JPH1030170A - Vacuum thin film forming device and production of reflection mirror - Google Patents

Vacuum thin film forming device and production of reflection mirror

Info

Publication number
JPH1030170A
JPH1030170A JP8187377A JP18737796A JPH1030170A JP H1030170 A JPH1030170 A JP H1030170A JP 8187377 A JP8187377 A JP 8187377A JP 18737796 A JP18737796 A JP 18737796A JP H1030170 A JPH1030170 A JP H1030170A
Authority
JP
Japan
Prior art keywords
substrate
film thickness
thin film
correction member
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8187377A
Other languages
Japanese (ja)
Other versions
JP3861329B2 (en
Inventor
Tetsuya Oshino
哲也 押野
Norihiro Katakura
則浩 片倉
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP18737796A priority Critical patent/JP3861329B2/en
Publication of JPH1030170A publication Critical patent/JPH1030170A/en
Application granted granted Critical
Publication of JP3861329B2 publication Critical patent/JP3861329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a reflection mirror having a high accurate reflection surface shape and a vacuum thin film forming device usable for production of the reflection mirror. SOLUTION: This vacuum thin film forming device forms thin films on a substrate 4 arranged in a vacuum vessel. In such a case, the device has at least a mechanism for rotating and holding the substrate 4, an evaporating source for evaporating the material of the thin films and a film thickness correcting member 2 for shielding a part of the evaporated particles 6a generated from the evaporating source 1 and heading toward the substrate 4. This film thickness correcting member 2 is provided with contour parts of prescribed shapes and the device is provided with a driving mechanism 3 having a function to rectilinearly move the film thickness correcting member 2 in a prescribed direction by imparting the speed distribution having a correlation with the desired film thickness distribution by which the thin films having the desired film thickness distribution are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、高精度な反射面形
状を有する反射鏡の製造方法と、該反射鏡の製造に使用
できる真空薄膜形成装置に関するものである。また、本
発明は特に、フォトマスク(マスクまたはレチクル)上
の回路パターンをX線光学系を用いたミラープロジェク
ション方式により投影結像光学系を介してウエハ等の基
板上に転写するのに好適なX線投影露光装置に用いられ
る多層膜X線反射鏡を製造する際のX線反射多層膜を形
成する基板となる反射鏡の製造方法ならびに前記多層膜
X線反射鏡の製造方法と、前記反射鏡及びX線反射鏡の
製造に使用できる真空薄膜形成装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reflecting mirror having a highly accurate reflecting surface shape, and a vacuum thin film forming apparatus that can be used for manufacturing the reflecting mirror. The present invention is particularly suitable for transferring a circuit pattern on a photomask (mask or reticle) onto a substrate such as a wafer via a projection imaging optical system by a mirror projection system using an X-ray optical system. A method of manufacturing a reflecting mirror serving as a substrate on which an X-ray reflecting multilayer film is formed when manufacturing a multilayer X-ray reflecting mirror used in an X-ray projection exposure apparatus, a method of manufacturing the multilayer X-ray reflecting mirror, and the reflection method The present invention relates to a vacuum thin film forming apparatus that can be used for manufacturing mirrors and X-ray reflecting mirrors.

【0002】[0002]

【従来の技術】可視光領域の光学素子には、主にレンズ
が用いられているが、X線波長領域では、物質の屈折率
が1に近いため、従来のレンズは使用できない。そこ
で、X線波長領域では、光学素子として反射鏡が用いら
れている。さらに、直入射に近い状態で入射するX線を
も比較的高い反射率にて反射できる多層膜X線反射鏡
(前記反射鏡の反射面にX線反射多層膜を設けたもの)
が用いられている。
2. Description of the Related Art A lens is mainly used for an optical element in a visible light region, but a conventional lens cannot be used in an X-ray wavelength region because the refractive index of a substance is close to one. Therefore, in the X-ray wavelength region, a reflecting mirror is used as an optical element. Furthermore, a multi-layer X-ray reflecting mirror (X-ray reflecting multi-layer provided on the reflecting surface of the reflecting mirror) capable of reflecting X-rays incident in a state close to direct incidence with a relatively high reflectance.
Is used.

【0003】この多層膜X線反射鏡の用途の一つとして
半導体製造用の露光装置がある。半導体製造用の露光装
置は、物体面としてのフォトマスク(以下、マスクと称
する)面上に形成された回路パターンを結像装置を介し
てウエハ等の基板上に投影転写するものである。基板に
はレジストが塗布されており、露光することによりレジ
ストが感光し、レジストパターンが得られる。
One of the applications of the multilayer X-ray reflector is an exposure apparatus for manufacturing semiconductors. 2. Description of the Related Art An exposure apparatus for manufacturing a semiconductor is configured to project and transfer a circuit pattern formed on a photomask (hereinafter, referred to as a mask) surface as an object surface onto a substrate such as a wafer via an imaging device. A resist is applied to the substrate, and the resist is exposed by exposure to light, and a resist pattern is obtained.

【0004】ところで、露光装置の解像力wは、主に露
光波長λと結像光学系の開口数NAで決まり、次式で表
される。 w=kλ/NA k:定数 従って、露光装置の解像力を向上させるためには、波長
を短くするか、或いは開口数を大きくすることが必要と
なる。現在、半導体の製造に用いられている露光装置で
は主に波長365nm のi線を使用しており、開口数約0.5
で0.4 μmの解像力が得られている。
[0004] The resolution w of the exposure apparatus is determined mainly by the exposure wavelength λ and the numerical aperture NA of the imaging optical system, and is expressed by the following equation. w = kλ / NA k: constant Therefore, in order to improve the resolving power of the exposure apparatus, it is necessary to shorten the wavelength or increase the numerical aperture. At present, the exposure apparatus used for manufacturing semiconductors mainly uses i-rays having a wavelength of 365 nm, and has a numerical aperture of about 0.5.
, A resolution of 0.4 μm is obtained.

【0005】開口数を大きくすることは光学設計上困難
であることから、解像力を向上させるためには、今後は
露光光の短波長化が必要となる。i線より短波長の露光
光としては、例えばエキシマレーザーが挙げられ、KrF
(波長248nm )では0.25μm、ArF (波長193nm )では
0.18μmの解像力が得られる。また、露光光としてさら
に波長の短いX線を用いると、例えば波長13nmで0.1 μ
m以下の解像力が得られる。
Since it is difficult to increase the numerical aperture in terms of optical design, it is necessary to shorten the wavelength of exposure light in order to improve the resolution. Examples of the exposure light having a wavelength shorter than the i-line include an excimer laser, and KrF
(Wavelength 248nm) 0.25μm, ArF (wavelength 193nm)
A resolution of 0.18 μm is obtained. When X-rays having a shorter wavelength are used as exposure light, for example, 0.1 μm at a wavelength of 13 nm is used.
m or less.

【0006】露光装置が所望の解像力を有するために
は、少なくとも結像光学系が無収差の或いは無収差に近
い光学系である必要がある。即ち、結像光学系に収差が
あるとレジストパターンが形成されないか、或いはレジ
ストパターンの断面形状が劣化して、露光後のプロセス
に悪影響を及ぼす他、像が歪んでしまうという問題点が
発生する。
In order for the exposure apparatus to have a desired resolution, at least the imaging optical system needs to be an optical system having no or almost no aberration. That is, if there is an aberration in the imaging optical system, the resist pattern is not formed, or the cross-sectional shape of the resist pattern is deteriorated, adversely affecting a process after exposure, and causing a problem that an image is distorted. .

【0007】無収差と同等の性能を得るための収差とし
ては、波長の14分の1 程度以下の値(rms 値)が要求さ
れる。従って、波長が短くなる程、収差の値も小さくし
なければならない。例えば、露光光がi線の場合、収差
は約26nmrms 以下にする必要がある。無収差の、或いは
無収差と同等の性能を有する光学系を作製するために
は、該光学系を構成する各光学素子の形状を設計値どお
りに加工しなければならない。形状誤差の許容上限値
は、収差と比較して少なくとも小さく、また、光学素子
の数が多くなるほど、形状誤差の許容上限値は小さくな
る。
The aberration (rms value) of about one-fourth of the wavelength or less is required as the aberration for obtaining the same performance as the no aberration. Therefore, as the wavelength becomes shorter, the value of the aberration must be made smaller. For example, when the exposure light is i-line, the aberration needs to be about 26 nmrms or less. In order to manufacture an optical system having no aberration or having the same performance as that of no aberration, the shape of each optical element constituting the optical system must be processed as designed. The allowable upper limit of the shape error is at least smaller than the aberration, and the upper limit of the shape error decreases as the number of optical elements increases.

【0008】光学素子が全てレンズの場合は、屈折面の
数をNとすると、形状誤差は収差の1/N1/2 程度以下
の値にしなければならない。例えば露光光がi線の場
合、屈折面の数を30とすると、形状誤差の許容上限値は
約5nmrmsとなる。以上のように、無収差の光学系を作製
するためには、形状精度の高い光学素子が必要である
が、これまでは高精度な研削加工または研磨加工を行う
ことにより、無収差光学系を作製することができた。
In the case where all the optical elements are lenses, assuming that the number of refraction surfaces is N, the shape error has to be about 1 / N 1/2 or less of the aberration. For example, in the case where the exposure light is i-line, if the number of refraction surfaces is 30, the allowable upper limit of the shape error is about 5 nmrms. As described above, in order to produce an aberration-free optical system, an optical element with high shape accuracy is necessary.However, until now, high-precision grinding or polishing processing has Could be produced.

【0009】ところが、露光装置の解像度を向上させる
ため、露光光の波長を短くすると、それに伴って、収差
の許容上限値も小さくなる。例えば、露光光としてX線
を使用するX線投影露光装置の場合に、X線波長を13nm
とすると、収差の許容上限値は約1nmrmsとなる。この値
は、i線における収差の許容上限値(約26nmrms )に比
べて非常に小さい。従って、前記X線投影露光装置で使
用する光学素子は、さらに形状精度の高いものが要求さ
れる。
However, if the wavelength of the exposure light is shortened in order to improve the resolution of the exposure apparatus, the allowable upper limit of the aberration is reduced accordingly. For example, in the case of an X-ray projection exposure apparatus using X-rays as exposure light, the X-ray wavelength is set to 13 nm.
Then, the allowable upper limit of the aberration is about 1 nmrms. This value is much smaller than the allowable upper limit of the aberration at the i-line (about 26 nmrms). Therefore, an optical element used in the X-ray projection exposure apparatus is required to have higher shape accuracy.

【0010】このX線投影露光装置の場合、結像光学系
は全て反射鏡により構成される反射光学系であることが
好ましい。また、無収差に近い性能を有し、かつ30m
m程度の視野を有する結像光学系を得るためには、光学
設計の観点から反射鏡は少なくとも4枚必要である。さ
らに、縮小光学系の場合には、球面光学系では広視野で
収差を小さくすることが困難であるため、非球面光学系
が必要になる。非球面光学系としては、例えばオフナー
型光学系を改良した光学系が挙げられ、長さ30mm以
上の輪帯の視野で所望の収差を得ることができる。この
場合、反射面形状は回転対称の非球面となる。
In the case of this X-ray projection exposure apparatus, it is preferable that the imaging optical system is a reflection optical system composed entirely of reflecting mirrors. In addition, it has a performance close to no aberration and 30m
In order to obtain an imaging optical system having a visual field of about m, at least four reflecting mirrors are necessary from the viewpoint of optical design. Further, in the case of a reduction optical system, it is difficult to reduce aberrations in a wide field of view with a spherical optical system, so an aspherical optical system is required. As the aspherical optical system, for example, an optical system obtained by improving an Offner type optical system can be mentioned, and a desired aberration can be obtained in a visual field of an orbicular zone having a length of 30 mm or more. In this case, the reflection surface shape is a rotationally symmetric aspherical surface.

【0011】ここで、反射鏡の反射面に形状誤差がある
場合、反射鏡に入射する光は理想的な反射位置に対して
形状誤差分だけ光軸方向にずれた位置で反射する。その
ため、反射光の光路は、反射位置のずれ量の2倍だけ光
路が長くなるか、或いは短くなる。従って、X線投影露
光装置の縮小結像光学系(反射光学系)における反射面
の形状誤差の許容上限値は、各反射鏡で発生する収差の
許容上限値の半分となる。従って、反射面の数をNとす
ると、必要な形状誤差は収差の1/N1/2 ×(1/2)
となる。例えば、反射面の数を4とすると、波長13nmに
おける形状誤差の許容上限値は0.23nmrms となる。
Here, when there is a shape error in the reflecting surface of the reflecting mirror, light incident on the reflecting mirror is reflected at a position shifted in the optical axis direction by an amount corresponding to the shape error from an ideal reflecting position. Therefore, the optical path of the reflected light becomes longer or shorter by twice the amount of deviation of the reflection position. Therefore, the allowable upper limit value of the shape error of the reflecting surface in the reduced image forming optical system (reflective optical system) of the X-ray projection exposure apparatus is half of the allowable upper limit value of the aberration generated by each reflecting mirror. Therefore, assuming that the number of reflecting surfaces is N, the required shape error is 1 / N 1/2 × (1/2) of the aberration.
Becomes For example, if the number of reflecting surfaces is 4, the allowable upper limit of the shape error at a wavelength of 13 nm is 0.23 nmrms.

【0012】なお、X線露光装置において、光学素子と
して多層膜X線反射鏡を用いる場合には、多層膜X線反
射鏡を高精度に作製しなければならない。この高精度の
多層膜X線反射鏡を作製するためには、先ず、高精度な
表面形状を有する基板(または基板となる反射鏡)を作
製する必要があり、その基板の表面(または基板となる
反射鏡の反射面)にX線反射多層膜をコーティングすれ
ば、高精度の多層膜X線反射鏡を作製できることにな
る。
When a multilayer X-ray mirror is used as an optical element in an X-ray exposure apparatus, the multilayer X-ray mirror must be manufactured with high precision. In order to manufacture a high-precision multilayer X-ray reflecting mirror, first, it is necessary to manufacture a substrate (or a reflecting mirror serving as a substrate) having a high-precision surface shape. If the X-ray reflection multilayer film is coated on the reflection surface of the reflection mirror, a highly accurate multilayer X-ray reflection mirror can be manufactured.

【0013】従来の反射鏡や基板(または基板となる反
射鏡)は、研磨等の機械加工を高精度に施すことにより
作製され、さらに具体的には、機械加工と形状測定を繰
り返すことにより、反射面形状を徐々に所望形状に近づ
けていき、最終的に所望形状の反射面を得ようとしてい
た。しかしながら、研磨等の機械加工方法では、前述し
たようなX線投影露光装置の光学系の反射鏡や基板(ま
たは基板となる反射鏡)に要求される高精度な反射面形
状を作製することが非常に困難であった。特に、高精度
な非球面の反射面形状を作製することができなかった。
A conventional reflecting mirror or a substrate (or a reflecting mirror serving as a substrate) is manufactured by performing mechanical processing such as polishing with high precision, and more specifically, by repeating mechanical processing and shape measurement, The shape of the reflecting surface was gradually brought closer to the desired shape, and finally a reflecting surface having a desired shape was to be obtained. However, in a machining method such as polishing, it is necessary to produce a highly accurate reflecting surface shape required for a reflecting mirror or a substrate (or a reflecting mirror serving as a substrate) of an optical system of an X-ray projection exposure apparatus as described above. It was very difficult. In particular, a highly accurate aspherical reflecting surface shape could not be produced.

【0014】そこで、高精度な反射面形状を有する反射
鏡の製造方法として、真空薄膜形成装置により、所望の
反射面形状に対して形状誤差のある表面形状を有する基
板の表面上に、薄膜をその膜厚分布を制御して形成する
ことにより、所望の反射面形状を得る方法が実施されて
いる。図9は、かかる製造方法において用いられる従来
の真空薄膜形成装置(一例)の構成(一部)を示すブロ
ック図である。
Therefore, as a method of manufacturing a reflecting mirror having a highly accurate reflecting surface shape, a thin film is formed on a surface of a substrate having a surface shape having a shape error with respect to a desired reflecting surface shape by a vacuum thin film forming apparatus. A method of obtaining a desired reflection surface shape by controlling the film thickness distribution and forming the film has been implemented. FIG. 9 is a block diagram showing a configuration (part) of a conventional vacuum thin film forming apparatus (one example) used in such a manufacturing method.

【0015】この真空薄膜形成装置は、少なくとも、薄
膜の蒸発源11、基板14の保持機構15、蒸発源11
から発して前記基板14に向かう蒸発粒子の一部を遮蔽
する膜厚補正部材12、基板14を自転させる回転機構
13を備えている。蒸発源11からは蒸発粒子16aが
射出し、該蒸発粒子16aは膜厚補正部材12を経て基
板14に到達して、基板上に積層される。膜厚補正部材
12は蒸発源11から基板14に移動する蒸発粒子の空
間分布を制御するものである。
This vacuum thin film forming apparatus includes at least a thin film evaporation source 11, a substrate 14 holding mechanism 15, and an evaporation source 11
And a rotation mechanism 13 for rotating the substrate 14 on its own. Evaporated particles 16a are emitted from the evaporation source 11, reach the substrate 14 via the thickness correction member 12, and are stacked on the substrate. The film thickness correction member 12 controls the spatial distribution of the evaporated particles moving from the evaporation source 11 to the substrate 14.

【0016】膜厚補正部材12は図10に示すように、
金属等の板の一部に開口を設けたものであり、基板14
と蒸発源11の間に固定されている。つまり、膜厚補正
部材12は、入射した蒸発粒子16aの一部を捕獲し
て、部材12を透過した後の蒸発粒子16bの分布を所
望の分布に変換する機能を有する。図9の真空薄膜形成
装置を用いて成膜を行うと、蒸発粒子16aの一部は膜
厚補正部材12により捕獲されて、基板14には到達し
ない。そのため、成膜時に基板14を自転させることに
より、図11に示すような中心対称の膜厚分布を有する
薄膜17が形成される。
As shown in FIG. 10, the film thickness correcting member 12
An opening is provided in a part of a metal plate or the like.
And the evaporation source 11. That is, the film thickness correction member 12 has a function of capturing a part of the incident evaporation particles 16a and converting the distribution of the evaporation particles 16b after passing through the member 12 into a desired distribution. When a film is formed using the vacuum thin film forming apparatus of FIG. 9, a part of the evaporated particles 16 a is captured by the film thickness correction member 12 and does not reach the substrate 14. Therefore, by rotating the substrate 14 during film formation, a thin film 17 having a center-symmetric film thickness distribution as shown in FIG. 11 is formed.

【0017】ここで、基板14に到達する蒸発粒子の分
布は、図10に示すような膜厚補正部材12のエッジ1
2aの形状を調整することにより制御される。この様に
して、所望の反射面形状に対して形状誤差のある表面形
状を有する基板の表面上に、薄膜をその膜厚分布を制御
して形成することにより、形状誤差の小さな反射鏡が製
造できる。
Here, the distribution of the evaporated particles reaching the substrate 14 depends on the edge 1 of the film thickness correcting member 12 as shown in FIG.
It is controlled by adjusting the shape of 2a. In this way, by forming a thin film on the surface of a substrate having a surface shape having a shape error with respect to a desired reflection surface shape by controlling the film thickness distribution, a reflector having a small shape error can be manufactured. it can.

【0018】[0018]

【発明が解決しようとする課題】この方法では、膜厚補
正部材が固定されているため、膜厚は膜厚補正部材の円
周方向の開口率に応じた量となり、開口率を半径方向に
変化させることで所望の膜厚分布を得る。ところが、エ
ッジ12aの形状に誤差があると、膜厚は所望の値より
も増加あるいは減少してしまい、膜厚の誤差量は円周方
向の開口長さに対するエッジの形状誤差量の比に比例す
ることになる。
In this method, since the film thickness correction member is fixed, the film thickness becomes an amount corresponding to the circumferential aperture ratio of the film thickness correction member, and the aperture ratio changes in the radial direction. By changing the thickness, a desired film thickness distribution is obtained. However, if there is an error in the shape of the edge 12a, the film thickness increases or decreases below a desired value, and the error amount of the film thickness is proportional to the ratio of the edge shape error amount to the circumferential opening length. Will do.

【0019】従って、基板の回転中心付近ではエッジの
形状誤差が膜厚の誤差に大きく影響してしまう。その結
果、基板または反射鏡の形状に誤差が生じてしまうとい
う問題点があった。さらに、従来の製造方法において所
望の膜厚分布を得るためには、膜厚補正部材12の端部
12aの形状を曲線にする必要があった。
Therefore, near the rotation center of the substrate, an edge shape error greatly affects a film thickness error. As a result, there is a problem that an error occurs in the shape of the substrate or the reflecting mirror. Furthermore, in order to obtain a desired film thickness distribution in the conventional manufacturing method, it is necessary to make the shape of the end 12a of the film thickness correcting member 12 into a curve.

【0020】ところが、膜厚補正部材を機械加工等で加
工すると、その形状に誤差が生じてしまい、特に曲線形
状は高精度に加工することが困難であり、そのため、従
来の製造方法では高精度な膜厚分布の制御ができず、形
状誤差の大きな基板または反射鏡しか製造することがで
きないという問題点があった。さらに、従来の方法で製
造した形状誤差の大きい基板上に多層膜を成膜して光学
素子を作製しても、収差が大きくなってしまい、所望の
解像度を得ることができないという問題点があった。
However, when the film thickness correcting member is machined by machining or the like, an error occurs in its shape, and particularly, it is difficult to machine a curved shape with high accuracy. There is a problem in that it is not possible to control the film thickness distribution, and only a substrate or a reflector having a large shape error can be manufactured. Further, even if an optical element is manufactured by forming a multilayer film on a substrate having a large shape error manufactured by a conventional method, aberrations increase, and a desired resolution cannot be obtained. Was.

【0021】本発明は、かかる問題点に鑑みてなされた
ものであり、高精度な反射面形状を有する反射鏡の製造
方法と、該反射鏡の製造に使用できる真空薄膜形成装置
を提供することを目的とする。また、本発明は特に、X
線投影露光装置に用いられる多層膜X線反射鏡を製造す
る際のX線反射多層膜を形成する基板となる反射鏡の製
造方法ならびに前記多層膜X線反射鏡の製造方法と、前
記基板となる反射鏡の製造に使用できる真空薄膜形成装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a method of manufacturing a reflecting mirror having a highly accurate reflecting surface shape, and a vacuum thin film forming apparatus that can be used for manufacturing the reflecting mirror. With the goal. Further, the present invention particularly relates to X
A method of manufacturing a reflecting mirror which is a substrate on which an X-ray reflecting multilayer film is formed when manufacturing a multilayer X-ray reflecting mirror used in a X-ray projection exposure apparatus; a method of manufacturing the multilayer X-ray reflecting mirror; It is an object of the present invention to provide a vacuum thin film forming apparatus that can be used for manufacturing a reflecting mirror.

【0022】[0022]

【課題を解決するための手段】そのため、本発明は第一
に「真空容器内に配置された基板上に薄膜を形成する真
空薄膜形成装置であり、少なくとも、前記基板の回転・
保持機構、前記薄膜の材料を蒸発させる蒸発源、及び該
蒸発源から発して前記基板に向かう蒸発粒子の一部を遮
蔽する膜厚補正部材を備えた真空薄膜形成装置におい
て、前記膜厚補正部材に所定形状の輪郭部分を設け、か
つ、前記膜厚補正部材を所望の膜厚分布と相関がある速
度分布を持たせて所定方向に直進移動させる機能を有す
る駆動機構を設けることにより、前記所望の膜厚分布を
有する薄膜を形成できるようにしたことを特徴とする真
空薄膜形成装置(請求項1)」 を提供する。
Therefore, the present invention firstly provides a vacuum thin film forming apparatus for forming a thin film on a substrate arranged in a vacuum vessel.
A vacuum thin film forming apparatus comprising: a holding mechanism; an evaporation source for evaporating the material of the thin film; and a thickness correction member for shielding a part of the evaporated particles emitted from the evaporation source toward the substrate. By providing a driving mechanism having a function of moving the film thickness correcting member in a predetermined direction with a velocity distribution correlated with a desired film thickness distribution. A vacuum thin film forming apparatus (Claim 1) characterized in that a thin film having a film thickness distribution of (1) can be formed.

【0023】また、本発明は第二に「真空容器内に配置
された基板上に薄膜を形成する真空薄膜形成装置であ
り、少なくとも、前記基板の回転・保持機構、前記薄膜
の材料を蒸発させる蒸発源、及び該蒸発源から発して前
記基板に向かう蒸発粒子の一部を遮蔽する膜厚補正部材
を備えた真空薄膜形成装置において、前記膜厚補正部材
に所定形状の輪郭部分を設け、かつ、前記回転・保持機
構を所望の膜厚分布と相関がある速度分布を持たせて所
定方向に直進移動させる機能を有する駆動機構を設ける
ことにより、前記所望の膜厚分布を有する薄膜を形成で
きるようにしたことを特徴とする真空薄膜形成装置(請
求項2)」を提供する。
The second aspect of the present invention is a vacuum thin film forming apparatus for forming a thin film on a substrate disposed in a vacuum vessel, wherein at least a mechanism for rotating and holding the substrate and a material for the thin film are evaporated. An evaporation source, and a vacuum thin film forming apparatus including a film thickness correction member that shields a part of the evaporation particles emitted from the evaporation source toward the substrate, wherein the film thickness correction member is provided with a contour portion having a predetermined shape, and A thin film having the desired film thickness distribution can be formed by providing a driving mechanism having a function of causing the rotation / holding mechanism to move straight in a predetermined direction with a speed distribution correlated with a desired film thickness distribution. A vacuum thin film forming apparatus (Claim 2) characterized by the above is provided.

【0024】また、本発明は第三に「前記膜厚補正部材
は、前記回転・保持機構に近接して配置されていること
を特徴とする請求項1または2記載の真空薄膜形成装置
(請求項3)」を提供する。また、本発明は第四に「前
記膜厚補正部材は平板状の部材であり、かつ、前記輪郭
部分が直線形状であることを特徴とする請求項1〜3記
載の真空薄膜形成装置(請求項4)」を提供する。
Further, the present invention provides, in a third aspect, a vacuum thin film forming apparatus according to claim 1 or 2, wherein the film thickness correcting member is arranged close to the rotation / holding mechanism. Item 3) "is provided. The present invention also provides a vacuum thin film forming apparatus according to any one of claims 1 to 3, wherein the film thickness correcting member is a plate-shaped member, and the contour portion has a linear shape. Item 4) "is provided.

【0025】また、本発明は第五に「少なくとも、所望
の反射面形状に近似した反射面形状を有する基板を用意
する工程と、前記基板を回転・保持機構に設置する工程
と、前記所望の反射面形状と前記基板の反射面形状の形
状差分布を求める工程と、真空薄膜形成法により前記基
板の反射面に膜厚分布を有する薄膜層を設けて、前記所
望の反射面形状を形成する工程であり、前記蒸発源から
発して前記基板に向かう蒸発粒子の一部を遮蔽する部材
であり、所定形状の輪郭部分を有する膜厚補正部材を設
けて、該膜厚補正部材を前記薄膜層の成膜中に、前記形
状差分布と相関がある速度分布を持たせて所定方向に直
進移動させることにより、回転している前記基板の反射
面に前記形状差分布に相当する膜厚分布を有する薄膜層
を形成して、所望形状の反射面を有する反射鏡を作製す
る工程と、を備えた反射鏡の製造方法(請求項5)」を
提供する。
The present invention also has a fifth aspect that “at least a step of preparing a substrate having a reflection surface shape similar to a desired reflection surface shape, a step of installing the substrate in a rotation / holding mechanism, A step of obtaining a shape difference distribution between the reflection surface shape and the reflection surface shape of the substrate; and providing a thin film layer having a film thickness distribution on the reflection surface of the substrate by a vacuum thin film forming method to form the desired reflection surface shape. A step of shielding a part of the evaporating particles emitted from the evaporation source toward the substrate, and providing a film thickness correction member having a contour portion of a predetermined shape, and attaching the film thickness correction member to the thin film layer. During the film formation, by moving straight in a predetermined direction with a velocity distribution having a correlation with the shape difference distribution, a film thickness distribution corresponding to the shape difference distribution on the reflecting surface of the rotating substrate. Forming a thin film layer having Provides a process for manufacturing the reflector with Jo reflecting surface, a method of manufacturing a reflector (Claim 5) "equipped with.

