oriented electromagnetic steel plate and method for producing the same |
EP05803285.5A EP1811053B1 (en) | 2004-11-10 | 2005-11-07 | Grain oriented electromagnetic steel plate and method for producing the same |
KR1020077007756A KR100969837B1 (en) | 2004-11-10 | 2005-11-07 | Grain oriented electromagnetic steel plate and method for producing the same |
CN200580033309XA CN101031667B (en) | 2004-11-10 | 2005-11-07 | Grain-oriented electrical steel sheet, and manufacturing method therefor |
US11/664,324 US7727644B2 (en) | 2004-11-10 | 2005-11-07 | Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet |
PCT/JP2005/020765 WO2006051923A1 (en) | 2004-11-10 | 2005-11-07 | Grain oriented electromagnetic steel plate and method for producing the same |
KR1020107004695A KR101049706B1 (en) | 2004-11-10 | 2005-11-07 | Grain oriented electromagnetic steel plate and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004326579A JP4677765B2 (en) | 2004-11-10 | 2004-11-10 | Directional electrical steel sheet with chromeless coating and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006137970A JP2006137970A (en) | 2006-06-01 |
JP4677765B2 true JP4677765B2 (en) | 2011-04-27 |
Family
ID=36618977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004326579A Expired - Fee Related JP4677765B2 (en) | 2004-11-10 | 2004-11-10 | Directional electrical steel sheet with chromeless coating and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4677765B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5862582B2 (en) * | 2013-02-15 | 2016-02-16 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet |
PL3913076T3 (en) * | 2019-01-16 | 2024-06-24 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54143737A (en) * | 1978-04-28 | 1979-11-09 | Kawasaki Steel Co | Formation of chromiummfree insulating top coating for directional silicon steel plate |
JP3539028B2 (en) * | 1996-01-08 | 2004-06-14 | Jfeスチール株式会社 | Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method. |
-
2004
- 2004-11-10 JP JP2004326579A patent/JP4677765B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006137970A (en) | 2006-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100969837B1 (en) | Grain oriented electromagnetic steel plate and method for producing the same | |
JP5194641B2 (en) | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
CN107849656B (en) | Method for producing grain-oriented electromagnetic steel sheet | |
KR102477847B1 (en) | Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet | |
JP6031951B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP6995010B2 (en) | A method for producing directional silicon steel with improved forsterite coating properties. | |
KR102579758B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6769587B1 (en) | Electrical steel sheet and its manufacturing method | |
CN113302318B (en) | Method for producing grain-oriented electrical steel sheet | |
JP4983334B2 (en) | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
JP4682590B2 (en) | Directional electrical steel sheet with chromeless coating and method for producing the same | |
JP4677765B2 (en) | Directional electrical steel sheet with chromeless coating and method for producing the same | |
JP7568948B2 (en) | Manufacturing method of electrical steel sheet | |
JP4321181B2 (en) | Method for forming an overcoat insulating film containing no chromium | |
JP4810820B2 (en) | Directional electrical steel sheet with chromeless coating and method for producing the same | |
JP2004332072A (en) | Method of forming chromiumless film for grain oriented magnetic steel sheet | |
WO2022250163A1 (en) | Oriented electromagnetic steel sheet | |
JP7268724B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
WO2023204267A1 (en) | Grain-oriented electromagnetic steel sheet and production method therefor | |
WO2022215714A1 (en) | Grain-oriented electrical steel sheet and method for forming insulating film | |
WO2022215709A1 (en) | Grain-oriented electromagnetic steel sheet and method for forming insulating film | |
WO2024210203A1 (en) | Grain-oriented electrical steel sheet and method for forming insulating coating film | |
WO2021261517A1 (en) | Production method for grain-oriented electrical steel sheet | |
WO2024210205A1 (en) | Grain-oriented electrical steel sheet and method for forming insulating coating film | |
JP2022097004A (en) | Grain oriented electrical steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060607 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101004 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20101004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4677765 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |