JPH05138187A - Device for controlling flow rate of returned sludge - Google Patents

Device for controlling flow rate of returned sludge

Info

Publication number
JPH05138187A
JPH05138187A JP3332577A JP33257791A JPH05138187A JP H05138187 A JPH05138187 A JP H05138187A JP 3332577 A JP3332577 A JP 3332577A JP 33257791 A JP33257791 A JP 33257791A JP H05138187 A JPH05138187 A JP H05138187A
Authority
JP
Japan
Prior art keywords
flow rate
sludge
ratio
sewage
returned sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3332577A
Other languages
Japanese (ja)
Other versions
JP3104763B2 (en
Inventor
Toshinori Kanetani
利憲 金谷
Itsuro Fujita
逸朗 藤田
Tatsuo Ida
達男 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP03332577A priority Critical patent/JP3104763B2/en
Publication of JPH05138187A publication Critical patent/JPH05138187A/en
Application granted granted Critical
Publication of JP3104763B2 publication Critical patent/JP3104763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To homogenize the conditions relating to the amount of activated sludge of the respective aertors in a plurality of sewage disposal systems. CONSTITUTION:In a sewage disposal controlling device equipped with a plurality of sewage disposal systems wherein sewage is introduced into aerators and mixed with returned sludge and air is supplied into the aerators to perform purification of sewage, the necessary flow rate of returned sludge is calculated by algorithm for maintaining the ratio of the flow rate of returned sludge constant for the flow rate of sewage introduced into the aerators in the arithmetic devices 10A, 10B of requested returned sludge. The measured flow rate arithmetic devices 11A, 11B calculate the ratio of the measured value for the request amount of returned sludge from both the output of these arithmetic devices and the output signals of the flow meters 6A, 6B of returned sludge. The ratio of both the necessary flow rate of returned sludge and the measured value in a plurality of sewage disposal systems is calculated by an arithmetic device 12 for regulating the rate of flow rate so that the ratio is made constant. The operation state of the sewage disposal systems is homogenized by opening and closing the control valves 7A, 7B of returned sludge in the sewage disposal systems wherein the ratio of the measured flow rate is early made large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性汚泥法による下水
処理における返送汚泥流量制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a returning sludge flow rate control device in sewage treatment by the activated sludge method.

【0002】[0002]

【従来の技術】従来の下水処理装置は、図2に示すよう
に最初沈殿池1A、1Bから流下した流入下水が曝気槽
3A、3Bに流入する。一方、最終沈殿池4から返送汚
泥ポンプ5により引き抜かれた活性汚泥は流量計6A、
6Bを経て曝気槽に返送汚泥として返送される。曝気槽
に流入した流入下水は活性汚泥と混合され、流入下水に
含まれる固形物および溶解性有機物を活性汚泥に吸着さ
せるとともに、生物酸化による分解を行わせて下水を浄
化している。このような浄化作用は複数の曝気槽A、B
で行われ、下水と活性汚泥の混合液は最終沈殿池4に流
入し、混合液中の活性汚泥は最終沈殿池内で沈降させ、
掻き寄せ機により掻き寄せてホッパーに収集して前記返
送汚泥ポンプ5により返送し、一部を余剰汚泥として排
出していた。なお、2A、2Bは流入下水の流量計、7
A、7Bは返送汚泥量調節弁、8は余剰汚泥引抜ポンプ
である。
2. Description of the Related Art In a conventional sewage treatment apparatus, as shown in FIG. 2, the inflowing sewage that first flows from the settling basins 1A and 1B flows into the aeration tanks 3A and 3B. On the other hand, the activated sludge drawn from the final settling tank 4 by the returning sludge pump 5 has a flowmeter 6A,
After 6B, it is returned to the aeration tank as return sludge. The influent sewage that has flowed into the aeration tank is mixed with the activated sludge to adsorb the solid matter and soluble organic matter contained in the influent sewage to the activated sludge, and at the same time, it is decomposed by biological oxidation to purify the sewage. Such a purifying action has a plurality of aeration tanks A and B.
The mixed liquid of sewage and activated sludge flows into the final settling tank 4, and the activated sludge in the mixed solution is settled in the final settling tank.
It was scraped by a scraping machine, collected in a hopper, returned by the returning sludge pump 5, and partly discharged as excess sludge. 2A and 2B are inflow sewage flow meters, 7
A and 7B are return sludge amount control valves, and 8 is a surplus sludge drawing pump.

【0003】[0003]

【発明が解決しようとする課題】このような複数の曝気
槽を有する下水処理装置において、最終沈殿池から配管
路を流通してそれぞれの曝気槽内に返送汚泥を返送する
配管路系が複数となり、配管路の管路長の差異などによ
り管路抵抗が異なる。そのため返送汚泥ポンプ5の能力
を超えるような大量の返送汚泥量を必要とする場合、曝
気槽3A、3Bに返送される汚泥量は、両曝気槽とも必
要量に達しないが、その不足量について大きな差が生じ
る。その結果、曝気槽中の活性汚泥量に大きな差が生
じ、曝気槽への送風量の個別管理や、ひいては浄化作用
の差異が発生し、下水処理装置の運転を困難にするとい
う欠点があった。そこで、本発明は複数の下水処理系に
おける各曝気槽の活性汚泥量の状態が均質になることを
目的とする。
In such a sewage treatment apparatus having a plurality of aeration tanks, there are a plurality of piping systems that circulate the piping from the final settling tank and return the returned sludge to the respective aeration tanks. , The pipeline resistance varies due to the difference in pipeline length of the pipeline. Therefore, when a large amount of returned sludge that exceeds the capacity of the returned sludge pump 5 is required, the amount of sludge returned to the aeration tanks 3A and 3B does not reach the required amount in both aeration tanks, but about the insufficient amount. There is a big difference. As a result, there was a large difference in the amount of activated sludge in the aeration tank, and there was a drawback that individual management of the air flow to the aeration tank and eventually a difference in the purification action occurred, making it difficult to operate the sewage treatment device. .. Therefore, an object of the present invention is to make the amount of activated sludge in each aeration tank in a plurality of sewage treatment systems uniform.

【0004】[0004]

【課題を解決するための手段】最初沈澱池の上澄水を曝
気槽内に導き返送汚泥と混合し、曝気槽内に空気を供給
して下水の浄化を行う下水処理系を複数系そなえた下水
処理制御装置において、曝気槽流入下水流量に対する返
送汚泥流量の比率を一定にする返送汚泥比率一定アルゴ
リズム、あるいは曝気槽内のMLSS濃度を返送汚泥流
量の調節によって、一定に維持しようとするMLSS濃
度一定アルゴリズムなどによって必要な返送汚泥流量を
演算する要求返送汚泥演算器と、要求返送汚泥演算器の
出力と返送汚泥流量計の出力信号から返送汚泥の要求量
に対する実測値の比率を演算する実測流量比率演算器
と、一の下水処理系の実測流量比率演算器の出力と他の
下水処理系の実測流量比率演算器の出力から複数の下水
処理系の要求返送汚泥流量と実測値の比率を一定にする
流量比率調整演算器を有し、それぞれの下水処理系の返
送汚泥調節弁を開閉して下水処理系の運転状態を均質と
するようにしたものである。
[Means for solving the problem] First, sewage treatment control with multiple sewage treatment systems that guide the supernatant water of the sedimentation tank into the aeration tank, mix it with the returned sludge, and supply air into the aeration tank to purify the sewage. In the equipment, the return sludge ratio constant algorithm that makes the ratio of the return sludge flow rate to the aeration tank inflow sewage flow rate constant, or the MLSS concentration constant algorithm that tries to keep the MLSS concentration in the aeration tank constant by adjusting the return sludge flow rate, etc. The required return sludge calculator that calculates the required amount of returned sludge by the device, and the measured flow rate ratio calculator that calculates the ratio of the actual measured value to the required amount of returned sludge from the output of the requested return sludge calculator and the output signal of the returned sludge flow meter And the output of the measured flow rate ratio calculator of one sewage treatment system and the output of the measured flow rate ratio calculator of another sewage treatment system from the request return pollution of multiple sewage treatment systems. Has a flow rate ratio adjustment calculator for the ratio of the flow rate and the measured value constant, it is obtained as a homogeneous operating conditions of the sewage treatment system by opening and closing the respective sewage treatment system return sludge control valve.

【0005】[0005]

【作用】したがって、複数の曝気槽に返送される返送汚
泥量の必要量に対する到達比率を同じくできるので、複
数の曝気槽の活性汚泥量状態を均質にでき、下水処理装
置の運転を簡便にすることができる。
Therefore, the ratio of the amount of returned sludge returned to a plurality of aeration tanks to the required amount can be made the same, so that the activated sludge amount state of a plurality of aeration tanks can be made uniform and the operation of the sewage treatment device can be simplified. be able to.

【0006】[0006]

【実施例】図1は本発明の実施例を示すもので、図2と
同一のものには同一符号を付して詳細な説明を省略す
る。図中9A、9Bは返送比率を設定する返送比率設定
器、10A、10Bは返送比率設定器からの信号と流入
下水量計2A、2Bの信号から要求返送汚泥量を演算す
る要求返送汚泥演算器11A、11Bは要求返送汚泥演
算器の信号と実際の返送汚泥量を計測する流量計6A、
6Bの信号より要求返送汚泥量と実際の返送汚泥量の比
率を演算する実測流量比率演算器、12はそれぞれの曝
気槽系列の実測流量比率演算器11A、11Bの出力信
号から両系統の実測流量比率を一定になるように調整す
る流量比率調整演算器、13A、13Bは流量比率調整
演算器の出力信号により返送汚泥量調節弁7A、7Bを
開閉路する制御装置である。このような返送汚泥流量制
御装置において曝気槽A、BにQA 、QB の流入下水量
が最初沈殿池1A、1Bか曝気槽3A、3Bに流入し、
曝気槽内の流入下水は図示しない散気板からの空気の供
給を受けながら浄化され、その混合液は最終沈殿池4に
流下し、最終沈殿池内では活性汚泥は沈降し、上澄水は
槽外に排出されるとともに沈降した活性汚泥は返送汚泥
として曝気槽3A、3Bに返送される。いま、曝気槽
A、Bに流入する流入水量をQA 、QB とし、返送比率
設定器9A、9Bに返送比率αA 、αB と設定すると、
実測流量比率演算器10A、10Bは実測流量比率
βA 、βB を演算し、流量比率演算器12にそれぞれ出
力する。両曝気槽系列の実測流量比率が略同等の場合
は、汚泥調節弁7A、7Bに現状開度で運転するように
制御装置13A、13Bに出力する。いま、最初沈澱池
への流入下水量が増大すると、各曝気槽への流入下水量
A 、QB も増大し、要求返送汚泥演算器10A、10
Bから出力される要求返送汚泥量RSQA 、RSQB
増大する。 RSQA =QA ・αA ───(1) RSQB =QB ・αB ───(2) RSQ=RSQA +RSQB (3) 総返送汚泥量RSQが返送汚泥ポンプ5の吐出能力を超
えるような場合には、流量計6A、6Bで実測される返
送汚泥量RSA 、RSB が要求返送汚泥量RSQA 、R
SQB よりも小さくなり、実測流量比率演算器11A、
11Bか出力されるβA 、βB は1より小さくなる。 βA =RSA /RSQA (4) βB =RSB /RSQB (5) この時、返送汚泥管路の管路長が差異などにより、各曝
気槽系列の管路抵抗が異なると実測流量比率βA 、βB
には差異が生じてくる。流量比率調整演算器12は、実
測流量比率βA とβB を比較し、その値の大きい系列の
制御装置13に、小さい系列の実測流量比率になるよう
目標流量を出力し、制御装置13ではこの出力を受け
て、汚泥調節弁7を閉方向に操作する。例えば、βA
βB より大きい場合は、 RSA ' = βB ・RSQA (6) によって演算された修正RSA ' を目標流量として13
Aに出力する。この時に制御装置13Bには、汚泥調節
弁の開閉操作をしないように指令する。したがって、流
量大なる系列の返送汚泥量は減少し、流量小なる系列の
返送汚泥量は増大する。その結果、新たな実測流量比率
βA 、βB が演算され流量比率調整演算器12に入力さ
れる。流量比率調整演算器12では、βA とβB が略等
しくなると返送汚泥調節弁7に現状の開度で運転するよ
う制御装置13に出力する。βA とβB が等しいとは見
なせない場合は、当初実測流量比率が大であった系列に
対し、他方の実測流量比率になるよう返送汚泥調節弁7
を操作するように制御装置13へ出力する。このように
して総返送汚泥量が不足する状況下にあって、実測流量
比率を同等にし、かつ可及的最大値とすることができ
る。実施例では実測流量比率に差異が検出されると即座
に調整動作を開始するようにしたが、差異が一定時間継
続した後に調整動作を開始するようにいしてもよく、ま
た、要求返送汚泥量の演算方法として流入下水量に設定
された比率を乗ずる方法を示したが、曝気槽内のMLS
S濃度を一定にすべく返送汚泥量を演算する方法など他
の方法による演算方法としてもよい。
FIG. 1 shows an embodiment of the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals and detailed description thereof will be omitted. In the figure, 9A and 9B are return ratio setters for setting the return ratio, 10A and 10B are required return sludge calculators for calculating the required return sludge amount from the signals from the return ratio setter and the signals of the inflow sewer meters 2A and 2B. 11A and 11B are flowmeters 6A for measuring the signal of the requested sludge calculator and the actual amount of sludge to be returned.
Measured flow rate ratio calculator that calculates the ratio of the required amount of returned sludge to the actual amount of returned sludge from the signal of 6B, and 12 is the measured flow rate of both systems from the output signals of the measured flow rate ratio calculators 11A and 11B of each aeration tank series. The flow rate adjusting calculators 13A and 13B for adjusting the ratio to be constant are control devices for opening and closing the return sludge amount adjusting valves 7A and 7B according to the output signals of the flow rate adjusting calculator. In such a returning sludge flow control device, the inflowing sewage amount of Q A and Q B into the aeration tanks A and B first flows into the settling tanks 1A and 1B or the aeration tanks 3A and 3B,
The inflowing sewage in the aeration tank is purified while being supplied with air from a diffusion plate (not shown), the mixed solution flows down to the final settling tank 4, the activated sludge settles in the final settling tank, and the supernatant water is out of the tank. The activated sludge that has been discharged to and settled in the above is returned to the aeration tanks 3A and 3B as return sludge. Now, if the inflow water amounts flowing into the aeration tanks A and B are Q A and Q B, and the return ratios α A and α B are set in the return ratio setters 9A and 9B,
The measured flow rate ratio calculators 10A and 10B calculate the measured flow rate ratios β A and β B, and output them to the flow rate ratio calculator 12, respectively. When the measured flow rate ratios of both aeration tank series are approximately equal, the sludge control valves 7A and 7B are output to the control devices 13A and 13B so as to operate at the current opening degree. Now, when the amount of sewage that flows into the settling basin first increases, the amount of sewage that flows into each aeration tank Q A , Q B also increases, and the requested return sludge calculators 10A, 10
The requested sludge amounts RSQ A and RSQ B output from B also increase. RSQ A = Q A · α A ─── (1) RSQ B = Q B · α B ─── (2) RSQ = RSQ A + RSQ B (3) Total Return Sludge Volume RSQ is the discharge capacity of the return sludge pump 5. In case of exceeding, the return sludge amount RS A , RS B actually measured by the flowmeters 6A, 6B is the required return sludge amount RSQ A , R
It becomes smaller than SQ B , and the measured flow rate calculator 11A,
11B or the outputted β A, β B is smaller than 1. β A = RS A / RSQ A (4) β B = RS B / RSQ B (5) At this time, due to differences in the pipe length of the returned sludge pipe, it was measured that the pipe resistance of each aeration tank series was different. Flow rate β A , β B
Will be different. The flow rate ratio adjustment calculator 12 compares the measured flow rate ratios β A and β B , and outputs the target flow rate to the control device 13 having a large value so that the measured flow rate ratio becomes a small value. Upon receiving this output, the sludge control valve 7 is operated in the closing direction. For example, when β A is larger than β B , RS A ' = β B · RSQ A (13) is used as the target flow rate and the corrected RS A ' is set to 13
Output to A. At this time, the controller 13B is instructed not to open / close the sludge control valve. Therefore, the amount of returned sludge in the series with a large flow rate decreases, and the amount of returned sludge in the series with a small flow rate increases. As a result, new actually measured flow rate ratios β A and β B are calculated and input to the flow rate ratio adjustment calculator 12. In the flow rate adjustment calculator 12, when β A and β B become substantially equal to each other, the return sludge control valve 7 is output to the control device 13 so as to operate at the current opening. If β A and β B cannot be regarded as equal, the returned sludge control valve 7 should be set so that the measured flow rate ratio is initially large, while the other measured flow rate ratio is the same.
Is output to the control device 13 so as to operate. In this way, in a situation where the total amount of sludge to be returned is insufficient, the measured flow rate ratio can be made equal and the maximum possible value can be obtained. In the embodiment, the adjustment operation is started immediately when a difference is detected in the actually measured flow rate, but the adjustment operation may be started after the difference continues for a certain period of time. As a calculation method of the above, the method of multiplying the inflow sewage amount by the set ratio was shown, but the MLS in the aeration tank was shown.
The calculation method may be another method such as a method of calculating the amount of returned sludge so as to keep the S concentration constant.

【0007】[0007]

【発明の効果】本発明によれば、要求返送汚泥量が返送
汚泥ポンプの吐出能力を超えるような状況となっても、
複数の曝気槽系列の実測流量比率を等しくし、かつ可及
的に最大値とすることができるので、複数の曝気槽系列
の活性汚泥量に関する条件が均質になり、下水処理装置
の運転を簡便化することができる。
According to the present invention, even when the required amount of sludge to be returned exceeds the discharge capacity of the returning sludge pump,
Since the measured flow rate ratios of multiple aeration tank series can be made equal and maximized as much as possible, the conditions related to the amount of activated sludge in multiple aeration tank series will be uniform and the operation of sewage treatment equipment will be simple. Can be converted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す返送汚泥流量制御装置の
ブロック図
FIG. 1 is a block diagram of a returning sludge flow rate control device showing an embodiment of the present invention.

【図2】従来の返送汚泥流量制御装置のブロック図FIG. 2 is a block diagram of a conventional returning sludge flow rate control device.

【符号の説明】[Explanation of symbols]

1A、1B、4 最終沈殿池 2A、2B 流入下水量計 3A、3B 曝気槽 4 最終沈殿池 6A、6B 流量計 7A、7B 返送汚泥量調節弁 8 余剰汚泥引抜ポンプ 10A、10B 要求返送汚泥演算器 11A、11B 実測流量比率演算器 12 流量比率調整演算器 13A、13B 制御装置 1A, 1B, 4 Final sedimentation tank 2A, 2B Inflow sewage meter 3A, 3B Aeration tank 4 Final sedimentation tank 6A, 6B Flow meter 7A, 7B Return sludge amount control valve 8 Excess sludge extraction pump 10A, 10B Request return sludge calculator 11A, 11B Measured flow rate ratio calculator 12 Flow rate adjustment calculator 13A, 13B Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最初沈澱池の上澄水を曝気槽内に導き返
送汚泥と混合し、曝気槽内に空気を供給して下水の浄化
を行う下水処理系を複数系そなえた下水処理制御装置に
おいて、曝気槽流入下水流量に対する返送汚泥流量の比
率を一定にする返送汚泥比率一定アルゴリズム、あるい
は曝気槽内のMLSS濃度を返送汚泥流量の調節によっ
て、一定に維持しようとするMLSS濃度一定アルゴリ
ズムなどによって必要な返送汚泥流量を演算する要求返
送汚泥演算器と、要求返送汚泥演算器の出力と返送汚泥
流量計の出力信号から返送汚泥の要求量に対する実測値
の比率を演算する実測流量比率演算器と、一の下水処理
系の実測流量比率演算器の出力と他の下水処理系の実測
流量比率演算器の出力から複数の下水処理系の要求返送
汚泥流量と実測値の比率を一定にする流量比率調整演算
器を有し、それぞれの下水処理系の返送汚泥調節弁を開
閉して下水処理系の運転状態を均質にしたことを特徴と
する返送汚泥流量制御装置。
1. A sewage treatment control apparatus having a plurality of sewage treatment systems for purifying sewage by first introducing the supernatant water of a sedimentation basin into an aeration tank and mixing it with return sludge to supply air to the aeration tank. Return sludge ratio constant algorithm that keeps the ratio of the returned sludge flow rate to the tank inflow sewage flow rate constant, or the MLSS concentration constant algorithm that keeps the MLSS concentration in the aeration tank constant by adjusting the returned sludge flow rate. A requested return sludge calculator that calculates the sludge flow rate, an actual flow rate ratio calculator that calculates the ratio of the actual value to the required amount of returned sludge from the output of the requested return sludge calculator and the output signal of the returned sludge flow meter, From the output of the measured flow rate ratio calculator for the sewage treatment system and the output of the measured flow rate ratio calculator for other sewage treatment systems, the required return sludge flow rate and measured values for multiple sewage treatment systems can be calculated. A return sludge flow control device comprising a flow rate adjusting calculator for keeping the ratio constant, and opening and closing the return sludge control valve of each sewage treatment system to make the operation state of the sewage treatment system uniform.
