JP3651213B2 - Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP3651213B2
JP3651213B2 JP32453297A JP32453297A JP3651213B2 JP 3651213 B2 JP3651213 B2 JP 3651213B2 JP 32453297 A JP32453297 A JP 32453297A JP 32453297 A JP32453297 A JP 32453297A JP 3651213 B2 JP3651213 B2 JP 3651213B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
coating
oriented electrical
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32453297A
Other languages
Japanese (ja)
Other versions
JPH11158645A (en
Inventor
誠司 岡部
昌義 石田
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP32453297A priority Critical patent/JP3651213B2/en
Publication of JPH11158645A publication Critical patent/JPH11158645A/en
Application granted granted Critical
Publication of JP3651213B2 publication Critical patent/JP3651213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、トランスなどの鉄心に有利に用いられる方向性電磁鋼板に関するもので、けい素鋼板上に、歪み感受性の低減および磁気特性の改善効果の大きい張力付与コーティングすなわち張力(絶縁)被膜を形成させる方向性電磁鋼板の製造方法およびこの方法によって得られる方向性電磁鋼板を提案しようとするものである。
【0002】
【従来の技術】
方向性電磁鋼板の鉄損低減方法の一つとして、絶縁被膜と鋼板との熱膨張率の差によって鋼板に張力を付与する手段が知られており、この被膜には、鋼板に歪みが加えられたときの鉄損の増加(歪み感受性)を軽減する効果も有する。
【0003】
このような被膜のコーティング方法として、特公昭59−17521 号公報(方向性けい素鋼板に耐熱性のよい上塗り絶縁被膜を形成する方法)や特開昭53−28043 号公報(方向性珪素鋼板の絶縁被膜形成方法)などには、コロイド状シリカ、りん酸塩および無水クロム酸塩からなるコーティング液を用いる技術がそれぞれ提案開示されている。
【0004】
また、特開昭59−197520号公報(鉄損の低い一方向性電磁鋼板の製造方法)や特開昭63−42332 号公報(低鉄損方向性電磁鋼板の製造方法)などには、鋼板に線状疵等を導入する技術がそれぞれ開示されている。この線状疵によって歪み取り焼鈍を施しても鉄損が劣化することのない低鉄損の方向性電磁鋼板が得られる。この低鉄損化は磁区幅が減少することによるいわゆる磁区細分化効果と考えられている。
【0005】
しかしながら、線状疵等を鋼板表面に導入した方向性電磁鋼板の場合、鋼板に外部から導入された歪みが疵の周辺に集中しやすくなり、鉄損や磁歪特性を劣化させることがある。例えば、鋼板を搬送するためのピンチロールや鋼板の長さを測るためのメジャーリングロールが押し当てられた場合、低鉄損が維持されなくなるといった事例がある。そのため、線状疵等の効果で低鉄損化がなされていても、トランス加工後の鉄損は期待されるほど低くならないことがあり、特に積鉄心トランスに使用する場合は、鉄心加工後に歪み取り焼鈍を行わないので、鉄損の劣化、騒音の増大等の問題の発生が懸念される。
【0006】
このような外部からの歪みの影響を軽減するのに効果のある張力被膜による鋼板張力は、被膜が厚いほど大きくなるが、厚すぎる場合は焼付け時にコーティング内部で発生した水蒸気の外部への排出が阻害され、被膜にふくれと呼ばれるふくらみ状の欠陥や穴欠陥を形成しやすくなる。このような場合、メジャーリングロールで圧下されるときに粉が発生して空回りが生じる等の問題がある。
【0007】
特開平5−1387号公報(方向性けい素鋼板の絶縁コートの形成方法) には、焼付け時の昇温速度を制御することによってふくれを防止する技術が開示されているが、この技術を用いても被膜が厚くなるとふくれが大量に発生するようになるという問題があった。
【0008】
一方、単に被膜を過剰に厚くすることだけで歪み感受性を緩和させる方法では、占積率が低下するという問題も生じる。
【0009】
【発明が解決しようとする課題】
この発明は、前記した問題点を有利に解決しようとするものであり、好適な張力被膜を被成することによる低鉄損と低い歪み感受性とを有する方向性電磁鋼板の製造方法および方向性電磁鋼板を提案することを目的とする。
【0010】
【課題を解決するための手段】
前記課題を解決するために、被膜の被成方法と鉄損および歪み感受性との関係について詳細に調査した結果、張力被膜の厚さ方向の中間に脆弱部を設けることが歪み感受性の低減に極めて有効であるとの新規知見を得て、この発明を達成したものである。
すなわち、この発明の要旨とするところは以下の通りである。
【0011】
▲1▼フォルステライト被膜を表面に有する仕上げ焼鈍後の方向性けい素鋼板に、張力被膜を被成して方向性電磁鋼板を製造するにあたり、
該けい素鋼板表面に、リン酸塩、無水クロム酸またはクロム酸塩、およびコロイド状シリカを含むコーティング溶液を、乾燥重量で片面当り3g/m2以上、6g/m2以下の範囲で塗布し750 ℃以上、900 ℃以下の温度範囲で30秒間以上とする塗布・焼付け処理を繰返し2回行って、1回目と2回目の張力被膜の境界面に脆弱部を生じせしめ、2回の合計の塗布量を乾燥重量で片面当り7g/m2以上、12g/m2以下の範囲に調整することを特徴とする歪み感受性が低く磁気特性に優れる方向性電磁鋼板の製造方法(第1発明)。
【0012】
▲2▼フォルステライト被膜を表面に有する方向性けい素鋼板に、張力被膜を2回繰返し被成してなる方向性電磁鋼板であって、
繰り返し被成した張力被膜同志の境界面に脆弱部を有してなり、該張力被膜の片面当りの付着量が7g/m2以上、12g/m2以下の範囲であることを特徴とする歪み感受性が低く磁気特性に優れる方向性電磁鋼板(第2発明)。
【0013】
▲3▼けい素鋼板表面に、その圧延方向と交わる方向で深さ:10〜50μm 、幅:50〜300 μm および間隔:1mm以上の線状溝を多数有してなる第2発明に記載の歪み感受性が低く磁気特性に優れる方向性電磁鋼板(第3発明)。
【0014】
ここで、張力被膜の脆弱部とは、この発明の付着量において、ピンチロールやメジャーリングロールの圧下程度の局部的応力の作用で、被膜が剥離しない程度の微細な亀裂が生じる部分のことをいう。
【0015】
【発明の実施の形態】
この発明の作用効果について以下に述べる。
この発明は、通常の工程を経て得られる最終仕上げ焼鈍後のフォルステライト被膜を有するけい素鋼板にりん酸塩、無水クロム酸またはクロム酸塩、およびコロイド状シリカを含む溶液を塗布・焼付け、張力被膜を被成して方向性電磁鋼板を製造するものであって、特に、この発明の骨子とするところは、コーティング溶液を塗布後750 〜900 ℃の温度範囲で30秒間以上焼付け乾燥する操作を2回繰り返し行って、乾燥重量で片面当りの塗布量(付着量と同意で、以下単に塗布量または付着量であらわす。)の2回の合計を7〜12g/m2の範囲にし、かつ、1回目と2回目に被成されるそれぞれの被膜間の境界面に故意に脆弱部を設けるようにするものである。
かくすることにより、方向性電磁鋼板として、他の特性に悪影響を及ぼすことなく、低鉄損化と歪み感受性の低減が可能になる。
【0016】
なお、上記のコーティング溶液は、例えば特公昭56−52117 号公報(方向性珪素鋼板の絶縁被膜を形成する方法)などに示されているものであり、このコーティング溶液を用いることにより、大きい張力を鋼板に与え、歪み感受性を低減するより効果的な被膜が得られるものである。
【0017】
上記したこの発明の作用効果をさらに詳細に以下に述べる。
上記の2回繰返し行って張力被膜を被成した方向性電磁鋼板に、外部からロール圧下等の応力が局部的に加えられると1回目と2回目に被成されたそれぞれの被膜同志の境界面の脆弱部に、被膜が剥離しない程度の微細な亀裂が生じて加えられた応力が緩和され、よって、鋼板に加わる歪みが減少し、歪み感受性が低減されることになる。
【0018】
このとき、1回の塗布で付着量が7g/m2以上の厚い被膜を被成してみても、脆弱部が存在しないことから、上記したような外部からの応力により微細な亀裂が生じないため、歪み感受性の低減効果が劣るばかりでなく、このような厚い張力被膜を1回の塗布・焼付けで被成すると、ふくれが発生して発粉する問題や表面粗さが増大して占積率が低下するなどの問題が生じる。
なお、これらの問題は、1回目のフォルステライト被膜上に張力被膜を被成する場合も、2回目の張力被膜上に再度張力被膜を被成する場合も同様に発生する。
【0019】
さらに、1回目および2回目ともにそれぞれ1回の塗布量が3g/m2より少ないと鋼板に付与される張力が小さくなり、低鉄損化や歪み感受性低減効果が小さくなる。そして2回の合計の塗布量が7g/m2以上ないと歪み感受性低減効果が不十分であり、逆に12g/m2を超えると歪み感受性低減効果はさほど向上せず占積率が低下するので好ましくない。
【0020】
よって、張力被膜の塗布量としては、1回目および2回目ともに3g/m2以上6g/m2以下とし、2回の合計が7g/m2以上、12g/m2以下とすることが必要である。
【0021】
また、同様のコーティング溶液の塗布・焼付けを3回繰り返し施した場合は、脆弱部が1回目と2回目および2回目と3回目に被成したそれぞれの被膜の境界面の2か所に生成し、外部からの応力によりそれらの2か所でそれぞれ微細な亀裂が発生するようになり、被膜の剥離が急増する。その結果、発粉が生じてメジャーリングロール等への付着物が増加してトラブルが生じるので好ましくない。したがって、塗布・焼付け回数は2回に限定する必要がある。また、塗布・焼付け回数の2回を超えて増加させることは、その分生産性を阻害することになり、この点からも好ましくない。
【0022】
ついで、コーティング溶液塗布後の焼付け温度は、1回目および2回目ともに750 ℃以上の温度にする必要がある。これは特開平5−279864号公報(方向性珪素鋼板の絶縁被膜形成方法)に開示されているように、1回目の焼付け温度が600 ℃以下では、コーティング溶液のガラス転移温度に達しないので、鋼板に導入される張力が小さく、かつ、1回目の被膜とその後に被成される2回目の被膜とが一体化してしまいその境界面に脆弱部が生じないため、外部からの応力により、その応力を緩和させる微細な亀裂が発生しないので、歪感受性低減効果が不十分となる。
【0023】
そこで、この焼付け温度を750 ℃以上にすると、鋼板に導入される張力はより大きくなり、1回目の被膜と2回目の被膜の境界面には脆弱部が生じるものの、両者間に適当な密着性が得られるようになる。また、その温度の上限は900 ℃とすることがよく、900 ℃より高い温度では鋼板の酸化や鉄損特性の劣化などが生じて好ましくない。
【0024】
焼付け時間は30秒間以上とすることが必要で、30秒間未満ではコーティング溶液の脱水縮合反応が十分に進行しないので好ましくない。
【0025】
このような張力被膜をフォルステライト被膜のない鋼板に被成すると、外部からの応力によって張力被膜と鋼板との間に大きな亀裂が生じて張力被膜が剥離してしまう。したがって、張力被膜の密着性を確保するためには、フォルステライト被膜を介して鋼板に張力を被成することが必要であり、加えて、亀裂発生による張力被膜の剥離を防止するための密着性を得るには、そのフォルステライト被膜の表面粗度を0.5 μm 以上にしておくことが好ましい。
【0026】
なお、繰返し2回の塗布・焼付けにより張力被膜を被成する場合、最終2回目の張力被膜の外観を美麗にするために2回目の張力被膜の被成の直前にりん酸酸洗および乾燥を行うことが好ましい。
【0027】
また、上記したこの発明に適合する張力被膜には、歪み取り焼鈍時の鋼板同士の焼付きを防止する目的でシリカあるいはアルミナの粉末を少量含有させてもかまわない。
【0028】
さらに、この発明は、鋼板表面に磁区細分化のための線状溝を設けた場合にも有利に適用でき、より効果的な歪み感受性の低減が得られる。
【0029】
つぎに、この発明の方向性電磁鋼板用素材の好適成分組成ならびに好適製造工程について述べる。
【0030】
・成分組成
磁気特性に優れる方向性電磁鋼板を製造するためのけい素鋼スラブを対象とするもので、その好適成分組成は以下の通りである。
【0031】
C:0.10wt%以下(以下単に%であらわす)
Cは、出鋼段階で低下させて脱炭焼鈍を行わない方法と、ある程度の量を確保して組織の改善をはかり、その後の脱炭・1次再結晶焼鈍により除去する方法とがあり、この発明ではどちらの方法も適用可能である。前者の方法の場合は、Cの悪影響を避けるためその含有量は0.01%未満とすることがよく、後者の方法の場合、組織改善のための好適範囲としては0.01%以上、0.10%以下がよい。
【0032】
Si:2.0 〜4.5 %
Siは、鋼の比抵抗を高めて鉄損の低減に有効に寄与するもので、含有量が2%未満では鉄損低減効果が十分でなく、4.5 %超えでは冷間圧延性が損なわれる。
【0033】
これらの成分の他に、インヒビター構成成分を含有させることが重要である。
このインヒビターに、MnS および/またはMnSeを用いる場合は、Mn:0.03〜0.10%およS+Se:0.01〜0.03%の範囲で含有させることがよく、AlN を用いる場合は、Al:0.01〜0.04%およびN:0.005 〜0.012 %の範囲とすることがよい。これらは、含有量が上記各範囲より低いとインヒビターとしての効果が不十分であり、高いと2次再結晶が不安定になる。また、上記の他にCu, Sn, Sb, Ge, Mo, Te, Bi, P,VおよびNbなどを用いてもよい。
なお、上記の各インヒビターは、それぞれ単独使用、複合使用のいずれもが適用可能である。
【0034】
・製造工程
従来からの製鋼法で得られる上記成分組成に調整した溶鋼を連続鋳造法または造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブとしたのち、熱間圧延を施し、必要に応じて熱延板焼鈍を行い、1回もしくは中間焼鈍を挟む複数回の冷間圧延を施して最終冷延板厚とし、その後この冷延板に脱炭・1次再結晶焼鈍を施したのち、焼鈍分離剤を塗布してから最終仕上げ焼鈍を施す一連の通常工程により方向性けい素鋼板とすることでよい。
【0035】
かくして得られた最終仕上げ焼鈍後の方向性けい素鋼板に前記したようにコーティング溶液の塗布・焼付けを2回繰り返す張力被膜の被成を行い、方向性電磁鋼板製品とする。
【0036】
なお、鋼板表面の線状溝の導入は、最終仕上げ焼鈍前のいずれかの工程で行うことでよい。
【0037】
【実施例】
C:0.069 %, Si:3.34%, Mn:0.073 %,
sol.Al:0.026 %, N:0.0083% および Sb:0.024 %
を含有するけい素鋼スラブから、通常の工程を経て得られた最終仕上げ焼鈍板( 板厚:0.23mm)を用い、フォルステライト被膜上の未反応焼鈍分離剤を除去したのち、歪み取り焼鈍後、りん酸酸洗および乾燥を行ってから、コーティング溶液を塗布し、窒素雰囲気の電気炉で焼付け乾燥する操作を1回、2回または3回と繰返し行い張力被膜を被成した。
【0038】
ここで、鋼板には、片側表面に深さ:20μm 、幅:200 μm および間隔:3mmの圧延方向と略直角方向の線状溝を導入したものを用い、また、コーティング溶液には、りん酸マグネシウム:50.5%、無水クロム酸:7%、コロイド状シリカ:42%およびシリカ粉末:0.5 %からなるものを用いた。
【0039】
その1
1回で張力被膜を被成した場合と、1度張力被膜を被成した上にさらに2回目の張力被膜を被成した場合における、塗布量と被成された張力被膜の表面性状および耐発粉性との関係について調査した。
【0040】
ここで、張力被膜の焼付け条件は全て800 ℃・60秒間とした。
また、メジャーリングロールは直径:100mm 、幅:50mmのスチールロール2本を上下に組み合せたもので、上ロールをエアシリンダで下ロールに押付けている。この押付け荷重をロール幅に対して150kgf/cm になるように調整して、板を通過させた。
これらの調査結果を表1にまとめて示す。
【0041】
【表1】

Figure 0003651213
【0042】
表1から明らかなように、1回目、2回目ともに1回の塗布量が6g/m2を超えるものは表面性状が悪く、発粉の問題があることが分る。
【0043】
その2
張力被膜の付着量と鋼板に付与される張力との関係について調査した。
【0044】
このとき、張力被膜の付着量が4g/m2のものは1回の塗布・焼付けで、6kg/m2 以上のものは1回目に4g/m2付着させたのち2回目の塗布・焼付けを行ったものであり、これらの焼付け条件は全て800 ℃・60秒間とした。
また、張力は幅:30mm、長さ:280mm に切り出した試片の鋼板片面の張力被膜を水酸化ナトリウム水溶液で除去したときの鋼板の反りの大きさ(反りが大きいほど張力が大きい)で評価した。
【0045】
これらの調査結果をもとにして、図1に鋼板の反りと張力被膜の付着量との関係のグラフを示す。
【0046】
図1から明らかなように、張力被膜の付着量が大きくなるにしたがって鋼板の反りすなわち張力は大きくなり、その張力は付着量が4〜7g/m2の間で増加する度合いが大きい。
【0047】
その3
塗布量を変化させて塗布・焼付け回数1回で張力被膜を被成した場合と、2回の繰返しにより張力被膜を被成した場合の各鋼板の歪み感受性について調査した。
【0048】
このとき、張力被膜の塗布における付着量は、1回の塗布・焼付のみのものは、6〜12g/m2の範囲にし、2回の塗布・焼付のものは1回目と2回目をほぼ同じ量にして合計で4〜15g/m2の範囲にした。
焼付条件は全て800 ℃・60秒間とした。
【0049】
歪み感受性は、幅:100mm 、長さ:400mm に切り出した鋼板を、径:60mm、幅:30mmの2本のロール間を15kgf/cmのロール圧下圧で通板したときの通板前後の鋼板の鉄損差で評価した。
これは圧下力が比較的大きい場合のメジャーリングロールの影響を再現するものである。また、上記結果で鉄損差が小さい方が歪み感受性は小さいことになる。
【0050】
これらの調査結果をもとにして、図2に塗布・焼付け回数をパラメータとする張力被膜の付着量と歪み感受性との関係のグラフを示す。
【0051】
図2より明らかなように、塗布・焼付け回数が1回と2回の場合で比較すると、同量の張力被膜の付着量で塗布・焼付け回数が2回の方が鉄損差が小さく、すなわち歪み感受性が低くなる。また、塗布・焼付け回数が2回の場合で付着量が7g/m2以上になると極めて低い歪み感受性を示しており、その歪み感受性の低減効果は付着量が12g/m2を超えるとあまりない。したがって、占積率が付着量の増加にとなって減少することから、張力被膜の付着量の上限は12g/m2にすることが好ましい。
【0052】
その4
塗布量および焼付け条件を変えて塗布・焼付け回数を2回または3回として張力被膜を被成した各鋼板について、歪み感受性の指標とする鉄損差を上記その3と同様の方法で調査するとともに、上記その3と同様のロール通板後の発粉状況について調査した。
これらの調査結果を表2にまとめて示す。
【0053】
【表2】
Figure 0003651213
【0054】
表2から明らかなように、試料No. 1のこの発明の適合例では鉄損差が小さくかつ発粉の問題もないのに対し、試料No. 2〜6の比較例では、鉄損差が大きかったり、試料No. 3のように1回目の焼付け温度が高すぎるため歪み付与前の鉄損がすでに高かったり、試料No. 5のように塗布・焼付けを3回行ったものは発粉が生じたりしている。
【0055】
その5
1回目の塗布量:4g/m2、焼付け条件:800 ℃・60秒間、2回目を塗布量:4g/m2、焼付け条件:800 ℃・60秒間として張力被膜を被成し2回の合計の付着量を8g/m2とした方向性電磁鋼板(適合例)と、1回の塗布・焼付けで(焼付け条件:800 ℃・60秒間)付着量を4g/m2とした方向性電磁鋼板(比較例)について、鋼板での鉄損を測定するとともに、これらの鋼板を用いて試験用トランスをそれぞれ作製し、それらのトランスの特性を調査した。
【0056】
なお、試験用のトランスは3相3脚積み鉄心トランスで、脚およびヨーク幅:150mm 、外寸:750mm ×750mm 、鋼板使用量:100kg のものである。また、鋼板の切断の際には、径:100mm 、幅:50mmのメジャーリングロールを15kgf/cmで押し当てた。
これらの調査結果を表3にまとめて示す。
【0057】
【表3】
Figure 0003651213
【0058】
表3から明らかなように、鋼板での鉄損は適合例、比較例ともに同等であるのに対し、トランスでの鉄損および騒音は適合例の方が優れた値を示している。
【0059】
さらに、上記トランスの特性調査後、トランスを解体して使用鋼板を調査したところ、比較例の鋼板にはメジャーリングロールで圧下された部分の鉄損劣化が見られ、磁区観察ではランセットと呼ばれる磁区パターンの多発が認められたが、この発明の適合例ではこのような現象は認められなかった。
【0060】
その6
鋼板表面に線状溝を導入しなかった以外は上記と同様のけい素鋼板を用い、2回の塗布・焼付けにより付着量を変化させて張力被膜を被成したのち、上記そ3と同様の条件でメジャーリングロールを通過させた方向性電磁鋼板について鉄損を測定し、付着量と鉄損との関係について調査した。
このとき、張力被膜の塗布条件は、1回目、2回目の付着量を同じにして、合計の付着量を4〜15g/m2の範囲とした。これを800 ℃・60秒で焼付けた。
これらの調査結果をもとにして、張力被膜の付着量と鉄損との関係のグラフを図3に示す。
【0061】
図3から明らかなように、表面に線状溝のない鋼板を用いても、2回の塗布・焼付けを行った場合では張力被膜の付着量の増加とともに鉄損は低下するすなわち歪み感受性は低減し、付着量が7g/m2以上で良好な鉄損を示している。
【0062】
【発明の効果】
この発明は、フォルステライト被膜を有する仕上げ焼鈍後の方向性電磁鋼板に、付着量、焼付け条件を特定する塗布・焼付けを2回繰返し行って張力被膜を被成するものであって、
この発明による方向性電磁鋼板は、歪み感受性が低減し、効率のよりよいトランスを作製することが可能になり、電力損失の低減に有利に寄与できる。
【図面の簡単な説明】
【図1】鋼板の反りと張力被膜の付着量との関係のグラフである。
【図2】塗布・焼付け回数をパラメータとする張力被膜の付着量と歪み感受性との関係のグラフである。
【図3】張力被膜の付着量と鉄損との関係のグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grain-oriented electrical steel sheet that is advantageously used for iron cores such as transformers, and forms a tension-applying coating, that is, a tension (insulation) film, on a silicon steel sheet that has a large effect of reducing strain sensitivity and improving magnetic properties. The manufacturing method of the grain-oriented electrical steel sheet to be made and the grain-oriented electrical steel sheet obtained by this method are proposed.
[0002]
[Prior art]
As one of the methods for reducing the iron loss of grain-oriented electrical steel sheets, there is known a means for applying tension to the steel sheet by the difference in thermal expansion coefficient between the insulating coating and the steel sheet. It also has the effect of reducing the increase in iron loss (strain sensitivity).
[0003]
As a coating method for such a film, Japanese Patent Publication No. 59-17521 (a method of forming a heat-resistant overcoat insulating film on a grain-oriented silicon steel sheet) and Japanese Patent Application Laid-Open No. 53-28043 (a directional silicon steel sheet). For the insulating film forming method, etc., techniques using a coating solution made of colloidal silica, phosphate and chromate are proposed and disclosed, respectively.
[0004]
JP-A-59-197520 (manufacturing method of unidirectional electrical steel sheet with low iron loss) and JP-A-63-42332 (manufacturing method of low iron loss-oriented electrical steel sheet) include steel sheets. Techniques for introducing linear wrinkles and the like are disclosed. A grain-oriented electrical steel sheet having a low iron loss that does not deteriorate even when strain-relieving annealing is performed by the linear wrinkles can be obtained. This reduction in iron loss is considered to be a so-called magnetic domain refinement effect due to a decrease in magnetic domain width.
[0005]
However, in the case of a grain-oriented electrical steel sheet in which linear wrinkles or the like are introduced on the surface of the steel sheet, strain introduced from the outside into the steel sheet tends to concentrate on the periphery of the wrinkles, which may deteriorate iron loss and magnetostriction characteristics. For example, when a pinch roll for conveying a steel plate or a measuring roll for measuring the length of a steel plate is pressed, there is a case where low iron loss is not maintained. Therefore, even if the iron loss is reduced due to the effects of wire rods, the iron loss after transformer processing may not be as low as expected. Since the annealing is not performed, there are concerns about problems such as iron loss deterioration and noise increase.
[0006]
The steel plate tension due to the tension coating that is effective in reducing the influence of such external strain increases as the coating becomes thicker, but if it is too thick, the water vapor generated inside the coating during baking is discharged to the outside. It is obstructed, and it becomes easy to form bulge-like defects and hole defects called blisters on the film. In such a case, there is a problem such that powder is generated when the measuring roll is rolled down, causing idle rotation.
[0007]
Japanese Patent Laid-Open No. 5-1387 (Method for forming an insulating coat of a grain-oriented silicon steel sheet) discloses a technique for preventing blistering by controlling a heating rate at the time of baking. However, there was a problem that a large amount of blisters occurred when the film became thick.
[0008]
On the other hand, the method of reducing the strain sensitivity by simply making the film excessively thick also causes a problem that the space factor decreases.
[0009]
[Problems to be solved by the invention]
The present invention is intended to advantageously solve the above-mentioned problems, and a method for producing a grain-oriented electrical steel sheet having a low iron loss and a low strain sensitivity by forming a suitable tension coating, and a grain-oriented electromagnetic The purpose is to propose a steel plate.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, as a result of investigating in detail the relationship between the film deposition method and the iron loss and strain sensitivity, it is extremely effective to reduce the strain sensitivity by providing a weak portion in the middle of the thickness direction of the tension coating. The present invention has been achieved by obtaining new knowledge that it is effective.
That is, the gist of the present invention is as follows.
[0011]
(1) In producing a grain-oriented electrical steel sheet by applying a tension film to a grain oriented silicon steel sheet having a forsterite film on the surface after finish annealing.
A coating solution containing phosphate, chromic anhydride or chromate, and colloidal silica is applied to the surface of the silicon steel sheet in a range of 3 g / m 2 or more and 6 g / m 2 or less per side by dry weight. Repeat the coating and baking process for 30 seconds or more in the temperature range of 750 ° C or higher and 900 ° C or lower to generate fragile parts at the boundary surface between the first and second tension coatings. A method for producing a grain-oriented electrical steel sheet with low strain sensitivity and excellent magnetic properties, characterized in that the coating amount is adjusted to a range of 7 g / m 2 or more and 12 g / m 2 or less per side in terms of dry weight (first invention).
[0012]
(2) A grain-oriented electrical steel sheet obtained by repeatedly applying a tension film twice to a grain-oriented silicon steel sheet having a forsterite film on its surface,
Distortion characterized by having a fragile portion on the boundary surface between repeatedly formed tension coatings, and the adhesion amount per one side of the tension coating is not less than 7 g / m 2 and not more than 12 g / m 2 A grain-oriented electrical steel sheet having low sensitivity and excellent magnetic properties (second invention).
[0013]
(3) The surface of the silicon steel sheet has a number of linear grooves having a depth of 10 to 50 μm, a width of 50 to 300 μm and a spacing of 1 mm or more in the direction intersecting with the rolling direction. A grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties (third invention).
[0014]
Here, the fragile portion of the tension coating refers to a portion where a fine crack is generated in which the coating does not peel off due to the action of local stress of the pinch roll or measuring roll in the amount of adhesion in the present invention. Say.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The effects of the present invention will be described below.
The present invention applies a solution containing phosphate, chromic anhydride or chromate, and colloidal silica to a silicon steel sheet having a forsterite film after final finish annealing, which is obtained through a normal process. This is a method for producing grain-oriented electrical steel sheets by coating a film. In particular, the point of the present invention is that an operation of baking and drying at a temperature range of 750 to 900 ° C. for 30 seconds or more after applying the coating solution. Repeat twice to make the total of the application amount per side in dry weight (with the same amount of adhesion, hereinafter simply referred to as application amount or adhesion amount) in the range of 7-12 g / m 2 , and A fragile portion is intentionally provided at the boundary surface between the respective coatings formed at the first time and the second time.
As a result, the grain-oriented electrical steel sheet can be reduced in iron loss and strain sensitivity without adversely affecting other characteristics.
[0016]
The above-mentioned coating solution is disclosed in, for example, Japanese Patent Publication No. 56-52117 (a method for forming an insulating film of a directional silicon steel sheet), and a large tension can be obtained by using this coating solution. A more effective film can be obtained which is applied to the steel sheet and reduces the strain sensitivity.
[0017]
The above-described effects of the present invention will be described in detail below.
When a stress such as roll reduction is locally applied from the outside to the grain-oriented electrical steel sheet on which the tension coating is formed by repeating the above two times, the boundary surfaces of the coatings formed on the first and second coatings. In the fragile portion, a fine crack that does not peel off the coating is generated, and the applied stress is relieved. Therefore, strain applied to the steel sheet is reduced, and strain sensitivity is reduced.
[0018]
At this time, even if a thick film having an adhesion amount of 7 g / m 2 or more is formed by a single application, there is no fragile portion, so that fine cracks do not occur due to external stress as described above. Therefore, not only the effect of reducing the strain sensitivity is inferior, but when such a thick tension coating is applied by one application / baking, the problem of blistering and powdering and the surface roughness increase and the space increases. Problems such as a decrease in rate occur.
These problems occur in the same manner when a tension film is formed on the first forsterite film and when a tension film is formed again on the second tension film.
[0019]
Furthermore, if the coating amount at each time is less than 3 g / m 2 in each of the first time and the second time, the tension applied to the steel sheet is reduced, and the effect of reducing iron loss and reducing strain sensitivity is reduced. If the total coating amount of the two times is not more than 7 g / m 2 , the strain sensitivity reduction effect is insufficient. Conversely, if it exceeds 12 g / m 2 , the strain sensitivity reduction effect is not improved so much and the space factor decreases. Therefore, it is not preferable.
[0020]
Therefore, the coating amount of the tension coating must be 3 g / m 2 or more and 6 g / m 2 or less for the first and second times, and the total of the two times should be 7 g / m 2 or more and 12 g / m 2 or less. is there.
[0021]
In addition, when the same coating solution is applied and baked three times, fragile portions are generated at two locations on the boundary surface of each coating formed on the first and second times and the second and third times. Fine cracks are generated at these two places due to external stress, and the peeling of the coating increases rapidly. As a result, powdering occurs and the amount of deposits on the measuring roll and the like increases, causing trouble, which is not preferable. Therefore, it is necessary to limit the number of times of application and baking to 2 times. In addition, increasing the number of coating and baking exceeding two times impairs the productivity and is not preferable from this point.
[0022]
Next, the baking temperature after application of the coating solution needs to be 750 ° C. or higher for the first and second times. As disclosed in JP-A-5-279864 (insulating film forming method for grain-oriented silicon steel sheet), when the first baking temperature is 600 ° C. or lower, the glass transition temperature of the coating solution is not reached. The tension introduced into the steel sheet is small, and the first coating and the second coating to be formed thereafter are integrated and no fragile portion is formed at the boundary surface. Since fine cracks that relieve stress do not occur, the effect of reducing strain sensitivity is insufficient.
[0023]
Therefore, when this baking temperature is set to 750 ° C. or higher, the tension introduced into the steel plate becomes larger, and a weak portion is formed at the boundary surface between the first coating and the second coating. Can be obtained. The upper limit of the temperature is preferably 900 ° C., and a temperature higher than 900 ° C. is not preferable because oxidation of the steel sheet or deterioration of iron loss characteristics occurs.
[0024]
The baking time needs to be 30 seconds or more, and if it is less than 30 seconds, the dehydration condensation reaction of the coating solution does not proceed sufficiently, which is not preferable.
[0025]
When such a tension coating is formed on a steel plate without a forsterite coating, a large crack is generated between the tension coating and the steel plate due to external stress, and the tension coating is peeled off. Therefore, in order to ensure the adhesion of the tension coating, it is necessary to apply tension to the steel plate via the forsterite coating, and in addition, the adhesion to prevent the peeling of the tension coating due to cracking. In order to obtain the above, it is preferable that the surface roughness of the forsterite film is 0.5 μm or more.
[0026]
In addition, when applying a tension coating repeatedly by applying and baking twice, in order to beautify the appearance of the final second tension coating, phosphoric acid pickling and drying are performed immediately before the second tension coating is applied. Preferably it is done.
[0027]
In addition, the above-described tension coating suitable for the present invention may contain a small amount of silica or alumina powder for the purpose of preventing seizure between the steel plates during strain relief annealing.
[0028]
Furthermore, the present invention can be advantageously applied to the case where a linear groove for magnetic domain subdivision is provided on the steel plate surface, and a more effective reduction in strain sensitivity can be obtained.
[0029]
Next, the preferred component composition and the preferred production process of the grain-oriented electrical steel sheet material of the present invention will be described.
[0030]
-Component composition This is intended for silicon steel slabs for producing grain-oriented electrical steel sheets having excellent magnetic properties, and suitable component compositions thereof are as follows.
[0031]
C: 0.10 wt% or less (hereinafter simply expressed as%)
C is a method in which decarburization annealing is not performed by lowering in the steelmaking stage, and a method in which a certain amount is ensured to improve the structure and removed by subsequent decarburization and primary recrystallization annealing, In the present invention, both methods are applicable. In the case of the former method, the content is preferably less than 0.01% in order to avoid the adverse effects of C, and in the case of the latter method, the preferred range for improving the structure is 0.01% or more and 0.10% or less. .
[0032]
Si: 2.0 to 4.5%
Si increases the specific resistance of steel and contributes effectively to the reduction of iron loss. If the content is less than 2%, the effect of reducing iron loss is not sufficient, and if it exceeds 4.5%, the cold rolling property is impaired.
[0033]
In addition to these components, it is important to include an inhibitor component.
In the case of using MnS and / or MnSe, the inhibitor is preferably contained in the range of Mn: 0.03-0.10% and S + Se: 0.01-0.03%, and when using AlN, Al: 0.01-0.04% and N: It is good to set it as the range of 0.005-0.012%. When the content is lower than the above ranges, the effect as an inhibitor is insufficient, and when the content is high, secondary recrystallization becomes unstable. In addition to the above, Cu, Sn, Sb, Ge, Mo, Te, Bi, P, V, Nb, and the like may be used.
Each of the above inhibitors can be used alone or in combination.
[0034]
・ Manufacturing process Molten steel adjusted to the above composition obtained by conventional steelmaking methods is cast by continuous casting or ingot forming method, and if necessary, it is made into a slab with a bundling step, and then hot rolled. Then, hot-rolled sheet annealing is performed as necessary, and cold rolling is performed once or multiple times with intermediate annealing to the final cold-rolled sheet thickness, and then decarburization and primary recrystallization annealing are performed on the cold-rolled sheet. After the application, the grain-oriented silicon steel sheet may be formed by a series of normal processes in which an annealing separator is applied and then final finish annealing is performed.
[0035]
As described above, a tension coating is applied to the grain-oriented silicon steel sheet after final finish annealing obtained in this way, and the coating solution is applied and baked twice to obtain a grain-oriented electrical steel sheet product.
[0036]
In addition, the introduction of the linear groove on the steel sheet surface may be performed in any step before the final finish annealing.
[0037]
【Example】
C: 0.069%, Si: 3.34%, Mn: 0.073%,
sol.Al: 0.026%, N: 0.0083% and Sb: 0.024%
After removing the unreacted annealing separator on the forsterite film using a final finish annealed plate (thickness: 0.23 mm) obtained from a silicon steel slab containing steel, after strain relief annealing After carrying out phosphoric acid pickling and drying, the coating solution was applied, and the operation of baking and drying in an electric furnace in a nitrogen atmosphere was repeated once, twice or three times to form a tension coating.
[0038]
Here, a steel sheet having a surface of which one side has a depth: 20 μm, a width: 200 μm, and a spacing: 3 mm with linear grooves in a direction substantially perpendicular to the rolling direction is used, and the coating solution is phosphoric acid. Magnesium: 50.5%, chromic anhydride: 7%, colloidal silica: 42%, and silica powder: 0.5% were used.
[0039]
Part 1
When the tension coating is applied once and when the tension coating is applied once and then the second tension coating is applied, the coating amount, the surface properties of the applied tension coating, and the resistance The relationship with powderiness was investigated.
[0040]
Here, the baking conditions for the tension coating were all set to 800 ° C. for 60 seconds.
The measuring roll is a combination of two steel rolls with a diameter of 100mm and a width of 50mm. The upper roll is pressed against the lower roll with an air cylinder. The pressing load was adjusted to 150 kgf / cm with respect to the roll width, and the plate was passed through.
These survey results are summarized in Table 1.
[0041]
[Table 1]
Figure 0003651213
[0042]
As is apparent from Table 1, it can be seen that when the coating amount in the first and second coatings exceeds 6 g / m 2 , the surface properties are poor and there is a problem of powdering.
[0043]
Part 2
The relationship between the amount of tension coating and the tension applied to the steel sheet was investigated.
[0044]
In this case, what the amount of deposition of the tension coating is 4g / m 2 in one application and baking, the second coating and baking after 6 kg / m 2 or more things that were 4g / m 2 adhered to the first The baking conditions were all set to 800 ° C. for 60 seconds.
The tension is evaluated by the amount of warpage of the steel sheet when the tension coating on one side of the specimen cut into a width of 30 mm and length of 280 mm is removed with an aqueous sodium hydroxide solution (the greater the warpage, the greater the tension). did.
[0045]
Based on these investigation results, FIG. 1 shows a graph of the relationship between the warpage of the steel sheet and the adhesion amount of the tension coating.
[0046]
As is apparent from FIG. 1, the warpage of the steel sheet, that is, the tension increases as the adhesion amount of the tension coating increases, and the degree of the increase in the adhesion amount between 4 and 7 g / m 2 is large.
[0047]
Part 3
The strain sensitivity of each steel sheet when the tension coating was formed by changing the coating amount and the number of times of coating / baking once and when the tension coating was formed by repeating twice was investigated.
[0048]
At this time, the adhesion amount in the application of the tension coating is in the range of 6 to 12 g / m 2 for one application / baking, and the first and second times are almost the same for the two application / baking. The total amount was in the range of 4 to 15 g / m 2 .
The baking conditions were all set to 800 ° C. for 60 seconds.
[0049]
Strain sensitivity is the steel sheet before and after threading when a steel sheet cut into a width of 100 mm and a length of 400 mm is passed between two rolls with a diameter of 60 mm and a width of 30 mm with a roll pressure of 15 kgf / cm. The iron loss difference was evaluated.
This reproduces the influence of the measuring roll when the rolling force is relatively large. Moreover, the smaller the iron loss difference in the above results, the smaller the strain sensitivity.
[0050]
Based on the results of these investigations, FIG. 2 shows a graph of the relationship between the amount of tension coating attached and the strain sensitivity with the number of coating and baking operations as a parameter.
[0051]
As is clear from FIG. 2, when the number of times of application / baking is compared between one time and twice, the difference in iron loss is smaller when the number of times of application / baking is the same with the same amount of tension coating applied. Strain sensitivity is reduced. In addition, when the number of times of application / baking is 2 and the adhesion amount is 7 g / m 2 or more, the strain sensitivity is extremely low, and the effect of reducing the strain sensitivity is not so much when the adhesion amount exceeds 12 g / m 2. . Accordingly, since the space factor decreases with an increase in the adhesion amount, the upper limit of the adhesion amount of the tension coating is preferably 12 g / m 2 .
[0052]
4
In addition to investigating the iron loss difference as an indicator of strain sensitivity for each steel sheet coated with a tension coating by changing the coating amount and baking conditions to 2 or 3 times of coating and baking, and using the same method as in Part 3 above Then, the powdering state after the roll plate similar to the above 3 was investigated.
These survey results are summarized in Table 2.
[0053]
[Table 2]
Figure 0003651213
[0054]
As is apparent from Table 2, the iron loss difference is small and there is no problem of powdering in the sample of sample No. 1 which is suitable for the present invention, whereas in the comparative examples of samples No. It is large, or the first baking temperature is too high as in sample No. 3, so that the iron loss before applying strain is already high, or the sample that has been applied and baked three times as in sample No. 5 is powdered. It has occurred.
[0055]
Part 5
First coating amount: 4 g / m 2 , baking conditions: 800 ° C for 60 seconds, second coating amount: 4 g / m 2 , baking conditions: 800 ° C for 60 seconds, a tension coating is applied and totaled twice Oriented electrical steel sheet with 8 g / m 2 adhesion (compatible example) and grain oriented electrical steel sheet with 4 g / m 2 adhesion after one application and baking (baking conditions: 800 ° C. for 60 seconds) About (comparative example), while measuring the iron loss in a steel plate, the test transformer was produced using these steel plates, respectively, and the characteristic of those transformers was investigated.
[0056]
The transformer for testing is a three-phase, three-legged iron core transformer with leg and yoke width: 150 mm, outer dimensions: 750 mm × 750 mm, and steel plate usage: 100 kg. Further, when cutting the steel sheet, a measuring roll having a diameter of 100 mm and a width of 50 mm was pressed at 15 kgf / cm.
These survey results are summarized in Table 3.
[0057]
[Table 3]
Figure 0003651213
[0058]
As is apparent from Table 3, the iron loss in the steel sheet is the same in both the conforming example and the comparative example, whereas the iron loss and noise in the transformer are superior in the conforming example.
[0059]
Furthermore, after investigating the characteristics of the transformer, the transformer was disassembled and the steel sheets used were examined. As a result, the steel sheet of the comparative example showed iron loss deterioration at the part squeezed by the measuring roll. Although a large number of patterns were observed, such a phenomenon was not observed in the conforming example of the present invention.
[0060]
Part 6
A silicon steel plate similar to the above except that no linear groove was introduced on the surface of the steel plate was used, and after applying a tension coating by changing the amount of adhesion by applying and baking twice, the same as in the above-mentioned 3 Iron loss was measured for grain-oriented electrical steel sheets that passed through a measuring roll under conditions, and the relationship between adhesion amount and iron loss was investigated.
At this time, the application conditions of the tension coating were the same for the first and second depositions, and the total deposition was in the range of 4 to 15 g / m 2 . This was baked at 800 ° C. for 60 seconds.
Based on these investigation results, a graph of the relationship between the amount of tension coating and the iron loss is shown in FIG.
[0061]
As is apparent from FIG. 3, even when a steel plate having no linear groove on the surface is used, the iron loss decreases as the amount of the tension coating is increased when the coating and baking are performed twice, that is, the strain sensitivity is reduced. However, when the adhesion amount is 7 g / m 2 or more, good iron loss is shown.
[0062]
【The invention's effect】
This invention is to apply a tension coating to a grain-oriented electrical steel sheet having a forsterite coating after finish annealing by repeatedly applying and baking twice to specify the amount of adhesion and baking conditions,
The grain-oriented electrical steel sheet according to the present invention has a reduced strain sensitivity, makes it possible to produce a more efficient transformer, and can advantageously contribute to a reduction in power loss.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the warpage of a steel sheet and the adhesion amount of a tension coating.
FIG. 2 is a graph showing the relationship between the amount of tension coating applied and the strain sensitivity with the number of coating and baking operations as a parameter.
FIG. 3 is a graph showing the relationship between the amount of tension coating and iron loss.

Claims (3)

フォルステライト被膜を表面に有する仕上げ焼鈍後の方向性けい素鋼板に、張力被膜を被成して方向性電磁鋼板を製造するにあたり、
該けい素鋼板表面に、リン酸塩、無水クロム酸またはクロム酸塩、およびコロイド状シリカを含むコーティング溶液を、乾燥重量で片面当り3g/m2以上、6g/m2以下の範囲で塗布し750 ℃以上、900 ℃以下の温度範囲で30秒間以上とする塗布・焼付け処理を繰返し2回行って、1回目と2回目の張力被膜の境界面に脆弱部を生じせしめ、2回の合計の塗布量を乾燥重量で片面当り7g/m2以上、12g/m2以下の範囲に調整することを特徴とする歪み感受性が低く磁気特性に優れる方向性電磁鋼板の製造方法。
In producing a grain-oriented electrical steel sheet by applying a tension film to a grain-oriented silicon steel sheet after finish annealing having a forsterite film on the surface,
A coating solution containing phosphate, chromic anhydride or chromate, and colloidal silica is applied to the silicon steel plate surface in a range of 3 g / m 2 or more and 6 g / m 2 or less per side by dry weight. Repeat the coating and baking process for 30 seconds or more in the temperature range of 750 ° C or higher and 900 ° C or lower to generate fragile parts at the interface between the first and second tension coatings. A method for producing a grain-oriented electrical steel sheet with low strain sensitivity and excellent magnetic properties, characterized in that the coating weight is adjusted to a dry weight within a range of 7 g / m 2 or more and 12 g / m 2 or less per side.
フォルステライト被膜を表面に有する方向性けい素鋼板に、張力被膜を2回繰返し被成してなる方向性電磁鋼板であって、
繰り返し被成した張力被膜同志の境界面に脆弱部を有してなり、該張力被膜の片面当りの付着量が7g/m2以上、12g/m2以下の範囲であることを特徴とする歪み感受性が低く磁気特性に優れる方向性電磁鋼板。
A grain-oriented electrical steel sheet obtained by repeatedly applying a tension film twice to a grain-oriented silicon steel sheet having a forsterite film on its surface,
Distortion characterized by having a fragile portion on the boundary surface between repeatedly formed tension coatings, and the amount of adhesion per one surface of the tension coating is in the range of 7 g / m 2 or more and 12 g / m 2 or less. A grain-oriented electrical steel sheet with low sensitivity and excellent magnetic properties.
けい素鋼板表面に、その圧延方向と交わる方向で深さ:10〜50μm 、幅:50〜300 μm および間隔:1mm以上の線状溝を多数有してなる請求項2に記載の歪み感受性が低く磁気特性に優れる方向性電磁鋼板。3. The strain sensitivity according to claim 2, wherein the silicon steel sheet has a number of linear grooves having a depth of 10 to 50 [mu] m, a width of 50 to 300 [mu] m and a distance of 1 mm or more in a direction intersecting with the rolling direction. A grain-oriented electrical steel sheet that is low and excellent in magnetic properties.
JP32453297A 1997-11-26 1997-11-26 Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet Expired - Fee Related JP3651213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32453297A JP3651213B2 (en) 1997-11-26 1997-11-26 Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32453297A JP3651213B2 (en) 1997-11-26 1997-11-26 Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH11158645A JPH11158645A (en) 1999-06-15
JP3651213B2 true JP3651213B2 (en) 2005-05-25

Family

ID=18166860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32453297A Expired - Fee Related JP3651213B2 (en) 1997-11-26 1997-11-26 Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3651213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017695A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317683A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Grain-oriented electromagnetic steel plate for three-phase laminated iron core
DE102010038038A1 (en) * 2010-10-07 2012-04-12 Thyssenkrupp Electrical Steel Gmbh Process for producing an insulation coating on a grain-oriented electro-steel flat product and electro-flat steel product coated with such an insulation coating
WO2016105053A1 (en) * 2014-12-24 2016-06-30 주식회사 포스코 Grain-oriented electrical steel plate and production method therefor
KR101693516B1 (en) 2014-12-24 2017-01-06 주식회사 포스코 Grain-orientied electrical steel sheet and method for manufacturing the smae

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279864A (en) * 1992-03-31 1993-10-26 Nippon Steel Corp Formation of insulated film for grain oriented silicon steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017695A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JPH11158645A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
KR101896046B1 (en) Method for producing an insulation coating on a grain-oriented electrical steel flat product and electrical steel flat product coated with such an insulation coating
WO2015064472A1 (en) Oriented electromagnetic steel sheet excelling in magnetic characteristics and coating adhesion
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
KR20210136119A (en) Method for manufacturing grain-oriented electrical steel sheet and equipment for applying annealing separator
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3651213B2 (en) Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JPWO2018074462A1 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
WO2019013355A9 (en) Oriented electromagnetic steel plate
EP2243865A1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP2698526B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
CN114106593B (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JP2006265685A (en) Grain-oriented magnetic steel sheet and producing method therefor
JP3300117B2 (en) Method of forming insulating coating on grain-oriented silicon steel sheet
RU2779376C1 (en) Electrical steel sheet with oriented grain structure and its manufacturing method
CN114381584B (en) Insulating coating liquid for oriented silicon steel surface, oriented silicon steel plate and manufacturing method thereof
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
KR20220067546A (en) Film formation method and manufacturing method of electrical steel sheet with insulating film
RU2774384C1 (en) Anisotropic electrical steel sheet, intermediate steel sheet for anisotropic electrical steel sheet and methods for their production
JPH02267276A (en) Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR20240116512A (en) Coating for oriented silicon steel coating layer, oriented silicon steel plate, and manufacturing method therefor
JPH024924A (en) Formation of insulating film on oriented electrical steel sheet having excellent iron core workability and magnetic characteristics

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees