JPH0513464B2 - - Google Patents

Info

Publication number
JPH0513464B2
JPH0513464B2 JP60181682A JP18168285A JPH0513464B2 JP H0513464 B2 JPH0513464 B2 JP H0513464B2 JP 60181682 A JP60181682 A JP 60181682A JP 18168285 A JP18168285 A JP 18168285A JP H0513464 B2 JPH0513464 B2 JP H0513464B2
Authority
JP
Japan
Prior art keywords
probe
subject
guide member
spring
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60181682A
Other languages
Japanese (ja)
Other versions
JPS6243564A (en
Inventor
Makoto Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60181682A priority Critical patent/JPS6243564A/en
Publication of JPS6243564A publication Critical patent/JPS6243564A/en
Publication of JPH0513464B2 publication Critical patent/JPH0513464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は探触子および被検体が水、油等の液体
に浸漬された液浸法により、被検体の内部欠陥の
探傷、厚さ、音速等の測定を行う場合における被
検体の位置決め装置に関し、特に探触子より発射
される超音波のビーム軸と被検体の探傷面を、自
動的に垂直に対向して位置決めするのに好適な位
置決め装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses a liquid immersion method in which a probe and a specimen are immersed in a liquid such as water or oil to detect internal defects, thickness, and sound velocity of a specimen. Regarding a positioning device for a test object when performing measurements such as the above, this positioning system is particularly suitable for automatically positioning the beam axis of the ultrasonic waves emitted from the probe and the test surface of the test object so that they are perpendicularly opposed to each other. Regarding equipment.

〔発明の背景〕[Background of the invention]

被検体の内部欠陥の探傷、被検体の厚さ、音速
等の測定が液浸法(水浸法が一般的であり、以下
水浸法で説明する。)により多く行われている。
これは探触子と被検体が直接接触しないため、接
触媒質の油膜の厚さや探傷面のあらさ等による影
響をほとんど受けることなく、超音波の送受が安
定して行われる利点を有するからであり、この利
点から自動探傷の目的に広く利用されている。し
かし水浸法は探触子から放射された超音波を、あ
る程度長い距離の水中を伝搬させたのち被検体に
入射させる方法であるから、水と被検体との境界
面における超音波の反射および屈折が、水を介す
る分(他の液体を介する場合もほぼ同じ)だけど
うしても直接探触法の場合と異なる。例えば縦波
を用いて鋼材を探傷する場合についてみると、水
から鋼に超音波が入射する場合の入射角θiと屈折
角θrの関係では、屈折角θrは入射角θiの約4倍で
あり、また斜角探傷においては入射角14.5°〜
27.3°の範囲内で33°〜90°の屈折横波が得られるこ
とが知られており、有機ガラスなどを用いた直接
接触用の斜角探触子に比べて、入射角範囲が少な
くそれだけ微妙な角度調節が必要である。このた
め垂直探傷の場合は探触子を被検体に対して正し
く垂直に向ける必要があることはもちろん、斜角
探傷の場合においても前記微妙な角度調節のため
に、探触子を被検体に対して正しく垂直に向ける
とともに、探触子と探傷面までの距離を一定に保
つことが必要である。
Detection of internal defects in a test object, measurement of the test object's thickness, sound velocity, etc. are often performed using a liquid immersion method (the water immersion method is common and will be described below as the water immersion method).
This is because there is no direct contact between the probe and the object to be tested, so it has the advantage that ultrasonic waves can be transmitted and received stably without being affected by the thickness of the couplant oil film or the roughness of the testing surface. Due to this advantage, it is widely used for automatic flaw detection purposes. However, the water immersion method is a method in which the ultrasonic waves emitted from the probe are propagated through water over a certain distance before being incident on the subject, so the ultrasonic waves are reflected at the interface between the water and the subject. The refraction is different from that of the direct probe method because it involves water (it is almost the same when other liquids are involved). For example, when examining steel materials using longitudinal waves, the relationship between the angle of incidence θi and the angle of refraction θr when ultrasonic waves are incident on steel from water is that the angle of refraction θr is approximately four times the angle of incidence θi. , and for angle angle flaw detection, the incident angle is 14.5°~
It is known that refracted transverse waves of 33° to 90° can be obtained within the range of 27.3°, and compared to direct contact angle angle probes using organic glass, the incident angle range is smaller and the angle of incidence is that much more subtle. angle adjustment is required. For this reason, in the case of vertical flaw detection, it is necessary to point the probe correctly perpendicular to the test object, and in the case of angle flaw detection, it is necessary to orient the probe correctly to the test object in order to make the delicate angle adjustment. It is necessary to correctly orient the probe perpendicularly to the surface and to maintain a constant distance between the probe and the flaw detection surface.

上記必要性に対し従来行われてきた方法は、水
槽内に設置されている探触子を装着した探触子ホ
ルダに対し、水槽外に設置されているロボツトな
どの搬入手段につかまれた被検体を、その搬入手
段により対向する位置に搬入し対置させていた。
探触子と被検体を垂直に対向させる一般的な方法
は、搬入手段が被検体をつかむ際、あらかじめ被
検体の探傷面が水槽内に搬入され対置されたと
き、探触子と垂直に対向するように調整して配置
しておくことにより行われていた。この方法は多
数の被検体を自動探傷する場合に用いられている
が、多数の被検体のセツト位置を誤差なく設定す
ることは治具などを使用しても困難であり、仮に
リセツト位置を誤差なく設定できたとしても、搬
入手段の各部の動作誤差、探触子ホルダの設置位
置、探触子の装着位置および水槽自体の位置など
の相対的位置の誤差が集積され、多数の被検体を
その都度探触子に対し正しく垂直に対向させるこ
とはむつかしく、しばしば測定誤差が発生してい
るのが実状である。そしてこの測定誤差発生の検
出も、通常被検体のセツト位置が正しいとの前提
で測定が行われているためますます困難であり、
その検出のために測定を2回以上行うことさえあ
る。またセツト位置の調整は微妙な調整が要求さ
れるなど多くの問題点を有していた。
Conventionally, the method used to address the above-mentioned needs is to transport a sample held by a transport means such as a robot installed outside the tank to a probe holder with a probe installed inside the tank. were carried into opposing positions by the carrying means and placed in opposition.
A common method of vertically opposing the probe and the test object is to place the test surface of the test object vertically opposite the probe when the carrying means grabs the test object. This was done by adjusting and arranging them so that the This method is used for automatic flaw detection of a large number of test objects, but it is difficult to set the set position of a large number of test objects without error even if a jig is used. Even if the setting is possible, errors in the relative positions of each part of the loading means, the installation position of the probe holder, the mounting position of the probe, and the position of the water tank itself will accumulate, and it will be difficult to handle a large number of specimens. The reality is that it is difficult to correctly orient the probe perpendicularly to the probe each time, and measurement errors often occur. Detecting the occurrence of measurement errors is also increasingly difficult because measurements are normally performed on the assumption that the set position of the subject is correct.
For its detection, measurements may even be performed more than once. Further, there were many problems such as the need for delicate adjustments in adjusting the set position.

〔発明の目的〕[Purpose of the invention]

本発明は前記従来技術の問題点を解消し、被検
体が探触子ホルダに搬入されるとき、該被検体の
探傷面が探触子に対して正しく垂直に対向しない
状態であつても、搬入が終り測定が開始されると
きには自動的に正しく垂直に対向した位置に位置
決めができる、超音波検査における被検体の位置
決め装置を提供することを目的とする。
The present invention solves the problems of the prior art, and even when the test object is carried into the probe holder, even if the test surface of the test object is not correctly perpendicularly opposed to the probe, It is an object of the present invention to provide a positioning device for a subject in an ultrasonic examination, which can automatically position the subject in a vertically opposed position when carrying the subject is finished and measurement is started.

〔発明の概要〕[Summary of the invention]

本発明は被検体の位置決め装置において、被検
体を挟持する挟圧面を有する相対した一対で一組
の探触子ホルダと、該探触子ホルダの挟圧面と垂
直で、かつ探触子ホルダをその相対する挟圧面の
間隔の開閉する方向に摺動自在に支持する案内部
材と、前記相対する挟圧面の間隔が、該間隔に搬
入される被検体により前記案内部材に沿つて摺動
しながら拡大されるとき、その拡大される力と対
抗して探触子ホルダの挟圧面に、被検体を挟圧す
る方向に作用する力を発生させ、かつ前記案内部
材に沿つて伸縮するように設けられたばねと、前
記案内部材の両端部を前記挟持された被検体とと
もに前記探触子ホルダ、案内部材、ばねと一体的
に移動可能に支承する台とから構成することによ
り、被検体の探傷面が探触子に対して正しく垂直
に対向しない状態で搬入されても、測定時には自
動的に正しく垂直に対向した位置に位置決めされ
るようにした位置決め装置である。
The present invention provides a positioning device for a subject, which includes a pair of opposing probe holders having clamping surfaces that clamp the subject, and a probe holder that is perpendicular to the clamping surface of the probe holder and that has a clamping surface that clamps the specimen. A guide member slidably supports the gap between the opposing clamping surfaces in the opening/closing direction, and the gap between the opposing clamping surfaces is adjusted while the subject being carried into the gap slides along the guide member. When the probe holder is expanded, it generates a force acting on the clamping surface of the probe holder in the direction of clamping the subject in opposition to the expanding force, and is provided to expand and contract along the guide member. By comprising a tabular spring and a stand that supports both ends of the guide member so as to be movable together with the clamped test object, the probe holder, the guide member, and the spring, the flaw detection surface of the test object can be fixed. This positioning device is designed to automatically position the probe at a position where it is correctly perpendicularly opposed to it during measurement even if the probe is brought in in a state where it is not correctly perpendicularly opposed to it.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図ないし第5図により説
明する。第1図および第2図は第1の実施例の説
明図で、本実施例は液槽内において探傷面と底面
が平行な平板の被検体を、2探触子で音速、厚み
などの測定を行う場合を示す。図において1は探
触子ホルダで、被検体Mを挟持する挟圧面1aを
有し、相対した一対で一組を構成する。上部には
一対の送信用の探触子2と受信用の探触子3が装
着されており、下部には挟圧面1aと直角方向に
2つの貫通する穴1bが並列に穿設されている。
挟圧面1aは探触子2,3が垂直探触子の場合そ
の振動子の面と平行になつている。また挟圧面1
aの上部は被検体Mが挿入され易いように適宜R
または面取りをする。4は棒状の案内部材で探触
子ホルダ1の穴1bにがたの少ない状態で挿嵌さ
れている。探触子ホルダ1は2本の案内部材4上
に相対する挟圧面1aの間隔が開閉する方向に摺
動自在に支承される。案内部材4の両端にばね座
4aが固着され、ばね座4aと探触子ホルダ1の
挟圧面1aと反対側の面1cとの間にはばね5が
嵌装されている。以上の構成は台6上にばね座4
aを介して被検体とともに一体的に移動可能に支
承されている。
Embodiments of the present invention will be explained with reference to FIGS. 1 to 5. Figures 1 and 2 are explanatory diagrams of the first embodiment. In this embodiment, a flat plate specimen whose flaw detection surface and bottom surface are parallel is measured in a liquid tank using two probes to measure sound velocity, thickness, etc. Indicates when to do this. In the figure, reference numeral 1 denotes a probe holder, which has a clamping surface 1a for clamping a subject M, and a pair of probe holders facing each other constitutes a set. A pair of transmitting probes 2 and receiving probes 3 are attached to the upper part, and two penetrating holes 1b are bored in parallel in the lower part in a direction perpendicular to the clamping surface 1a. .
When the probes 2 and 3 are vertical probes, the clamping surface 1a is parallel to the plane of the vibrator. Also, the pinching surface 1
The upper part of a is appropriately rounded so that the subject M can be easily inserted.
Or chamfer. A rod-shaped guide member 4 is inserted into the hole 1b of the probe holder 1 with little play. The probe holder 1 is supported on two guide members 4 so as to be slidable in the direction in which the gap between the opposing clamping surfaces 1a opens and closes. Spring seats 4a are fixed to both ends of the guide member 4, and a spring 5 is fitted between the spring seats 4a and the surface 1c of the probe holder 1 opposite to the clamping surface 1a. The above configuration has a spring seat 4 on a stand 6.
It is supported so as to be movable integrally with the subject via a.

被検体Mが図示していない搬入手段につかまれ
て液槽内に搬入され、つづいてつかまれた被検体
Mは通常上方から探触子ホルダ1に挟持させるべ
く相対する挟圧面1a間に挿入される。この場合
相対する挟圧面1aの当初の間隔は、被検体Mの
厚さや重量により零の場合もあり任意に決められ
ている。被検体Mは所望の探傷面が探触子2,3
の装着されている位置まで挟圧面1aの間隔を拡
大して挿入されるが、その際探触子ホルダ1は案
内部材4上をばね5を押しながら摺動し、挟圧面
1aの間隔が拡大された分の力と対抗する力をば
ね5に発生させ、そのばねの圧縮力により挟圧面
1aで被検体Mを挟持する。この状態で測定が開
始されるが、被検体Mの探傷面が探触子2,3に
対して正しく垂直に対向しているか否かは、多数
の被検体Mの測定の前にいくつかの被検体Mにつ
いて試験をし、正しい状態および正しくない状態
の波形またはエコーパターンを目視またはモニタ
により比較判別できるようにしておく。波形また
はエコーパターンが正しくない状態、つまり被検
体Mが傾斜した第1図の状態で挟圧面1a間に挿
入された場合には、搬入手段がつかんでいる被検
体Mを、探触子ホルダ1、案内部材4、ばね5と
一体的にばね座4aが台6から僅かに離れる程度
持ち上げる。すると挟圧面1aはばね5により被
検体Mを押し付けられているので、自動的に傾斜
した被検体Mの両面を挟圧し密着した状態になり
安定する。この密着した状態は被検体Mの両面と
探触子2,3が正しく垂直に対向して位置決めさ
れている状態であり、目視またはモニタにより正
しくない対向状態の波形またはエコーパターンの
変形を判別したとき、被検体Mを僅かに持ち上げ
るだけできわめて簡単にかつ自動的に正しい対向
状態を得ることができる。なお本実施例のように
被検体Mが平行な2面を有する平板である場合に
は、その平行な2面と探触子2,3が垂直に対向
するだけでなく、常に自動的に等距離で測定でき
る効果も有する。また挟圧面1aは被検体Mの平
行な2面に密着する平面としたが、例えば被検体
Mの挟圧される面がテーパ面である場合は、挟圧
面1aもそのテーパ面に合致したテーパ面とすれ
ばよく、被検体Mの挟圧される面に合わせた面に
すればよい。ばね5は面1cを押すように面1c
とばね座4aとの間に圧縮ばねを設けたが、圧縮
ばねに替えて相対する探触子ホルダ1の間に引張
りばねを設け、引張りばねと探触子ホルダを係止
して、挟圧面1aの間隔が拡大されるときの力を
抑止する力で被検体Mを挟持するようにしてもよ
い。ばね5の数は案内部材4一本につき2個設け
たが、1個を排しいずれか1個にしてもよい。つ
ぎに案内部材4を設ける位置は、本実施例では探
触子ホルダ1の下部に挿嵌した場合を示したが、
挟圧面1aの高さの範囲内であれば他の位置にし
てもよい。さらに探触子ホルダ1にはそれぞれ探
触子を装着したが、片方の探触子を排し送受信兼
用の1探触子の場合でも使用可能である。測定が
完了し被検体Mを持ち上げると探触子ホルダ1お
よび案内部材4ともばね5により一体的になつて
いるから同時に持ち上げられる。しかしばね座4
aが台6に当たり持ち上げが抑止され、ばね5の
圧縮力に抗して被検体Mが挟圧面1aから離脱す
る。そして被検体Mが離脱した位置決め装置は、
次に測定される被検体Mに対して前記した自動的
に位置決めを行う状態に復しており、前記動作を
繰り返して正しい位置で測定が続行される。
The subject M is grabbed by a carrying means (not shown) and carried into the liquid tank, and then the grabbed subject M is usually inserted between the opposing clamping surfaces 1a to be held by the probe holder 1 from above. . In this case, the initial distance between the opposing clamping surfaces 1a may be zero depending on the thickness and weight of the subject M, and is arbitrarily determined. The desired flaw detection surface of the object M is the probes 2 and 3.
The probe holder 1 is inserted with the gap between the clamping surfaces 1a expanded to the position where the probe holder 1 is attached. At this time, the probe holder 1 slides on the guide member 4 while pressing the spring 5, and the gap between the clamping surfaces 1a is expanded. The spring 5 generates a force that opposes the applied force, and the subject M is held between the holding surfaces 1a by the compressive force of the spring. Measurement starts in this state, but whether or not the test surface of the test object M is correctly perpendicularly opposed to the probes 2 and 3 must be checked before measuring a large number of test objects M. A test is performed on the subject M, and the waveforms or echo patterns in a correct state and an incorrect state can be compared and determined visually or on a monitor. When the waveform or echo pattern is incorrect, that is, when the subject M is inserted between the clamping surfaces 1a in the tilted state shown in FIG. , the guide member 4 and the spring 5 are integrally lifted to such an extent that the spring seat 4a is slightly separated from the base 6. Then, since the clamping surface 1a is pressed against the subject M by the spring 5, it automatically clamps both sides of the tilted subject M, bringing them into a stable state of close contact. This close contact state is a state in which both surfaces of the subject M and the probes 2 and 3 are correctly positioned to face each other vertically, and deformation of the waveform or echo pattern due to the incorrect facing state is determined by visual inspection or monitor. In this case, the correct facing state can be obtained very easily and automatically by simply lifting the subject M slightly. In addition, when the object M is a flat plate having two parallel surfaces as in this embodiment, the two parallel surfaces and the probes 2 and 3 are not only perpendicularly opposed to each other but also automatically and equally spaced. It also has an effect that can be measured by distance. In addition, the clamping surface 1a is a flat surface that comes into close contact with two parallel surfaces of the subject M. However, if the clamping surface of the subject M is a tapered surface, the clamping surface 1a should also be a tapered surface that matches the tapered surface. It may be a surface, and it may be a surface that matches the surface of the subject M to be squeezed. Spring 5 pushes surface 1c so as to press surface 1c.
A compression spring is provided between the spring seat 4a and the spring seat 4a, but instead of the compression spring, a tension spring is provided between the opposing probe holders 1, and the tension spring and the probe holder are locked, so that the clamping surface The subject M may be held with a force that suppresses the force when the interval 1a is expanded. Although two springs 5 are provided for each guide member 4, one may be omitted and only one spring may be used. Next, the position where the guide member 4 is provided is shown as being inserted into the lower part of the probe holder 1 in this embodiment.
Any other position may be used as long as it is within the height range of the clamping surface 1a. Further, although probes are attached to each probe holder 1, it is also possible to eliminate one probe and use one probe for both transmitting and receiving purposes. When the measurement is completed and the subject M is lifted, the probe holder 1 and the guide member 4 are also lifted up at the same time since they are integrally formed by the spring 5. However, spring seat 4
a hits the table 6 and is prevented from being lifted, and the subject M separates from the clamping surface 1a against the compressive force of the spring 5. The positioning device from which the subject M has left is
The state is restored to automatically position the object M to be measured next, and the above operation is repeated to continue measurement at the correct position.

つぎに第2の実施例を第3図ないし第5図によ
り説明する。図において第1図および第2図と同
じ符号のものは同じものを示す。本実施例も第1
の実施例と同様に液槽内において探傷面と底面が
平行な平板の被検体を、2探触子で測定する場合
を示す。図において14は案内部材で、その中央
には支点ピン7が設けられ、挿嵌された一対の探
触子ホルダ1とともに支点ピン7の周りに自由に
揺動可能に台8上に支持されている。ばね座4a
の外面には長穴を有するアイエンド9が固着さ
れ、その長穴は台8に直立させて固着された棒材
10に遊嵌している。棒材10にはアイエンド9
と台8との間にばね11が嵌装され、支点ピン7
の左右に生じた負荷のアンバランスを支持できる
ようになつている。12はアイエンド9のはずれ
止めである。
Next, a second embodiment will be explained with reference to FIGS. 3 to 5. In the figures, the same reference numerals as in FIGS. 1 and 2 indicate the same things. This example is also the first
As in the embodiment described above, a case is shown in which a flat plate object in which the flaw detection surface and the bottom surface are parallel is measured in a liquid tank using two probes. In the figure, reference numeral 14 denotes a guide member, in the center of which a fulcrum pin 7 is provided, which is supported on a stand 8 so as to be able to freely swing around the fulcrum pin 7 together with a pair of probe holders 1 inserted therein. There is. Spring seat 4a
An eye end 9 having an elongated hole is fixed to the outer surface of the eye end 9, and the elongated hole loosely fits into a bar 10 which is fixed upright to the base 8. Eye end 9 for bar 10
A spring 11 is fitted between the fulcrum pin 7 and the stand 8.
It is designed to support the unbalanced load that occurs on the left and right sides. 12 is a stopper for the eye end 9 to come off.

被検体Mが搬入手段につかまれて、液槽内の探
触子に正しく垂直に対向するように搬入された場
合は、前記第1の実施例における説明と同じであ
る。ところが被検体Mが第1図のように傾斜した
状態で挟圧面1a間に挿入される場合は、被検体
Mをばね5の圧縮力に抗して挿入される力が、支
点ピン7に偏心して作用することになる。このと
き案内部材14は探触子ホルダ1とともに支点ピ
ン7の周りに自由に揺動できるから、被検体Mの
傾斜に対応する角度まで揺動する。揺動時案内部
材14は、両端のアイエンド9の長穴が棒材10
と係合し揺動方向を案内される。被検体Mが挟圧
面1aの所定の位置まで挿入されると揺動は停止
する。揺動時における支点ピン7の左右に生じる
前記偏心による負荷のアンバランスには、片側の
ばね11が縮み他方のばね11が伸びて対抗し、
揺動停止時には被検体Mの傾斜角度に対応した第
5図に示す揺動姿勢がそのまま保持される。この
揺動姿勢は、前記第1の実施例において傾斜状態
で挟圧面1a間に被検体Mが挿入された場合に
は、ばね座4aを台6から僅かに離れる程度に搬
入手段により被検体Mを持ち上げた状態と同一
で、被検体Mの両面と探触子2,3が正しく垂直
に対抗して位置決めされている状態にほかならな
い。したがつて本実施例においては、目視または
モニタにより正しくない対向状態の波形またはエ
コーパターンの変形を判別するまでもなく、搬入
するだけで常に自動的に正しい対向状態を得るこ
とができる。第5図に示す揺動した姿勢で測定が
完了した場合は、搬入手段により被検体Mが探触
子ホルダ1から搬出されると同時に、短縮されて
いるばね11が伸長され反対に伸長されていたば
ね11が圧縮されて水平状態に復する。そして次
に測定される被検体Mが前記正しくない対向状態
で搬入されても、自動的に正しい対向状態に位置
決めが行われる。
When the subject M is grabbed by the carrying means and carried so as to correctly face the probe in the liquid tank perpendicularly, the explanation is the same as in the first embodiment. However, when the subject M is inserted between the clamping surfaces 1a in an inclined state as shown in FIG. It will work with care. At this time, since the guide member 14 can freely swing around the fulcrum pin 7 together with the probe holder 1, it swings to an angle corresponding to the inclination of the subject M. In the swinging guide member 14, the elongated holes in the eye ends 9 at both ends are connected to the bar 10.
and is guided in the swinging direction. When the subject M is inserted to a predetermined position on the clamping surface 1a, the swinging stops. The unbalance of the load caused by the eccentricity occurring on the left and right sides of the fulcrum pin 7 during rocking is counteracted by the spring 11 on one side being compressed and the spring 11 on the other side being stretched.
When the swinging is stopped, the swinging posture shown in FIG. 5 corresponding to the inclination angle of the subject M is maintained as it is. In this swinging posture, when the subject M is inserted between the clamping surfaces 1a in an inclined state in the first embodiment, the carrying means moves the spring seat 4a slightly away from the table 6 so that the subject M This is the same state as when the object M is lifted up, and is nothing but a state in which both surfaces of the subject M and the probes 2 and 3 are correctly positioned vertically opposing each other. Therefore, in this embodiment, it is not necessary to visually or monitor to determine whether the waveform or echo pattern of the incorrect facing state has been deformed, and the correct facing state can always be automatically obtained simply by carrying it in. When the measurement is completed in the swung posture shown in FIG. 5, the subject M is carried out from the probe holder 1 by the carry-in means, and at the same time, the shortened spring 11 is extended and vice versa. The tabular spring 11 is compressed and returns to the horizontal state. Even if the next subject M to be measured is brought in in the incorrect facing state, it is automatically positioned in the correct facing state.

本実施例においても第1の実施例で説明した、
被検体Mが平行な2面を有する平板の場合には常
に自動的に等距離で測定可能なこと、挟圧面1a
の形状は被検体Mの挟圧される面に合わせた面に
すればよいこと、ばね5は引張りばねに変更する
ことができ、また数量を減らすことができるこ
と、案内部材14(第1の実施例では4)を設け
る位置は変更可能なこと、1探触子法にも適用で
きることなどはすべて同じであり、さらに第1、
第2の実施例とも垂直探触子だけでなく、斜角探
触子を使用した場合でも同様の位置決めをするこ
とができるのはもちろんである。
Also in this example, as explained in the first example,
If the object M is a flat plate with two parallel surfaces, it is possible to always measure the same distance automatically, and the clamping surface 1a
The shape of the guide member 14 (first implementation In the example, the position of 4) can be changed, and it can also be applied to the one-probe method.
Of course, in the second embodiment, similar positioning can be performed not only when using a vertical probe but also when using an oblique probe.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、被検体の探傷面
が探触子に対し、たとえ正しく垂直に対向しない
状態で搬入されても、探触子ホルダに挿入が終り
測定する時には、自動的に正しく垂直に対向した
位置に位置決めされて行える優れた効果を有す
る。
As explained above, in the present invention, even if the test surface of the test object is not correctly perpendicularly opposed to the probe when it is carried in, it will automatically be correctly corrected when it is inserted into the probe holder and measured. It has excellent effects when positioned in vertically opposed positions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はすべて本発明の実施例の説明図で、第1
図は第1の実施例を説明する側面図、第2図は第
1図の−矢視図、第3図は第2の実施例を説
明する側面図、第4図は第3図の−矢視図、
第5図は第3図の揺動した状態を示す図である。 1……探触子ホルダ、1a……挟圧面、1b…
…穴、2,3……探触子、4,14……案内部
材、5,11……ばね、6,8……台、7……支
点ピン、9……アイエンド、10……棒材。
All drawings are explanatory diagrams of embodiments of the present invention, and the first
The figure is a side view illustrating the first embodiment, FIG. 2 is a view taken in the direction of the − arrow in FIG. 1, FIG. 3 is a side view illustrating the second embodiment, and FIG. arrow view,
FIG. 5 is a diagram showing the swinging state of FIG. 3. 1...Probe holder, 1a...Pinching surface, 1b...
... Hole, 2, 3 ... Probe, 4, 14 ... Guide member, 5, 11 ... Spring, 6, 8 ... Stand, 7 ... Fulcrum pin, 9 ... Eye end, 10 ... Rod Material.

Claims (1)

【特許請求の範囲】[Claims] 1 液槽内に設置されている探触子ホルダと、そ
の探触子ホルダに装着されている探触子と、該探
触子より発射される超音波のビーム軸が被検体の
探傷面と対向するように該被検体を液槽内に搬入
し、かつ前記探触子と対置させる搬入手段とから
なる超音波検査における被検体の位置決め装置に
おいて、被検体を挟持する挟圧面を有する相対し
た一対で一組の探触子ホルダと、該探触子ホルダ
の挟圧面と垂直で、かつ探触子ホルダをその相対
する挟圧面の間隔の開閉する方向に摺動自在に支
持する案内部材と、前記探触子ホルダの相対する
挟圧面の間隔が該間隔に搬入される被検体により
前記案内部材に沿つて摺動しながら拡大されると
き、その拡大される力と対抗して探触子ホルダの
挟圧面に被検体を挟圧する方向に作用する力を発
生させ、かつ前記案内部材に沿つて伸縮するよう
に設けられたばねと、前記案内部材の両端部を前
記挟持された被検体とともに前記探触子ホルダ、
案内部材、ばねと一体的に移動可能に支承する台
と、から構成されていることを特徴とする被検体
の位置決め装置。
1 The probe holder installed in the liquid tank, the probe attached to the probe holder, and the beam axis of the ultrasonic wave emitted from the probe are aligned with the flaw detection surface of the object. In an apparatus for positioning a subject in an ultrasonic test, the apparatus includes a carrying means for carrying the subject into a liquid tank so as to face the probe, and a carrying means for placing the subject opposite to the probe. a pair of probe holders; a guide member that is perpendicular to the clamping surface of the probe holder and slidably supports the probe holder in a direction that opens and closes the gap between the opposing clamping surfaces; , when the distance between the opposing clamping surfaces of the probe holder is expanded by a subject carried into the distance while sliding along the guide member, the probe holder resists the expanding force. A spring is provided to generate a force acting on the clamping surface of the holder in the direction of clamping the subject and to expand and contract along the guide member, and a spring is provided to extend and contract along the guide member, and to apply a force to the clamping surface of the holder together with the clamped subject. probe holder,
1. A positioning device for a subject, comprising: a guide member; a base movably supported integrally with a spring;
JP60181682A 1985-08-21 1985-08-21 Positioning apparatus for object in ultrasonic inspection Granted JPS6243564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60181682A JPS6243564A (en) 1985-08-21 1985-08-21 Positioning apparatus for object in ultrasonic inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60181682A JPS6243564A (en) 1985-08-21 1985-08-21 Positioning apparatus for object in ultrasonic inspection

Publications (2)

Publication Number Publication Date
JPS6243564A JPS6243564A (en) 1987-02-25
JPH0513464B2 true JPH0513464B2 (en) 1993-02-22

Family

ID=16105030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60181682A Granted JPS6243564A (en) 1985-08-21 1985-08-21 Positioning apparatus for object in ultrasonic inspection

Country Status (1)

Country Link
JP (1) JPS6243564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537735A (en) * 2016-11-02 2019-12-26 フィージブル、インコーポレーテッド Modular adaptive holder for sensors and battery cells for physical analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571433B2 (en) * 2016-11-04 2020-02-25 Sonix, Inc. Adjustable fixture for scanning acoustic microscopy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126884U (en) * 1976-03-22 1977-09-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537735A (en) * 2016-11-02 2019-12-26 フィージブル、インコーポレーテッド Modular adaptive holder for sensors and battery cells for physical analysis

Also Published As

Publication number Publication date
JPS6243564A (en) 1987-02-25

Similar Documents

Publication Publication Date Title
US3798961A (en) Apparatus for non-destructive checking of workpieces
CN107688051B (en) A kind of measurement method of the subsurface defect width based on Laser thermo-elastic generated surface acoustic waves
JP2613654B2 (en) Ultrasonic testing
CN108871640A (en) Residual stress nondestructive detection system and method based on transient grating Laser thermo-elastic generated surface acoustic waves
JP5931551B2 (en) Ultrasonic flaw detector, ultrasonic sensor support device, and ultrasonic flaw detector method
US3854328A (en) Resiliency testing device
CN107421475A (en) A kind of supersonic detection device for being used for thin-wall steel tube layered weighting and thickness measuring
CN108802202A (en) A kind of ultrasonic wave tandem probe apparatus and method
KR20150001861A (en) Apparatus for detecting water immersion ultrasonic flaw
US4338820A (en) Method and apparatus for generating and detecting acoustic surface waves particularly useful in the non-destructive testing of materials
KR101637479B1 (en) Category D welded part joints inside the pressure vessel only phased array ultrasonic inspection device and its method
KR200406096Y1 (en) The Calibration Standard for Phased Array Ultrasonic Testing
JPS6394154A (en) Method and apparatus for ultrasonic visualization in liquid-solid system
JPH0513464B2 (en)
US5463896A (en) Stress tester
Gary Testing with bars from dynamic to quasi-static
CN208902317U (en) A kind of Axle Surface residual stress detection device
JP2000131206A (en) Four-point bending testing device
JPS63182542A (en) Device for inspecting compression spring
WO2021184236A1 (en) Non-destructive testing method and apparatus for flexural strength of fine ceramics, and storage medium
WO2021184240A1 (en) Non-destructive testing method for elastic modulus of fine ceramic, apparatus, and storage medium
CN210923585U (en) Ultrasonic defect detection measuring ruler
KR102488404B1 (en) Multi-channel holder using automatic moving device
CN215493330U (en) Device for accurately testing acoustic delay time of ultrasonic transducer
KR102547984B1 (en) Ultrasonic inspection probe