JP03332577A 1991-11-20 1991-11-20 Return sludge flow control device Expired - Fee Related JP3104763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03332577A JP3104763B2 (en) 1991-11-20 1991-11-20 Return sludge flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03332577A JP3104763B2 (en) 1991-11-20 1991-11-20 Return sludge flow control device

Publications (2)

Publication Number Publication Date
JPH05138187A true JPH05138187A (en) 1993-06-01
JP3104763B2 JP3104763B2 (en) 2000-10-30

Family

ID=18256483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03332577A Expired - Fee Related JP3104763B2 (en) 1991-11-20 1991-11-20 Return sludge flow control device

Country Status (1)

Country Link
JP (1) JP3104763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110863A (en) * 2010-11-26 2012-06-14 Hitachi Plant Technologies Ltd Device of feeding sewage from initial sedimentation basin to biological reaction tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110863A (en) * 2010-11-26 2012-06-14 Hitachi Plant Technologies Ltd Device of feeding sewage from initial sedimentation basin to biological reaction tank

Also Published As

Publication number Publication date
JP3104763B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JP3961835B2 (en) Sewage treatment plant water quality controller
JP4131955B2 (en) Aeration air volume control device of sewage treatment plant
JP4008694B2 (en) Sewage treatment plant water quality controller
KR100661455B1 (en) Apparatus for treating waste water and method of using
JP2006075804A (en) Apparatus for assisting operation of sewage disposal plant
JP2006315004A (en) Water quality control unit for sewage disposal plant
JPH07115025B2 (en) Bulking control method using SVI
JP6805002B2 (en) Water treatment control device and water treatment system
JP2020151611A (en) Water treatment plant operation support device and water treatment plant
JPH05138187A (en) Device for controlling flow rate of returned sludge
JP6643086B2 (en) Monitoring and control system using activated sludge method
JP2003260484A (en) Wastewater treatment apparatus
JP3707526B2 (en) Waste water nitrification method and apparatus
JP4248043B2 (en) Biological phosphorus removal equipment
JP3999869B2 (en) Biological water treatment equipment
JP4489990B2 (en) Biological water treatment equipment
JP2006007132A (en) Apparatus for treating sewage
JP7424997B2 (en) water treatment equipment
JP2016190181A (en) Water treatment device
JPH11290888A (en) Method for biological water treatment and its control device
JP7282149B2 (en) Water treatment device and water treatment method
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JPH07232191A (en) Oxidation ditch-type waste water treating device and its centralized control system
JP3104764B2 (en) Excess sludge flow control device
JP2004105952A (en) Sewage treatment operation support system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees