JPH05134391A - Mask for exposing - Google Patents

Mask for exposing

Info

Publication number
JPH05134391A
JPH05134391A JP32812291A JP32812291A JPH05134391A JP H05134391 A JPH05134391 A JP H05134391A JP 32812291 A JP32812291 A JP 32812291A JP 32812291 A JP32812291 A JP 32812291A JP H05134391 A JPH05134391 A JP H05134391A
Authority
JP
Japan
Prior art keywords
substrate
wafer
thin film
exposure mask
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32812291A
Other languages
Japanese (ja)
Inventor
Opu De Betsuku Maria
オプ デ ベツク マリア
Akira Tokui
晶 徳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32812291A priority Critical patent/JPH05134391A/en
Publication of JPH05134391A publication Critical patent/JPH05134391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable the transfer of patterns with high accuracy to a wafer, the surface of which is not flat by disposing transfer patterns on the front or rear surface of a transparent substrate according to the shape of the exposing surface of an object to be exposed. CONSTITUTION:Metallic thin film layers 2b are provided on the rear surface of the substrate 1 in the regions corresponding to projecting parts and metallic thin film layers 2a are provided atop the substrate 1 in the regions corresponding to recessed parts according to the rugged shapes generated by a deposition layer 7 of the wafer 4. Further, the substrate 11 covering the metallic thin film layers 2a is disposed on the substrate 1. The objective surface of a short focal length with the rear surface of the substrate 1 as the objective surface is, therefore, obtd. in the projecting parts and the objective surface of a long focal length with the rear surface of the substrate 11 as an objective surface is obtd. in the recessed parts. As a result, exposing is eventually executed on the always optimum image surface with the resist 5 on the wafer 4 and the pattern transfer is executed with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置の製造過程
の一部である写真製版工程で使用される露光用マスクに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure mask used in a photolithography process which is a part of a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】図4は従来の半導体装置のパターン形成
時に用いられる露光用マクスの構成を示す図であり、石
英等の透明基板1をクロム等の金属薄膜2で覆ってパタ
ーンが形成されている。そして露光時にこのマスクに形
成されたパターンがウエハ(図示せず)に転写される。
2. Description of the Related Art FIG. 4 is a view showing a structure of an exposure mask used in forming a pattern of a conventional semiconductor device, in which a transparent substrate 1 made of quartz or the like is covered with a metal thin film 2 such as chromium to form a pattern. There is. Then, at the time of exposure, the pattern formed on this mask is transferred onto a wafer (not shown).

【0003】次に露光原理について説明する。図5に示
すように、露光装置の投影(凸)レンズ3によりマスク
を透過した光をウエハ4に照射すると、金属薄膜2によ
り定義付けられたパターンがウエハ4に転写される。
Next, the principle of exposure will be described. As shown in FIG. 5, when the wafer 4 is irradiated with the light transmitted through the mask by the projection (convex) lens 3 of the exposure apparatus, the pattern defined by the metal thin film 2 is transferred to the wafer 4.

【0004】ここで、投影レンズ3が単一のレンズであ
ると仮定し、対象面(マスク4のパターン形成面)とレ
ンズ3面の間の光学的距離(以下対象距離)をDoと
し、該対象距離Doは、レンズ3の反対側にあるため負
の値とし、一方、結像面(ウエハ4表面)とレンズ3面
の間の光学的距離(以下結像距離)Diとし、この結像
距離Diも結像面が投影レンズに対して対象面と同じ側
に位置すると、一般的に負になりうるが、露光装置の設
計状態により正の値となっているものとし、さらにレン
ズのパラメータである焦点距離をFとし、これを正の値
とす1と、対象距離Doと結像距離Diの間には下記の
式に示される単純な関係が存在する。
Here, assuming that the projection lens 3 is a single lens, the optical distance between the target surface (pattern forming surface of the mask 4) and the lens 3 surface (hereinafter referred to as target distance) is Do, and Since the target distance Do is on the opposite side of the lens 3, it has a negative value, and on the other hand, it is the optical distance (hereinafter referred to as image forming distance) Di between the image forming surface (the surface of the wafer 4) and the lens 3 surface. The distance Di can generally be negative when the image plane is located on the same side as the target surface with respect to the projection lens, but it is assumed to be a positive value depending on the design state of the exposure apparatus. There is a simple relationship represented by the following formula between the target distance Do and the image formation distance Di, where F is a focal length which is a positive value, and 1 is a positive value.

【0005】1/Do=1/Di −1/F1 / Do = 1 / Di-1 / F

【0006】なお上記光学的距離とは、物質の屈折率に
よって増大された物理的距離に等しく、空気に関しては
屈折率が等しいので、空気中の光学的距離は物理的距離
に等しい。他の物質に関しては、屈折率は光の波長のに
よって決まり、殆どの場合、物理的距離とは異なるよう
になる。
The above-mentioned optical distance is equal to the physical distance increased by the refractive index of the substance, and since the refractive index is the same for air, the optical distance in air is equal to the physical distance. For other materials, the index of refraction depends on the wavelength of the light and in most cases will differ from the physical distance.

【0007】しかしながら実際には、露光装置のレンズ
は往々にして形状の異なった複数のレンズからなる複合
システムである。従って対象距離Do及び結像距離Di
の関係を表す式は大変複雑なものになる。しかし、結像
距離Diは対象距離DoとレンズパラメータFの関数と
して下記のように定義される。
In practice, however, the lenses of the exposure apparatus are often complex systems consisting of a plurality of lenses having different shapes. Therefore, the target distance Do and the imaging distance Di
The formula that expresses the relation of is very complicated. However, the imaging distance Di is defined as a function of the target distance Do and the lens parameter F as follows.

【0008】Di=f{Do,レンズパラメータ}Di = f {Do, lens parameter}

【0009】ウエハ上に良好な転写影像を得るために
は、ウエハの位置を慎重に調節しなければならない。詳
述すると図7に示すように、ウエハ4が厚さtを有する
一般的なレジスト5で被覆されている場合、結像面6が
ウエハ4の表面からレジストの厚みtの3分の1の距離
(1/3t)に相当する部位に位置すると最適の転写が
行われることは周知の事実である。従ってウエハ4の高
さは、この最適な転写条件となるように調節されなけれ
ばならない。
In order to obtain a good transferred image on the wafer, the position of the wafer must be carefully adjusted. More specifically, as shown in FIG. 7, when the wafer 4 is covered with a general resist 5 having a thickness t, the image plane 6 is one third of the resist thickness t from the surface of the wafer 4. It is a well-known fact that optimum transcription is performed when it is located at a site corresponding to the distance (1 / 3t). Therefore, the height of the wafer 4 must be adjusted so as to achieve this optimum transfer condition.

【0010】[0010]

【発明が解決しようとする課題】従来の露光用マスクは
以上のように構成されており、ウエハ基板面に形成され
たレジストの所定深さ位置に焦点位置を合わせてパター
ンを転写するようにしており、ウエハ基板は往々にして
製造過程における諸工程を経て、平坦なままではなく幾
つかの凹凸形状を有するものとなっている。
The conventional exposure mask is constructed as described above, and the pattern is transferred by focusing on the predetermined depth position of the resist formed on the wafer substrate surface. However, the wafer substrate often goes through various steps in the manufacturing process and does not remain flat but has some irregularities.

【0011】図5を用いて説明すると、ウエハ4の表面
には部分的に絶縁膜やCVD層等の厚さTの堆積層7が
形成されており、このようなウエハ基板の場合、上述し
たように最適な転写条件を実現するためには凹凸形状に
沿って結像面を変化させ、例えば堆積層7が形成された
部分ではウエハ4表面からT+1/3tの位置6bに、
また堆積層7が形成されていない部分ではウエハ4表面
から1/3tの位置6aにて合わせる必要がある。
Explaining with reference to FIG. 5, a deposition layer 7 having a thickness T such as an insulating film or a CVD layer is partially formed on the surface of the wafer 4, and in the case of such a wafer substrate, it is described above. As described above, in order to realize the optimum transfer condition, the image plane is changed along the uneven shape, and, for example, in the portion where the deposition layer 7 is formed, at the position 6b of T + 1 / 3t from the surface of the wafer 4,
Further, in the portion where the deposition layer 7 is not formed, it is necessary to align at the position 6a which is 1 / 3t from the surface of the wafer 4.

【0012】しかしながら、従来の露光用マスクでは、
その対象面が平坦なためウエハ面で得られる結像面の位
置も平坦なものとなり、従来このような状況において
は、結像面6aと6bとの間に位置するような結像面を
選び露光を行うようにしていた。従ってこのような方法
では、ウエハ上に投影される結像面が最適な位置となら
ず、高精度な転写を行うことができないという問題点が
あった。
However, in the conventional exposure mask,
Since the target surface is flat, the position of the image plane obtained on the wafer surface is also flat. Conventionally, in such a situation, an image plane which is located between the image planes 6a and 6b is selected. I was exposed to light. Therefore, in such a method, there is a problem that the image plane projected on the wafer is not located at an optimum position and high-precision transfer cannot be performed.

【0013】この発明は上記のような問題点を解消する
ためになされたもので、表面に凹凸形状を有するウエハ
にも高精度な転写を行うことができる露光用マスクを得
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain an exposure mask capable of performing highly accurate transfer even to a wafer having an uneven surface. ..

【0014】[0014]

【課題を解決するための手段】この発明に係る露光用マ
スクは、被露光物の露光面形状に応じて、透明基板の上
面または下面に転写パターンを配置するようにしたもの
である。
An exposure mask according to the present invention has a transfer pattern arranged on the upper surface or the lower surface of a transparent substrate according to the shape of the exposed surface of an object to be exposed.

【0015】また、透明基板の一方の主面に、被露光物
の露光面形状に応じて部分的に第2の光透過性の基板を
形成し、転写パターンを、上記基板及び第2の基板の同
一主面側にそれぞれ配置するようにしたものである。
Further, a second light-transmissive substrate is partially formed on one main surface of the transparent substrate according to the exposure surface shape of the object to be exposed, and the transfer pattern is formed on the substrate and the second substrate. Are arranged on the same main surface side.

【0016】さらに、透明基板の上,下面にそれぞれ転
写パターンを形成するとともに、基板上面側に第2の透
明基板を設け、該基板上にさらに転写パターンを形成す
るようにしたものである。
Further, transfer patterns are formed on the upper and lower surfaces of the transparent substrate, a second transparent substrate is provided on the upper surface of the substrate, and the transfer pattern is further formed on the substrate.

【0017】[0017]

【作用】この発明においては、被露光物の露光面形状に
応じて、透明基板の上面または下面に転写パターンを配
置するようにしたから、転写パターンの配置面により焦
点距離の異なる結像面が得られる。
In the present invention, the transfer pattern is arranged on the upper surface or the lower surface of the transparent substrate according to the shape of the exposed surface of the object to be exposed. can get.

【0018】また、透明基板の一主面側に被露光物の露
光面形状に応じて部分的に第2の透明基板を設けて、転
写パターンを配置するようにしたから、第2の基板厚に
応じた分だけ焦点距離の異なる結像面が得られる。
Since the second transparent substrate is partially provided on the one main surface side of the transparent substrate according to the shape of the exposed surface of the object to be exposed and the transfer pattern is arranged, the second substrate thickness An image plane having a different focal length can be obtained.

【0019】さらに、透明基板の上,下面にそれぞれ転
写パターンを形成するとともに、基板上面側に第2の透
明基板を設け、該基板上にさらに転写パターンを形成す
るようにしたから、3つ以上の複数の焦点距離の異なる
結像面が得られる。
Further, since the transfer patterns are formed on the upper and lower surfaces of the transparent substrate, and the second transparent substrate is provided on the upper surface of the substrate, and the transfer patterns are further formed on the substrate, three or more transfer patterns are formed. A plurality of image planes having different focal lengths can be obtained.

【0020】[0020]

【実施例】以下、この発明の一実施例による露光用マス
クを図1を用いて説明する。図1において、図4と同一
符号は同一または相当部分を示し、2aは石英基板1の
上面、もしくはその上面にパターン形成用溝12aを有
する石英基板12の溝12a内に配置される第1の金属
薄膜であり、例えばクロム等の金属が用いられている。
また2bは上記石英基板1の下面、もしくは石英基板1
2の下面に配置された第2の金属薄膜、また11は上記
第1の金属薄膜2a上に配置された第2の石英基板であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exposure mask according to an embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same reference numerals as those in FIG. 4 denote the same or corresponding parts, and 2a denotes the upper surface of the quartz substrate 1 or the first groove 12a of the quartz substrate 12 having the pattern forming groove 12a on the upper surface. It is a metal thin film, for example, a metal such as chromium is used.
2b is the lower surface of the quartz substrate 1 or the quartz substrate 1
A second metal thin film arranged on the lower surface of 2 and a second quartz substrate 11 arranged on the first metal thin film 2a.

【0021】次に露光原理について説明する。図2に示
すように、図1(b)の露光マクスを用い、マスクを透過
した光を露光装置の投影(凸)レンズ3によりウエハ4
に照射すると、金属薄膜2により定義付けられたパター
ンがウエハ4に転写される。
Next, the exposure principle will be described. As shown in FIG. 2, using the exposure mask of FIG. 1B, the light transmitted through the mask is projected onto the wafer 4 by the projection (convex) lens 3 of the exposure apparatus.
When it is irradiated with, the pattern defined by the metal thin film 2 is transferred to the wafer 4.

【0022】この時、マスクには基板1に表面及び裏面
に配置された2層の金属パターン2a,2bがあるた
め、マスクには空間的配置の異なる2つの対象面、すな
わち基板1の下面、及び基板11の下面の2つの対象面
が存在することとなる。従って、結像距離Di1が対象
距離Do1と対応し、結像距離Di0が対象距離Do0
と対応し、どの結像距離Diも異なった対象距離Doに
対応する。ここで、2つの対象面をDo1及びDo2、
その対応する結像面をDi1及びDi2とすれば、次の
関係が成り立つ。
At this time, since the mask has the two-layer metal patterns 2a and 2b arranged on the front surface and the back surface of the substrate 1, the mask has two spatially arranged target surfaces, that is, the lower surface of the substrate 1, And, there are two target surfaces of the lower surface of the substrate 11. Therefore, the imaging distance Di1 corresponds to the target distance Do1, and the imaging distance Di0 corresponds to the target distance Do0.
And any imaging distance Di corresponds to a different target distance Do. Here, the two target surfaces are Do1 and Do2,
If the corresponding image planes are Di1 and Di2, the following relationship holds.

【0023】Di1=f{Do1,レンズパラメータ} Di2=f{Do2,レンズパラメータ} Do1−Do2=△Do Di1−Di2=△DiDi1 = f {Do1, lens parameter} Di2 = f {Do2, lens parameter} Do1-Do2 = ΔDo Di1-Di2 = ΔDi

【0024】理想的な結像を得るためには、結像面の距
離差△Diがウエハ基板4上の凹凸形状の高さと等しく
なければならない。ここで結像面の距離差△Diは、対
象面における距離差△Do及びレンズパラメータによっ
て定義される。そしてレンズパラメータは一定の露光装
置においては不変的な値である。従って結像面の距離差
△Diは、特定の露光装置に関し、対象面における距離
差△Doによって定義される。この距離差△Do はマス
クの2つの金属薄膜層間の物理的な層厚及び該層の屈折
率によって定義される。従って、一定の屈折率を持つ所
定の材料を選び、2つの金属薄膜層間の層厚を適切な値
に設定することによって、任意の値を有する距離差△D
o を実現することができる。その結果、どの結像面の距
離差△Diも実現することができ、従ってウエハ基板4
上の凹凸形状に対応した対象面(結像面)を有するマス
クを得ることができる。
In order to obtain an ideal image, the distance difference ΔDi between the image planes must be equal to the height of the uneven shape on the wafer substrate 4. Here, the distance difference ΔDi in the image plane is defined by the distance difference ΔDo in the target surface and the lens parameter. The lens parameter is a constant value in a constant exposure apparatus. Therefore, the distance difference ΔDi in the image plane is defined by the distance difference ΔDo in the target surface for a particular exposure apparatus. This distance difference .DELTA.D0 is defined by the physical layer thickness between the two metal thin film layers of the mask and the refractive index of said layers. Therefore, by selecting a predetermined material having a constant refractive index and setting the layer thickness between the two metal thin film layers to an appropriate value, the distance difference ΔD having an arbitrary value can be obtained.
o can be realized. As a result, the distance difference ΔDi of any image plane can be realized, and therefore the wafer substrate 4
It is possible to obtain a mask having a target surface (imaging surface) corresponding to the above-mentioned uneven shape.

【0025】また上記構成において、2つの金属薄膜層
2a,2b間の材料の屈折率はマスク面の屈折率に極め
て近いことが必要であり、さもなければこれら2つの材
料の接触領域における内部屈折によりイメージングの質
が低下する恐れがある。この場合、図1(b) に示すよう
に、透明基板12の上面に溝を設け、この溝に金属薄膜
2aを埋設し、透明基板12と透明基板11とを密着さ
せることにより上記内部屈折によるイメージングの質低
下を抑制することができる。
Further, in the above structure, the refractive index of the material between the two metal thin film layers 2a and 2b needs to be extremely close to the refractive index of the mask surface, otherwise, internal refraction in the contact area between these two materials is required. May reduce the quality of imaging. In this case, as shown in FIG. 1 (b), a groove is provided on the upper surface of the transparent substrate 12, the metal thin film 2a is embedded in the groove, and the transparent substrate 12 and the transparent substrate 11 are brought into close contact with each other. It is possible to suppress deterioration of imaging quality.

【0026】なお図1(a) に示すように、単一な基板1
の両面に金属薄膜2a,2bを有するマスクでは、対象
面が基板表面及び裏面となり、基板1自身の厚み及びそ
の屈折率により、対象面における距離差△Do及び結像
面の距離差△Diが定義されることとなる。
As shown in FIG. 1 (a), a single substrate 1
In the mask having the metal thin films 2a and 2b on both surfaces, the target surface is the front surface and the back surface of the substrate, and the distance difference ΔDo in the target surface and the distance difference ΔDi in the image forming surface are caused by the thickness of the substrate 1 itself and its refractive index. Will be defined.

【0027】このように本実施例によれば、ウエハ4の
堆積層7により生じた凹凸形状に応じて、凸部に相当す
る領域では基板1下面に金属薄膜層2bを設け、凹部に
相当する領域では基板1上面に金属薄膜層2aを設け、
さらに基板1上に金属薄膜層2aを覆おう基板11を配
置するいようにしたから、凸部では基板1下面を対象面
とする焦点距離の短い対象面が得られ、また凹部では基
板11下面対象面とする焦点距離の長い対象面が得ら
れ、このためウエハ4上のレジスト5において、常に最
適なイメージ面において露光が行われるようになり、高
精度なパターン転写を行うことができる。
As described above, according to this embodiment, the metal thin film layer 2b is provided on the lower surface of the substrate 1 in the region corresponding to the convex portion according to the concave-convex shape generated by the deposition layer 7 of the wafer 4, and corresponds to the concave portion. In the region, a metal thin film layer 2a is provided on the upper surface of the substrate 1,
Further, since the substrate 11 covering the metal thin film layer 2a is arranged on the substrate 1, a target surface having a short focal length with the lower surface of the substrate 1 as a target surface can be obtained in the convex portion, and the lower surface of the substrate 11 in the concave portion. A target surface having a long focal length, which is the target surface, is obtained. Therefore, the resist 5 on the wafer 4 is always exposed on the optimum image surface, and highly accurate pattern transfer can be performed.