【0026】また、本発明は第六に「少なくとも、所望
の反射面形状に近似した反射面形状を有する基板を用意
する工程と、前記基板を回転・保持機構に設置する工程
と、前記所望の反射面形状と前記基板の反射面形状の形
状差分布を求める工程と、真空薄膜形成法により前記基
板の反射面に膜厚分布を有する薄膜層を設けて、前記所
望の反射面形状を形成する工程であり、前記蒸発源から
発して前記基板に向かう蒸発粒子の一部を遮蔽する部材
であり所定形状の輪郭部分を有する膜厚補正部材を設け
て、かつ、該基板を前記薄膜層の成膜中に、前記形状差
分布と相関がある速度分布を持たせて所定方向に直進移
動させることにより、回転している前記基板の反射面に
前記形状差分布に相当する膜厚分布を有する薄膜層を形
成して、所望形状の反射面を有する反射鏡を作製する工
程と、を備えた反射鏡の製造方法(請求項6)」を提供
する。
The present invention is also directed to a sixth aspect of the present invention which comprises at least a step of preparing a substrate having a reflection surface shape similar to a desired reflection surface shape, a step of installing the substrate on a rotating / holding mechanism, A step of obtaining a shape difference distribution between the reflection surface shape and the reflection surface shape of the substrate; and providing a thin film layer having a film thickness distribution on the reflection surface of the substrate by a vacuum thin film forming method to form the desired reflection surface shape. A step of providing a film thickness correction member having a contoured portion having a predetermined shape, which is a member for shielding a part of the evaporated particles emitted from the evaporation source toward the substrate, and forming the substrate on the thin film layer. A thin film having a film thickness distribution corresponding to the shape difference distribution on the reflecting surface of the rotating substrate by moving straight in a predetermined direction with a velocity distribution correlated with the shape difference distribution in the film. Form the layer to the desired shape Method for manufacturing a reflecting mirror and a step of fabricating the reflecting mirror having a reflecting surface to provide a (claim 6). "

【0027】また、本発明は第七に「前記膜厚補正部材
は、前記基板に近接して配置されていることを特徴とす
る請求項5または6記載の製造方法(請求項7)」を提
供する。また、本発明は第八に「前記膜厚補正部材は平
板状の部材であり、かつ、前記輪郭部分が直線形状であ
ることを特徴とする請求項5〜7記載の製造方法(請求
項8)」を提供する。
In a seventh aspect of the present invention, there is provided a manufacturing method according to the fifth or sixth aspect, wherein the film thickness correcting member is arranged close to the substrate. provide. An eighth aspect of the present invention is directed to the manufacturing method according to any one of claims 5 to 7, wherein the film thickness correction member is a plate-shaped member, and the contour portion has a linear shape. )"I will provide a.

【0028】また、本発明は第九に「i、j、Nを整数
とし、前記蒸発源から見た前記膜厚補正部材の前記輪郭
部分の前記基板上への投影ラインが前記基板の回転軸位
置から長さRの位置まで移動するように該膜厚補正部材
を走査する際の該移動距離RをN等分した各点における
該膜厚補正部材の滞在時間をベクトルT=(ti ) =
(t1 , t2 , ・・・,tN ) とし、前記基板の半径が
Rである場合に、該基板表面上において前記回転軸を中
心とする同心円であり、R/Nの整数倍の半径をする同
心円の複数の輪帯上における前記薄膜層の膜厚をベクト
ルY=(yi ) =(y1 , y2 , ・・・、yN ) とし、
該薄膜層の成膜速度をkとし、行列Aを A=(ai,j ) ai,j = 0 (i<j) ai,j = ( k /π)cos-1{(j−1)/(i−1/
2)}(i≧j) とし、行列Aの逆行列をA-1としたときに前記滞在時間
TがT=A-1Y を満たすように前記膜厚補正部材を移
動させることを特徴とする請求項8記載の製造方法(請
求項9)」を提供する。
In a ninth aspect of the present invention, "i, j, and N are integers, and a projection line of the contour portion of the film thickness correction member viewed from the evaporation source on the substrate is a rotation axis of the substrate. The travel time of the film thickness correction member at each point obtained by equally dividing the moving distance R when scanning the film thickness correction member so as to move from the position to the position of the length R is represented by a vector T = (t i ). =
(T 1 , t 2 ,..., T N ), and when the radius of the substrate is R, it is a concentric circle centered on the rotation axis on the substrate surface, and is an integral multiple of R / N. The thickness of the thin film layer on a plurality of concentric circles having a radius is defined as a vector Y = (y i ) = (y 1 , y 2 ,..., Y N ),
The deposition rate of the thin film layer is k, and the matrix A is A = (a i, j ) a i, j = 0 (i <j) a i, j = (k / π) cos -1 {(j− 1) / (i-1 /
2) When 膜厚 (i ≧ j), and the inverse matrix of the matrix A is A −1 , the film thickness correction member is moved such that the stay time T satisfies T = A −1 Y. The manufacturing method according to claim 8 (claim 9) "is provided.

【0029】また、本発明は第十に「i、j、Nを整数
とし、前記蒸発源から見た前記膜厚補正部材の前記輪郭
部分の前記基板上への投影ラインが前記基板の回転軸位
置から長さRの位置まで移動するように該膜厚補正部材
を走査する際の該移動距離RをN等分した各点における
該膜厚補正部材の滞在時間をベクトルT=(ti ) =
(t1 , t2 , ・・・,tN ) とし、前記基板の半径が
Rである場合に、該基板表面上において前記回転軸を中
心とする同心円であり、R/Nの整数倍の半径をする同
心円の複数の輪帯上における前記薄膜層の膜厚をベクト
ルY=(yi ) =(y1 , y2 , ・・・、yN ) とし、
該薄膜層の成膜速度をkとし、行列Bを B=(bi,j ) bi,j = k (i≦N−j) bi,j = ( k /π)cos-1{(j−N)/(i−1/
2)}(i>N−j) とし、行列Bの逆行列をB-1としたときに前記滞在時間
TがT=B-1Y を満たすように前記膜厚補正部材を移
動させることを特徴とする請求項8記載の製造方法(請
求項10)」を提供する。
[0029] In the present invention, the tenth is that "i, j, N are integers, and the projection line of the contour portion of the film thickness correction member viewed from the evaporation source on the substrate is the rotation axis of the substrate. The travel time of the film thickness correction member at each point obtained by equally dividing the moving distance R when scanning the film thickness correction member so as to move from the position to the position of the length R is represented by a vector T = (t i ). =
(T 1 , t 2 ,..., T N ), and when the radius of the substrate is R, it is a concentric circle centered on the rotation axis on the substrate surface, and is an integral multiple of R / N. The thickness of the thin film layer on a plurality of concentric circles having a radius is defined as a vector Y = (y i ) = (y 1 , y 2 ,..., Y N ),
The deposition rate of the thin film layer is k, and the matrix B is B = (b i, j ) b i, j = k (i ≦ N−j) b i, j = (k / π) cos −1 {( j−N) / (i−1 /
2) When} (i> N−j), and the inverse matrix of the matrix B is B −1 , the film thickness correction member is moved so that the stay time T satisfies T = B −1 Y. A manufacturing method according to claim 8 (claim 10) "is provided.

【0030】また、本発明は第十一に「前記所望形状が
非球面であり、かつ、前記基板の反射面形状が該非球面
に近似の球面または非球面であることを特徴とする請求
項5〜10記載の製造方法(請求項11)」を提供する。ま
た、本発明は第十二に「請求項5〜11記載の製造方法に
より作製した反射鏡の反射面にさらにX線反射多層膜を
設けることによりX線反射鏡とするX線反射鏡の製造方
法(請求項12)」を提供する。
In the eleventh aspect of the present invention, it is preferable that the desired shape is an aspherical surface, and the reflection surface shape of the substrate is a spherical surface or an aspherical surface approximate to the aspherical surface. To (10) (claim 11). In addition, the present invention provides a twelfth aspect of the present invention, which is to manufacture an X-ray reflecting mirror which is an X-ray reflecting mirror by further providing an X-ray reflecting multilayer film on a reflecting surface of the reflecting mirror manufactured by the manufacturing method according to claims 5 to 11. A method (claim 12) is provided.

【0031】[0031]

【発明の実施の態様】本発明にかかる、少なくとも、基
板の回転・保持機構、薄膜の材料を蒸発させる蒸発源、
及び該蒸発源から発して前記基板に向かう蒸発粒子の一
部を遮蔽する膜厚補正部材を備えた真空薄膜形成装置に
よれば、前記膜厚補正部材に所定形状の輪郭部分を設
け、かつ、前記膜厚補正部材を所望の膜厚分布と相関が
ある速度分布を持たせて所定方向に直進移動させる機能
を有する駆動機構を設けることにより、前記所望の膜厚
分布を有する薄膜を形成できる(請求項1)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS At least a mechanism for rotating and holding a substrate, an evaporation source for evaporating a material of a thin film,
According to the vacuum thin film forming apparatus including a film thickness correction member that shields a part of the evaporated particles emitted from the evaporation source toward the substrate, the film thickness correction member is provided with a contour portion having a predetermined shape, and A thin film having the desired film thickness distribution can be formed by providing a drive mechanism having a function of causing the film thickness correction member to move straight in a predetermined direction with a speed distribution correlated with the desired film thickness distribution ( Claim 1).

【0032】また、本発明にかかる、少なくとも、基板
の回転・保持機構、薄膜の材料を蒸発させる蒸発源、及
び該蒸発源から発して前記基板に向かう蒸発粒子の一部
を遮蔽する膜厚補正部材を備えた真空薄膜形成装置によ
れば、前記膜厚補正部材に所定形状の輪郭部分を設け、
かつ、前記回転・保持機構を所望の膜厚分布と相関があ
る速度分布を持たせて所定方向に直進移動させる機能を
有する駆動機構を設けることにより、前記所望の膜厚分
布を有する薄膜を形成できる(請求項2)。
Further, according to the present invention, at least a mechanism for rotating and holding the substrate, an evaporation source for evaporating the material of the thin film, and a film thickness correction for shielding a part of the evaporated particles emitted from the evaporation source toward the substrate. According to the vacuum thin film forming apparatus provided with the member, a contour portion of a predetermined shape is provided on the film thickness correction member,
The thin film having the desired film thickness distribution is formed by providing a drive mechanism having a function of causing the rotation / holding mechanism to move straight in a predetermined direction with a speed distribution correlated with the desired film thickness distribution. (Claim 2).

【0033】そのため、本発明にかかる真空薄膜形成装
置を用いて、所望の反射面形状に近似した反射面形状を
有する基板に、前記所望の反射面形状と前記基板の反射
面形状の形状差分布に相当する膜厚分布を有する薄膜層
を設けると、高精度な反射面形状を有する反射鏡を製造
することができる。なお、製造可能な反射鏡には、X線
投影露光装置に用いられる多層膜X線反射鏡を製造する
際のX線反射多層膜を形成する基板となる反射鏡も含ま
れる。
Therefore, using the vacuum thin film forming apparatus according to the present invention, a substrate having a reflection surface shape similar to a desired reflection surface shape is provided on a substrate having a reflection surface shape similar to the desired reflection surface shape. By providing a thin film layer having a film thickness distribution corresponding to the above, a reflecting mirror having a highly accurate reflecting surface shape can be manufactured. Note that the reflector that can be manufactured includes a reflector that is a substrate on which an X-ray reflective multilayer film is formed when a multilayer X-ray reflector used in an X-ray projection exposure apparatus is manufactured.

【0034】本発明にかかる膜厚補正部材は、膜厚分布
の制御を容易とするために、前記回転・保持機構に近接
して配置されていることが好ましい(請求項3、7)。
また、本発明にかかる膜厚補正部材は、平板状の部材で
あり、かつ、前記輪郭部分が直線形状であることが好ま
しい(請求項4、8)。かかる構成にすることにより、
輪郭形状や部材の高精度な加工が容易となる。
The film thickness correcting member according to the present invention is preferably arranged close to the rotation / holding mechanism in order to easily control the film thickness distribution.
Further, it is preferable that the film thickness correcting member according to the present invention is a member having a flat plate shape, and the contour portion has a linear shape (claims 4 and 8). With such a configuration,
High-precision processing of contour shapes and members becomes easy.

【0035】また、本発明にかかる、少なくとも、所望
の反射面形状に近似した反射面形状を有する基板を用意
する工程と、前記基板を回転・保持機構に設置する工程
と、前記所望の反射面形状と前記基板の反射面形状の形
状差分布を求める工程と、真空薄膜形成法により前記基
板の反射面に膜厚分布を有する薄膜層を設けて、前記所
望の反射面形状を形成する工程であり、前記蒸発源から
発して前記基板に向かう蒸発粒子の一部を遮蔽する部材
であり、所定形状の輪郭部分を有する膜厚補正部材を設
けて、該膜厚補正部材を前記薄膜層の成膜中に、前記形
状差分布と相関がある速度分布を持たせて所定方向に直
進移動させることにより、回転している前記基板の反射
面に前記形状差分布に相当する膜厚分布を有する薄膜層
を形成して、所望形状の反射面を有する反射鏡を作製す
る工程と、を備えた反射鏡の製造方法によれば、所望の
反射面形状に近似した反射面形状を有する基板に、前記
所望の反射面形状と前記基板の反射面形状の形状差分布
に相当する膜厚分布を有する薄膜層を設けることが可能
であり、その結果、高精度な反射面形状を有する反射鏡
を製造することができる(請求項5)。
Further, according to the present invention, a step of preparing a substrate having at least a reflection surface shape similar to a desired reflection surface shape, a step of installing the substrate on a rotating / holding mechanism, and a step of providing the desired reflection surface Obtaining a shape difference distribution between the shape and the reflection surface shape of the substrate, and providing a thin film layer having a film thickness distribution on the reflection surface of the substrate by a vacuum thin film forming method to form the desired reflection surface shape. A member that shields a part of the evaporated particles emitted from the evaporation source toward the substrate, and a film thickness correction member having a contour portion having a predetermined shape is provided, and the film thickness correction member is formed of the thin film layer. A thin film having a film thickness distribution corresponding to the shape difference distribution on the reflecting surface of the rotating substrate by moving straight in a predetermined direction with a velocity distribution correlated with the shape difference distribution in the film. Forming a layer, Manufacturing a reflecting mirror having a reflecting surface in a shape of, the method according to the method for manufacturing a reflecting mirror, the substrate having a reflecting surface shape close to the desired reflecting surface shape, the desired reflecting surface shape and the It is possible to provide a thin film layer having a film thickness distribution corresponding to the shape difference distribution of the reflection surface shape of the substrate, and as a result, it is possible to manufacture a reflection mirror having a highly accurate reflection surface shape. ).

【0036】また、本発明にかかる、少なくとも、所望
の反射面形状に近似した反射面形状を有する基板を用意
する工程と、前記基板を回転・保持機構に設置する工程
と、前記所望の反射面形状と前記基板の反射面形状の形
状差分布を求める工程と、真空薄膜形成法により前記基
板の反射面に膜厚分布を有する薄膜層を設けて、前記所
望の反射面形状を形成する工程であり、前記蒸発源から
発して前記基板に向かう蒸発粒子の一部を遮蔽する部材
であり所定形状の輪郭部分を有する膜厚補正部材を設け
て、かつ、該基板を前記薄膜層の成膜中に、前記形状差
分布と相関がある速度分布を持たせて所定方向に直進移
動させることにより、回転している前記基板の反射面に
前記形状差分布に相当する膜厚分布を有する薄膜層を形
成して、所望形状の反射面を有する反射鏡を作製する工
程と、を備えた反射鏡の製造方法によれば、所望の反射
面形状に近似した反射面形状を有する基板に、前記所望
の反射面形状と前記基板の反射面形状の形状差分布に相
当する膜厚分布を有する薄膜層を設けることが可能であ
り、その結果、高精度な反射面形状を有する反射鏡を製
造することができる(請求項6)。
[0036] Further, according to the present invention, a step of preparing a substrate having at least a reflection surface shape similar to a desired reflection surface shape, a step of installing the substrate on a rotating / holding mechanism, and a step of: Obtaining a shape difference distribution between the shape and the reflection surface shape of the substrate, and providing a thin film layer having a film thickness distribution on the reflection surface of the substrate by a vacuum thin film forming method to form the desired reflection surface shape. A film thickness correction member having a contoured portion of a predetermined shape, which is a member for shielding a part of evaporating particles emitted from the evaporation source toward the substrate, and forming the substrate on the thin film layer. The thin film layer having a film thickness distribution corresponding to the shape difference distribution is formed on the reflecting surface of the rotating substrate by moving straight in a predetermined direction with a velocity distribution having a correlation with the shape difference distribution. Form the desired shape Manufacturing a reflecting mirror having a reflecting surface, and a method of manufacturing a reflecting mirror including the reflecting mirror, the substrate having a reflecting surface shape similar to the desired reflecting surface shape, the desired reflecting surface shape and the substrate It is possible to provide a thin film layer having a film thickness distribution corresponding to the shape difference distribution of the reflecting surface shape, and as a result, it is possible to manufacture a reflecting mirror having a highly accurate reflecting surface shape.

【0037】なお、製造可能な反射鏡には、X線投影露
光装置に用いられる多層膜X線反射鏡を製造する際のX
線反射多層膜を形成する基板となる反射鏡も含まれる。
また、本発明にかかる製造方法においては、「i、j、
Nを整数とし、前記蒸発源から見た前記膜厚補正部材の
前記輪郭部分の前記基板上への投影ラインが前記基板の
回転軸位置から長さRの位置まで移動するように該膜厚
補正部材を走査する際の該移動距離RをN等分した各点
における該膜厚補正部材の滞在時間をベクトルT=(t
i ) =(t1 , t2 , ・・・,tN ) とし、前記基板の
半径がRである場合に、該基板表面上において前記回転
軸を中心とする同心円であり、R/Nの整数倍の半径を
する同心円の複数の輪帯上における前記薄膜層の膜厚を
ベクトルY=(yi ) =(y1 , y2 , ・・・、yN )
とし、該薄膜層の成膜速度をkとし、行列Aを A=(ai,j ) ai,j = 0 (i<j) ai,j = ( k /π)cos-1{(j−1)/(i−1/
2)}(i≧j) とし、行列Aの逆行列をA-1としたときに前記滞在時間
TがT=A-1Y を満たすように前記膜厚補正部材を移
動させる」ことにより、さらに高精度な反射面形状を有
する反射鏡を製造することができるので好ましい(請求
項9)。
The mirrors that can be manufactured include X-rays used for manufacturing a multilayer X-ray mirror used in an X-ray projection exposure apparatus.
A reflecting mirror serving as a substrate on which the line reflective multilayer film is formed is also included.
Further, in the manufacturing method according to the present invention, “i, j,
N is an integer, and the film thickness correction is performed such that a projection line of the contour portion of the film thickness correction member viewed from the evaporation source onto the substrate moves from a rotation axis position of the substrate to a position of length R. The stay time of the film thickness correction member at each point obtained by equally dividing the movement distance R when scanning the member by N is represented by a vector T = (t
i ) = (t 1 , t 2 ,..., t N ), and when the radius of the substrate is R, it is a concentric circle centered on the rotation axis on the substrate surface, and R / N A vector Y = (y i ) = (y 1 , y 2 ,..., Y N ) on the plurality of concentric circles having a radius of an integral multiple.
And the film formation rate of the thin film layer is k, and the matrix A is A = (a i, j ) a i, j = 0 (i <j) a i, j = (k / π) cos −1 } ( j-1) / (i-1 /
2) When} (i ≧ j), and the inverse matrix of the matrix A is A −1 , the film thickness correction member is moved so that the stay time T satisfies T = A −1 Y ” This is preferable because a reflecting mirror having a highly accurate reflecting surface shape can be manufactured.

【0038】また、本発明にかかる製造方法において
は、「i、j、Nを整数とし、前記蒸発源から見た前記
膜厚補正部材の前記輪郭部分の前記基板上への投影ライ
ンが前記基板の回転軸位置から長さRの位置まで移動す
るように該膜厚補正部材を走査する際の該移動距離Rを
N等分した各点における該膜厚補正部材の滞在時間をベ
クトルT=(ti ) =(t1 , t2 , ・・・,tN ) と
し、前記基板の半径がRである場合に、該基板表面上に
おいて前記回転軸を中心とする同心円であり、R/Nの
整数倍の半径をする同心円の複数の輪帯上における前記
薄膜層の膜厚をベクトルY=(yi ) =(y1 , y2 ,
・・・、yN ) とし、該薄膜層の成膜速度をkとし、行
列Bを B=(bi,j ) bi,j = k (i≦N−j) bi,j = ( k /π)cos-1{(j−N)/(i−1/
2)}(i>N−j) とし、行列Bの逆行列をB-1としたときに前記滞在時間
TがT=B-1Y を満たすように前記膜厚補正部材を移
動させる」ことにより、同様にさらに高精度な反射面形
状を有する反射鏡を製造することができるので好ましい
(請求項10)。
Further, in the manufacturing method according to the present invention, it is preferable that “i, j, N be integers, and a projection line of the contour portion of the film thickness correction member on the substrate viewed from the evaporation source be formed on the substrate. When the film thickness correction member is scanned so as to move from the rotation axis position to the position of the length R, the stay time of the film thickness correction member at each point obtained by dividing the movement distance R by N is represented by a vector T = ( t i ) = (t 1 , t 2 ,..., t N ), and when the radius of the substrate is R, it is a concentric circle centered on the rotation axis on the substrate surface, and R / N The thickness of the thin film layer on a plurality of concentric orbits having a radius of an integral multiple of the vector Y = (y i ) = (y 1 , y 2 ,
.., Y N ), the deposition rate of the thin film layer is k, and the matrix B is B = (bi , j ) bi , j = k (i ≦ N−j) bi , j = ( k / π) cos -1 {(j−N) / (i−1 /
2) Move the film thickness correction member so that the stay time T satisfies T = B -1 Y when せ る (i> N−j) and the inverse matrix of the matrix B is B −1. Thus, it is possible to manufacture a reflecting mirror having a more accurate reflecting surface shape, which is also preferable (claim 10).

【0039】また、本発明の反射鏡の製造方法は、前記
所望形状が非球面であり、かつ、前記基板の反射面形状
が該非球面に近似の球面または非球面である場合に用い
て好適である(請求項11)。特に反射面形状が球面の基
板を用いると、球面基板は研磨等の機械加工により高精
度に加工できるため、本発明にかかる製造方法により高
精度に膜厚分布を制御して成膜を行えば、より高精度な
非球面の反射面形状を有する反射鏡を製造することがで
きる。
The method of manufacturing a reflecting mirror according to the present invention is preferably used when the desired shape is an aspherical surface and the reflecting surface shape of the substrate is a spherical surface or an aspherical surface similar to the aspherical surface. There is (claim 11). In particular, when a substrate having a reflective surface shape of a spherical surface is used, the spherical substrate can be processed with high precision by mechanical processing such as polishing, so if the film is formed by controlling the film thickness distribution with high precision by the manufacturing method according to the present invention. Thus, it is possible to manufacture a reflecting mirror having a more accurate aspherical reflecting surface shape.

【0040】また、請求項5〜11記載の製造方法により
作製した反射鏡の反射面にさらにX線反射多層膜を設け
ることによりX線反射鏡を製造することができる(請求
項12)。さらに、該X線反射鏡を複数組み合わせること
により、無収差の或いは無収差に近いX線光学系を形成
することができる。本発明にかかる蒸発源は、本発明に
かかる高精度な膜厚分布制御を行う上で、高精度な成膜
速度制御ができるものが好ましく、例えばイオンビーム
等のスパッタ源やEB蒸発源等の蒸発源が好ましい。
Further, an X-ray reflecting mirror can be manufactured by further providing an X-ray reflecting multilayer film on the reflecting surface of the reflecting mirror manufactured by the manufacturing method according to claims 5 to 11 (claim 12). Further, by combining a plurality of the X-ray reflecting mirrors, it is possible to form an X-ray optical system having no or almost no aberration. The evaporation source according to the present invention is preferably one capable of controlling the film deposition rate with high accuracy in controlling the film thickness distribution with high accuracy according to the present invention. For example, a sputtering source such as an ion beam or an EB evaporation source may be used. Evaporation sources are preferred.

【0041】また、本発明にかかる駆動機構は、膜厚補
正部材または基板の回転・保持機構を高精度に位置制御
及び移動制御できるものが好ましい。本発明において
は、成膜中に基板の表面(反射面)形状を計測できる機
構を設けてもよい(不図示)。かかる機構を設けること
により、薄膜の形成途中における基板の反射面形状を実
時間にてモニターすることにより、所望の反射面形状と
の形状誤差の変化を追跡して、その値がゼロとするよう
に成膜及び駆動の制御を行うことにより、所望の反射面
形状がより正確に形成できる。
It is preferable that the drive mechanism according to the present invention is capable of controlling the position and movement of the film thickness correcting member or the substrate rotating / holding mechanism with high precision. In the present invention, a mechanism capable of measuring the surface (reflection surface) shape of the substrate during film formation may be provided (not shown). By providing such a mechanism, by monitoring in real time the reflection surface shape of the substrate during the formation of the thin film, the change in the shape error from the desired reflection surface shape is tracked, and the value is set to zero. By controlling the film formation and the driving, the desired reflection surface shape can be formed more accurately.

【0042】ここで、本発明にかかる真空薄膜形成装置
(一例)と、該装置を用いて反射鏡(例えば、X線投影
露光装置に用いられる多層膜X線反射鏡を製造する際の
X線反射多層膜を形成する基板となる反射鏡)を製造す
る方法(一例)を示す(図1、図2参照)。先ず、図1
の真空薄膜形成装置は、少なくとも、基板4の回転・保
持機構5、薄膜の材料を蒸発させる蒸発源1、該蒸発源
から発して前記基板4に向かう蒸発粒子の一部を遮蔽す
る膜厚補正部材2、及び該膜厚補正部材2の位置を制御
する駆動機構3を有する。
Here, a vacuum thin film forming apparatus (one example) according to the present invention, and a reflecting mirror using the apparatus (for example, an X-ray for manufacturing a multilayer X-ray reflecting mirror used in an X-ray projection exposure apparatus) A method (one example) of manufacturing a reflecting mirror serving as a substrate for forming a reflective multilayer film will be described (see FIGS. 1 and 2). First, FIG.
The vacuum thin film forming apparatus of the present invention comprises at least a rotation / holding mechanism 5 for the substrate 4, an evaporation source 1 for evaporating the material of the thin film, and a film thickness correction for shielding a part of the evaporation particles emitted from the evaporation source toward the substrate 4. A member 2 and a drive mechanism 3 for controlling the position of the film thickness correcting member 2 are provided.

【0043】ここで、膜厚補正部材2は蒸発源1と基板
4の間に配置され、また駆動機構3は、所望の膜厚分布
と相関がある速度分布を持たせて、前記膜厚補正部材を
所定方向に直進移動させる機能を有する。蒸発源1から
は蒸発粒子6aが射出され、該蒸発粒子6aは膜厚補正
部材2を経て基板4に到達し、積層(成膜)される。基
板4は、所望の反射面形状に近似した反射面形状を有す
る。
Here, the film thickness correcting member 2 is disposed between the evaporation source 1 and the substrate 4, and the driving mechanism 3 has a speed distribution correlated with a desired film thickness distribution, and It has a function of moving the member straight in a predetermined direction. Evaporated particles 6a are emitted from the evaporation source 1, and reach the substrate 4 via the film thickness correcting member 2 to be laminated (formed). The substrate 4 has a reflection surface shape similar to a desired reflection surface shape.

【0044】膜厚補正部材2及び駆動機構3は、蒸発源
1から射出して基板4に移動する蒸発粒子の空間分布を
制御するものであり、膜厚補正部材2に入射した蒸発粒
子6aの一部を捕獲して、膜厚補正部材2を透過した後
の蒸発粒子6bの分布を所望の分布にすることができ
る。膜厚補正部材2は、蒸発粒子を遮蔽するような材料
で構成され、その形状は例えば図3に示すような、少な
くとも一つの端部(輪郭部分)2aを有する平板であ
る。
The film thickness correcting member 2 and the driving mechanism 3 are for controlling the spatial distribution of the evaporated particles which are emitted from the evaporation source 1 and move to the substrate 4. It is possible to obtain a desired distribution of the evaporated particles 6b after capturing a part thereof and passing through the film thickness correcting member 2. The film thickness correcting member 2 is made of a material that shields the evaporated particles, and has a shape of a flat plate having at least one end (contour portion) 2a as shown in FIG. 3, for example.

【0045】蒸着源1を射出した蒸発粒子6aのうち、
膜厚補正部材2に遮蔽されなかった蒸発粒子6bは基板
4に到達して積層(成膜)される。逆に、膜厚補正部材
2に遮蔽された蒸発粒子は基板4には到達しない。従っ
て、基板表面のうち、部材2に近い遮蔽箇所には蒸発粒
子が到達できない。つまり、基板4の一部にのみ薄膜を
積層(成膜)させて、その部分の加工量(積層量)を大
きくできる。
Of the evaporated particles 6a emitted from the evaporation source 1,
The evaporated particles 6b not shielded by the film thickness correction member 2 reach the substrate 4 and are stacked (formed). Conversely, the evaporated particles shielded by the film thickness correction member 2 do not reach the substrate 4. Therefore, the evaporating particles cannot reach the shielded portion near the member 2 on the substrate surface. In other words, a thin film is deposited (deposited) only on a part of the substrate 4, and the processing amount (deposition amount) of that part can be increased.

【0046】そして、成膜中に基板4を回転・保持機構
5により自転させながら、膜厚補正部材2の位置を駆動
機構3により所望の膜厚分布と相関がある速度分布を持
たせて移動させると、基板4に到達する蒸発粒子6bの
空間分布を時間的に逐次変化させて、基板4の反射面に
所望の膜厚分布を有する薄膜層を形成することができ
る。
Then, while the substrate 4 is rotated by the rotation / holding mechanism 5 during the film formation, the position of the film thickness correction member 2 is moved by the drive mechanism 3 so as to have a velocity distribution correlated with the desired film thickness distribution. Then, the spatial distribution of the evaporating particles 6b reaching the substrate 4 is changed over time to form a thin film layer having a desired film thickness distribution on the reflection surface of the substrate 4.

【0047】このとき、基板4の表面に対して概ね平行
に膜厚補正部材2を走査すると、膜厚分布の制御が容易
に行えるので好ましい。このようにして行う薄膜層の形
成例を図4(断面図)に示す。例えば、駆動機構3によ
り膜厚補正部材2を、基板4の中心から端部へと図4
(a)、(b)、(c)に示す順番で走査させることに
より、基板全面に膜が形成される。
At this time, it is preferable to scan the film thickness correction member 2 substantially parallel to the surface of the substrate 4 because the film thickness distribution can be easily controlled. FIG. 4 (cross-sectional view) shows an example of forming a thin film layer in this manner. For example, the drive mechanism 3 moves the film thickness correction member 2 from the center of the substrate 4 to the end of FIG.
By scanning in the order shown in (a), (b), and (c), a film is formed on the entire surface of the substrate.

【0048】このとき、薄膜層の膜厚分布は膜厚補正部
材2の走査速度により制御することができるので、所望
の表面形状を得ることができる。即ち、所望の反射面形
状に近似した反射面形状を有する前記基板の反射面に所
望の膜厚分布(前記所望の反射面形状と前記基板の反射
面形状の形状差分布に相当する膜厚分布)を有する薄膜
層を形成して、所望形状の反射面(高精度な反射面)を
有する反射鏡を作製することができる。次に、図2の真
空薄膜形成装置は、少なくとも、基板4の回転・保持機
構5、薄膜の材料を蒸発させる蒸発源1、該蒸発源から
発して前記基板4に向かう蒸発粒子の一部を遮蔽する膜
厚補正部材2、及び基板4の位置を制御する駆動機構7
を有する。
At this time, since the film thickness distribution of the thin film layer can be controlled by the scanning speed of the film thickness correcting member 2, a desired surface shape can be obtained. That is, a desired film thickness distribution (a film thickness distribution corresponding to a shape difference distribution between the desired reflecting surface shape and the reflecting surface shape of the substrate) is formed on the reflecting surface of the substrate having a reflecting surface shape similar to the desired reflecting surface shape. ) Can be formed to produce a reflecting mirror having a reflecting surface of a desired shape (a highly accurate reflecting surface). Next, the vacuum thin film forming apparatus of FIG. 2 includes at least a rotation / holding mechanism 5 for the substrate 4, an evaporation source 1 for evaporating the material of the thin film, and a part of the evaporated particles emitted from the evaporation source toward the substrate 4. Thickness correction member 2 to be shielded, and drive mechanism 7 for controlling the position of substrate 4
Having.

【0049】ここで、膜厚補正部材2は蒸発源1と基板
4の間に配置され、また駆動機構7は、所望の膜厚分布
と相関がある速度分布を持たせて、基板4を所定方向に
直進移動させる機能を有する。蒸発源1からは蒸発粒子
6aが射出され、該蒸発粒子6aは膜厚補正部材2を経
て基板4に到達し、積層(成膜)される。基板4は、所
望の反射面形状に近似した反射面形状を有する。
Here, the film thickness correction member 2 is disposed between the evaporation source 1 and the substrate 4, and the driving mechanism 7 controls the substrate 4 to a predetermined speed distribution having a correlation with a desired film thickness distribution. It has the function of moving straight in the direction. Evaporated particles 6a are emitted from the evaporation source 1, and reach the substrate 4 via the film thickness correcting member 2 to be laminated (formed). The substrate 4 has a reflection surface shape similar to a desired reflection surface shape.

【0050】膜厚補正部材2及び駆動機構7は、蒸発源
1から射出して基板4に移動する蒸発粒子の空間分布を
制御するものであり、膜厚補正部材2に入射した蒸発粒
子6aの一部を捕獲して、膜厚補正部材2を透過した後
の蒸発粒子6bの分布を所望の分布にすることができ
る。膜厚補正部材2は、蒸発粒子を遮蔽するような材料
で構成され、その形状は例えば図3に示すような、少な
くとも一つの端部(輪郭部分)2aを有する平板であ
る。
The film thickness correcting member 2 and the driving mechanism 7 are for controlling the spatial distribution of the evaporated particles which are emitted from the evaporation source 1 and move to the substrate 4. It is possible to obtain a desired distribution of the evaporated particles 6b after capturing a part thereof and passing through the film thickness correcting member 2. The film thickness correcting member 2 is made of a material that shields the evaporated particles, and has a shape of a flat plate having at least one end (contour portion) 2a as shown in FIG. 3, for example.

【0051】蒸着源1を射出した蒸発粒子6aのうち、
膜厚補正部材2に遮蔽されなかった蒸発粒子6bは基板
4に到達して積層(成膜)される。逆に、膜厚補正部材
2に遮蔽された蒸発粒子は基板4には到達しない。従っ
て、基板表面のうち、部材2に近い遮蔽箇所には蒸発粒
子が到達できない。つまり、基板4の一部にのみ薄膜を
積層(成膜)させて、その部分の加工量(積層量)を大
きくできる。
Of the evaporated particles 6a emitted from the evaporation source 1,
The evaporated particles 6b not shielded by the film thickness correction member 2 reach the substrate 4 and are stacked (formed). Conversely, the evaporated particles shielded by the film thickness correction member 2 do not reach the substrate 4. Therefore, the evaporating particles cannot reach the shielded portion near the member 2 on the substrate surface. In other words, a thin film is deposited (deposited) only on a part of the substrate 4, and the processing amount (deposition amount) of that part can be increased.

【0052】そして、成膜中に基板4を回転・保持機構
5により自転させながら、基板4の位置を駆動機構7に
より所望の膜厚分布と相関がある速度分布を持たせて移
動させると、蒸発粒子6bが到達する基板4上の位置を
時間的に逐次変化させて、基板4の反射面に所望の膜厚
分布を有する薄膜層を形成することができる。このと
き、膜厚補正部材2の表面に対して概ね平行に基板4を
走査すると、膜厚分布の制御が容易に行えるので好まし
い。
Then, while the substrate 4 is rotated by the rotation and holding mechanism 5 during the film formation, the position of the substrate 4 is moved by the driving mechanism 7 so as to have a velocity distribution correlated with a desired film thickness distribution. By changing the position on the substrate 4 where the evaporating particles 6b reach sequentially with time, a thin film layer having a desired film thickness distribution can be formed on the reflection surface of the substrate 4. At this time, it is preferable to scan the substrate 4 substantially parallel to the surface of the film thickness correction member 2 because the film thickness distribution can be easily controlled.

【0053】このようにして行う薄膜層の形成例を図4
(断面図)に示す。例えば、駆動機構7により基板4
を、基板面の半分が膜厚補正部材2上にかかる位置から
基板面の全部が膜厚補正部材2上にかかる位置へと図4
(a)、(b)、(c)に示す順番で走査させることに
より、基板全面に膜が形成される。このとき、薄膜層の
膜厚分布は基板4の走査速度により制御することができ
るので、所望の表面形状を得ることができる。
FIG. 4 shows an example of forming a thin film layer in this manner.
(Cross-sectional view). For example, the driving mechanism 7 controls the substrate 4
From the position where half of the substrate surface is on the film thickness correction member 2 to the position where the entire substrate surface is on the film thickness correction member 2 in FIG.
By scanning in the order shown in (a), (b), and (c), a film is formed on the entire surface of the substrate. At this time, the thickness distribution of the thin film layer can be controlled by the scanning speed of the substrate 4, so that a desired surface shape can be obtained.