【0028】また、基板12表面の金属薄膜層2aを基
板12に埋設し、その上に透明基板11を密着して設け
ることにより、各金属薄膜層2a,2b間の接触領域に
おける内部屈折によるイメージング質の低下を防止する
ことができる。
Further, the metal thin film layer 2a on the surface of the substrate 12 is embedded in the substrate 12, and the transparent substrate 11 is provided in close contact therewith, so that imaging by internal refraction in the contact region between the metal thin film layers 2a and 2b is performed. It is possible to prevent deterioration of quality.

【0029】次に本発明の第2の実施例について説明す
る。この実施例では異なる対象面を得るために、図3
(a) に示すように基板1の下面に焦点距離を短くするた
めの補助透明基板13を形成し、それぞれ金属薄膜層2
c,2dを配置するようにしたものであり、補助基板1
3の層厚を調整することで容易に所望の距離差△Doを
有するマスクを得ることができる。なお、この場合、基
板1に層厚の異なる複数の補助基板を設けて、3つ以上
の異なる焦点距離を有するマスクを形成することもでき
る。
Next, a second embodiment of the present invention will be described. In order to obtain different target surfaces in this embodiment, FIG.
As shown in (a), an auxiliary transparent substrate 13 for shortening the focal length is formed on the lower surface of the substrate 1, and the metal thin film layer 2 is formed on each of them.
c and 2d are arranged, and the auxiliary substrate 1
By adjusting the layer thickness of 3, it is possible to easily obtain a mask having a desired distance difference ΔDo. In this case, a plurality of auxiliary substrates having different layer thicknesses may be provided on the substrate 1 to form a mask having three or more different focal lengths.

【0030】さらに図3(b) は図1(c) の変形例を示
し、図1(c) に示す構成に加え、基板11の上面に金属
薄膜2eを埋設し、さらにその上に透明基板14を密着
するようにしたものであり、このようにすることで、基
板12の下面,基板12の下面,基板14の下面を対象
面とする3つの異なる焦点距離を有するマスクを得るこ
とができ、2つ以上の段差を有するウエハにも対応する
ことができ、またこのような構造をさらに積層して設け
ることでさらに多くの段差を有するウエハの露光を行う
こともできる。
Further, FIG. 3 (b) shows a modification of FIG. 1 (c). In addition to the structure shown in FIG. 1 (c), a metal thin film 2e is embedded on the upper surface of the substrate 11, and a transparent substrate is further formed thereon. In this way, it is possible to obtain a mask having three different focal lengths whose target surfaces are the lower surface of the substrate 12, the lower surface of the substrate 12, and the lower surface of the substrate 14. It is possible to deal with a wafer having two or more steps, and a wafer having more steps can be exposed by further stacking such a structure.

【0031】[0031]

【発明の効果】以上のように、この発明に係る露光用マ
スクによれば、被露光物の露光面形状に応じて、透明基
板の上面または下面に転写パターンを配置するようにし
たので、転写パターンの配置面により異なる焦点距離を
有する対象面が得られ、あるいは、透明基板の一主面側
に被露光物の露光面形状に応じて部分的に第2の透明基
板を設けて、転写パターンを配置するようにしたから、
第2の基板厚に応じた分だけ焦点距離の異なる対象面が
得られ、被露光物表面の凹凸形状に応じて結像面が最適
になるように変化するため高精度なパターン転写を行う
ことができるという効果がある。
As described above, according to the exposure mask of the present invention, the transfer pattern is arranged on the upper surface or the lower surface of the transparent substrate according to the shape of the exposed surface of the object to be exposed. A target surface having a different focal length can be obtained depending on the arrangement surface of the pattern, or a second transparent substrate is partially provided on one main surface side of the transparent substrate according to the shape of the exposed surface of the exposed object to form a transfer pattern. Since I was supposed to place
A target surface having a different focal length depending on the thickness of the second substrate can be obtained, and the image-forming surface changes according to the uneven shape of the surface of the object to be exposed, so that highly accurate pattern transfer can be performed. There is an effect that can be.

【0032】さらに、透明基板の上,下面にそれぞれ転
写パターンを形成するとともに、基板上面側に第2の透
明基板を設け、該基板上にさらに転写パターンを形成す
るようにしたから、3つ以上の複数の焦点距離の異なる
結像面を得ることができ、複雑な凹凸形状を有する被露
光物にも容易に高精度なパターン転写を行うことができ
るという効果がある。
Further, the transfer patterns are formed on the upper and lower surfaces of the transparent substrate, and the second transparent substrate is provided on the upper surface of the substrate, and the transfer patterns are further formed on the substrate. It is possible to obtain a plurality of image forming planes having different focal lengths, and it is possible to easily and highly accurately transfer a pattern to an object to be exposed having a complicated uneven shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による露光用マクスの構成
を示す図。
FIG. 1 is a diagram showing a configuration of an exposure mask according to an embodiment of the present invention.

【図2】この発明の一実施例による露光マスクを用いて
露光を行う際の概念図。
FIG. 2 is a conceptual diagram when performing exposure using an exposure mask according to an embodiment of the present invention.

【図3】この発明の他の実施例による露光マスクの構成
を示す図。
FIG. 3 is a view showing the arrangement of an exposure mask according to another embodiment of the present invention.

【図4】従来の露光用マクスの構成を示す図。FIG. 4 is a diagram showing a configuration of a conventional exposure mask.

【図5】従来の露光用マクスを用いて露光を行う際の概
念図。
FIG. 5 is a conceptual diagram when performing exposure using a conventional exposure mask.

【図6】フォトレジストが表面に形成されたウエハを用
いて最適な露光形成面の位置を説明するための図。
FIG. 6 is a diagram for explaining an optimum position of an exposure formation surface by using a wafer on which a photoresist is formed.

【図7】従来の露光用マスクの問題点を説明するための
図。
FIG. 7 is a diagram for explaining a problem of a conventional exposure mask.

【符号の説明】[Explanation of symbols]

1 透明基板 2 金属薄膜 3 投影レンズ 4 ウエハ 5 フォトレジスト 6 結像面 7 堆積層 11,12,14 透明基板 13 補助基板 DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Metal thin film 3 Projection lens 4 Wafer 5 Photoresist 6 Image plane 7 Deposition layer 11, 12, 14 Transparent substrate 13 Auxiliary substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 21/027

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光透過性の基板面に遮光性の転写パター
ンが形成された露光用マスクにおいて、 上記遮光性の転写パターンは、 被露光物の露光面形状に応じて上記基板の上面または下
面に形成されていることを特徴とする露光用マスク。
1. An exposure mask in which a light-blocking transfer pattern is formed on a light-transmissive substrate surface, wherein the light-blocking transfer pattern is an upper surface or a lower surface of the substrate depending on an exposed surface shape of an object to be exposed. An exposure mask, which is formed on.
【請求項2】 請求項1記載の露光用マスクにおいて、 上記基板の上面に形成された転写パターンを覆う第2の
光透過性の基板を有することを特徴とする露光用マク
ス。
2. The exposure mask according to claim 1, further comprising a second light-transmissive substrate that covers the transfer pattern formed on the upper surface of the substrate.
【請求項3】 請求項2記載の露光用マスクにおいて、 上記基板の上面に形成された転写パターンは、該基板上
面の凹部に埋設され、該基板上面と上記第2の基板の下
面とが密着していることを特徴とする露光用マスク。
3. The exposure mask according to claim 2, wherein the transfer pattern formed on the upper surface of the substrate is embedded in a recess on the upper surface of the substrate, and the upper surface of the substrate and the lower surface of the second substrate are in close contact with each other. An exposure mask that is characterized by
【請求項4】 請求項3記載の露光用マスクにおいて、 上記第2の光透過性の基板の上面に金属パターンを設け
たことを特徴とする露光用マスク。
4. The exposure mask according to claim 3, wherein a metal pattern is provided on an upper surface of the second light transmissive substrate.
【請求項5】 光透過性の基板面に遮光性の転写パター
ンが形成された露光用マスクにおいて、 上記基板は、 その一方の主面に、被露光物の露光面形状に応じて部分
的に形成された第2の光透過性の基板を有し、 上記遮光性の転写パターンを、 上記基板及び第2の基板の同一主面側にそれぞれ配置し
たことを特徴とする露光用マスク。
5. An exposure mask in which a light-shielding transfer pattern is formed on a surface of a light-transmissive substrate, wherein the substrate has a main surface on one side thereof partially depending on a shape of an exposed surface of an object to be exposed. An exposure mask having a formed second light-transmissive substrate, wherein the light-shielding transfer pattern is arranged on the same main surface side of the substrate and the second substrate, respectively.
JP32812291A 1991-11-14 1991-11-14 Mask for exposing Pending JPH05134391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32812291A JPH05134391A (en) 1991-11-14 1991-11-14 Mask for exposing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32812291A JPH05134391A (en) 1991-11-14 1991-11-14 Mask for exposing

Publications (1)

Publication Number Publication Date
JPH05134391A true JPH05134391A (en) 1993-05-28

Family

ID=18206732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32812291A Pending JPH05134391A (en) 1991-11-14 1991-11-14 Mask for exposing

Country Status (1)

Country Link
JP (1) JPH05134391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025764A (en) * 1998-12-30 2001-04-06 박종섭 Light transmittance control reticle and developing method for photosensitive material using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623939A (en) * 1979-07-18 1981-03-06 Bata Ltd Foot dimension measuring apparatus
JPS59160144A (en) * 1983-03-04 1984-09-10 Hitachi Ltd Photomask
JPS6181657U (en) * 1984-10-31 1986-05-30
JPH03203737A (en) * 1989-12-29 1991-09-05 Hitachi Ltd Mask and exposure device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623939A (en) * 1979-07-18 1981-03-06 Bata Ltd Foot dimension measuring apparatus
JPS59160144A (en) * 1983-03-04 1984-09-10 Hitachi Ltd Photomask
JPS6181657U (en) * 1984-10-31 1986-05-30
JPH03203737A (en) * 1989-12-29 1991-09-05 Hitachi Ltd Mask and exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025764A (en) * 1998-12-30 2001-04-06 박종섭 Light transmittance control reticle and developing method for photosensitive material using same

Similar Documents

Publication Publication Date Title
US5245470A (en) Polarizing exposure apparatus using a polarizer and method for fabrication of a polarizing mask by using a polarizing exposure apparatus
US5503959A (en) Lithographic technique for patterning a semiconductor device
US6989229B2 (en) Non-resolving mask tiling method for flare reduction
US5291239A (en) System and method for leveling semiconductor wafers
JP4613364B2 (en) Resist pattern formation method
US8669022B2 (en) Photomask
JP3177948B2 (en) Photomask for exposure
US5384218A (en) Photomask and pattern transfer method for transferring a pattern onto a substrate having different levels
US3507592A (en) Method of fabricating photomasks
JPH05134391A (en) Mask for exposing
JPH1030170A (en) Vacuum thin film forming device and production of reflection mirror
US5432588A (en) Semiconductor device and method of making the semiconductor device
US6791668B2 (en) Semiconductor manufacturing apparatus and method
JPH0821908A (en) Production of optical element
JP2901201B2 (en) Photo mask
JPH0815848A (en) Photoreticle
JP3082747B2 (en) Exposure equipment evaluation method
KR100604041B1 (en) Method for fabricating mask
JPH04216553A (en) Mask for production of semiconductor
JPH063806A (en) Production of semiconductor device and mask for exposing
JPH07191448A (en) Photomask and photomask blank
JP2003075978A (en) Mask for exposure and exposure method
US6567153B1 (en) Multiple image photolithography system and method
JP2000258608A (en) Method for formation of film on optical device
JPH0620923A (en) Exposing method