【0054】即ち、所望の反射面形状に近似した反射面
形状を有する前記基板の反射面に所望の膜厚分布(前記
所望の反射面形状と前記基板の反射面形状の形状差分布
に相当する膜厚分布)を有する薄膜層を形成して、所望
形状の反射面(高精度な反射面)を有する反射鏡を作製
することができる。本発明にかかる膜厚補正部材2は機
械加工等により作製すればよく、その輪郭部2aの形状
が高精度に加工されることが好ましい。前述したよう
に、膜厚補正部材が平板状の部材であり、かつ、その輪
郭部分が直線形状であれば、輪郭形状や部材の高精度な
加工が容易となる。
That is, a desired film thickness distribution (corresponding to a shape difference distribution between the desired reflecting surface shape and the reflecting surface shape of the substrate) is formed on the reflecting surface of the substrate having a reflecting surface shape similar to the desired reflecting surface shape. By forming a thin film layer having a (thickness distribution), a reflecting mirror having a reflecting surface of a desired shape (a highly accurate reflecting surface) can be manufactured. The film thickness correcting member 2 according to the present invention may be manufactured by machining or the like, and it is preferable that the shape of the contour portion 2a be processed with high precision. As described above, if the film thickness correction member is a flat plate-shaped member and the contour portion is a linear shape, high-precision processing of the contour shape and the member becomes easy.

【0055】直線状の輪郭部2aを加工する例を図5に
示す。膜厚補正部材2を補助部材9により挟んで輪郭部
2aを平面研磨すると、輪郭部2aは直線状に研磨され
る。平面研磨は曲面等の加工に比べて、高精度加工が容
易に行えるため、輪郭部2aは高精度な直線形状とな
る。次に、輪郭部が直線形状の膜厚補正部材を用いて、
本発明により所望の膜厚分布を得る方法を以下に具体的
に説明する。
FIG. 5 shows an example of processing the linear contour 2a. When the contour 2a is planarly polished with the film thickness correcting member 2 sandwiched between the auxiliary members 9, the contour 2a is polished linearly. Since planar polishing can easily perform high-precision processing as compared with processing of a curved surface or the like, the contour portion 2a has a high-precision linear shape. Next, using a film thickness correction member having a linear contour,
A method for obtaining a desired film thickness distribution according to the present invention will be specifically described below.

【0056】図6に示すように、半径Rの基板4面上に
おいて、半径Rの円を半径方向にN等分した複数の同心
円状の輪帯を考え、円の中心から順に1番目、2番目・
・・N番目の輪帯とする。基板4に近接して膜厚補正部
材2を、その輪郭部2aの基板上への投影ラインが基板
4の回転軸位置から長さRの位置(外周)まで等間隔に
Nステップ移動し、各ステップの滞在時間をtj (jは
N以下の整数)とする。
As shown in FIG. 6, on the surface of the substrate 4 having a radius R, a plurality of concentric annular zones in which a circle having a radius R is equally divided into N in the radial direction are considered. Th
・ ・ It is the Nth ring zone. The projection line of the contour portion 2a on the substrate is moved N steps at equal intervals from the rotation axis position of the substrate 4 to the position of the length R (outer circumference) in proximity to the substrate 4, Let the stay time of the step be t j (j is an integer equal to or less than N).

【0057】i番目の輪帯(iはN以下の整数)の外側
の半径はi/N×Rなので、輪帯の中央部の半径をi番
目の輪帯の半径ri とすると、ri =(i−1/2)R
/N となる。膜厚補正部材2がjステップ目にあると
き(j番目の輪帯の内周に部材2の輪郭部が接すると
き)の部材2の輪郭部2aの位置lj を、 lj =(j−1)R/N とすると、このときi番目の輪帯において、膜が付着す
る領域の円弧の張る角θi,j (以下開口角と称する)は θi,j =2cos-1(lj /ri ) =2cos-1{(j−1)/(i−1/2)} (i≧
j) θi,j =0 (i<j) となる。
Since the outer radius of the i-th annular zone (i is an integer equal to or less than N) is i / N × R, if the radius of the center of the annular zone is the radius r i of the i-th annular zone, then r i = (I-1 / 2) R
/ N. When the film thickness correcting member 2 is at the j-th step (when the contour of the member 2 is in contact with the inner periphery of the j-th annular zone), the position l j of the contour 2a of the member 2 is represented by l j = (j− 1) Assuming that R / N, at this time, in the i-th annular zone, the angle θ i, j (hereinafter referred to as the opening angle) of the arc of the region where the film is attached is θ i, j = 2 cos −1 (l j / R i ) = 2 cos -1 {(j-1) / (i-1 / 2)} (i ≧
j) θ i, j = 0 (i <j).

【0058】成膜速度をkとすると、i番目の輪帯に堆
積する膜の厚さyo i,j は yo i,j =0 (i<j) yo i,j =k(θi,j )tj /2π =(k/π)cos-1{(j−1)/(i−1/2)}
(i≧j) となる。
[0058] When the deposition rate and k, the thickness of the film deposited on the i-th ring-shaped zone y o i, j is y o i, j = 0 ( i <j) y o i, j = k (θ i, j) t j / 2π = (k / π) cos -1 {(j-1) / (i-1/2)}
(I ≧ j).

【0059】iがjより小さい場合は、輪帯は全てが膜
厚補正部材2で遮蔽されるため開口角は0となり、膜は
堆積されない。従って、部材2を基板の中心からN番目
の輪帯位置まで動かした際の、i番目の輪帯に堆積する
膜の厚さyi となる。ここで、二つのベクトルYとTをY=yi =
(y1 , y2 , ・・・yN ) 、T=ti = (t1 ,
2 , ・・・,tN ) とし、行列Aを A=(ai,j ) ai,j = 0 (i<j) ai,j = (k/π)cos-1{(j−1)/(i−1/
2)}(i≧j) とすると、Y=AT となる。
When i is smaller than j, the whole annular zone is shielded by the film thickness correcting member 2, so that the aperture angle becomes 0 and no film is deposited. Accordingly, when the member 2 is moved from the center of the substrate to the position of the N-th annular zone, the thickness y i of the film deposited on the i-th annular zone is Becomes Here, two vectors Y and T are defined as Y = y i =
(Y 1 , y 2 ,... Y N ), T = t i = (t 1 ,
t 2 ,..., t N ), and the matrix A is A = (a i, j ) a i, j = 0 (i <j) a i, j = (k / π) cos −1 {(j -1) / (i-1 /
2) If} (i ≧ j), then Y = AT.

【0060】この式は、膜厚補正部材の動かし方と薄膜
の膜厚分布の関係を与える。従って、行列Aの逆行列を
-1とすると、 T=A-1Y を満たすような膜厚補
正部材の滞在時間Tで部材を移動させると、所望の膜厚
分布Yが得られ、その結果所望の形状の反射鏡および基
板を作製することができる。そして、これらの式から所
望の膜厚分布Yを得るための膜厚補正部材の走査速度を
計算することができる。
This equation gives the relationship between the way of moving the film thickness correction member and the film thickness distribution of the thin film. Therefore, assuming that the inverse matrix of the matrix A is A −1 , when the member is moved with the residence time T of the film thickness correction member satisfying T = A −1 Y, a desired film thickness distribution Y is obtained. As a result, a reflector and a substrate having desired shapes can be manufactured. Then, the scanning speed of the film thickness correction member for obtaining the desired film thickness distribution Y can be calculated from these equations.

【0061】以上、膜厚補正部材を基板の中心から外側
へ走査した場合について説明したが、この場合膜厚は基
板の中心から外側に向かって単調増加する。一方、膜厚
補正部材を基板の外側から中心に向かって走査すると、
膜厚は基板の中心から外側に向かって単調減少する。以
下に、この場合の膜厚補正部材の動かし方について説明
する。
The case where the film thickness correction member is scanned from the center of the substrate to the outside has been described above. In this case, the film thickness monotonically increases from the center of the substrate to the outside. On the other hand, when the thickness correction member is scanned from the outside of the substrate toward the center,
The film thickness monotonically decreases from the center of the substrate toward the outside. Hereinafter, how to move the film thickness correction member in this case will be described.

【0062】図7に示すように、半径Rの基板4面上に
おいて、半径Rの円を半径方向にN等分した複数の同心
円状の輪帯を考え、円の中心から順に1番目、2番目・
・・N番目の輪帯とする。基板4に近接して膜厚補正部
材2を、輪郭部2aの基板上への投影ラインが基板4の
外周から回転軸の位置まで、等間隔でNステップ移動
し、各ステップの滞在時間をtj (jはN以下の整数)
とする。
As shown in FIG. 7, on the surface of the substrate 4 having a radius R, a plurality of concentric annular zones in which a circle having a radius R is equally divided into N in the radial direction are considered. Th
・ ・ It is the Nth ring zone. The film thickness correction member 2 is moved close to the substrate 4 by N steps at regular intervals from the outer periphery of the substrate 4 to the position of the rotation axis by moving the projection line of the contour portion 2a onto the substrate, and the stay time of each step is t. j (j is an integer less than or equal to N)
And

【0063】i番目の輪帯(iはN以下の整数)の外側
の半径はi/N×Rなので、輪帯の中央部の半径をi番
目の輪帯の半径ri とすると、ri =(i−1/2)R
/N となる。膜厚補正部材2がjステップ目にあると
き(N−j番目の輪帯の内周に部材2の輪郭部が接する
とき)の部材2の輪郭部2aの位置lj を、 lj =(N−j)R/N とすると、このときi番目の輪帯において、膜が付着す
る領域の円弧の張る角θi,j は θi,j =2cos-1(−lj /ri ) =2cos-1{(j−N)/(i−1/2)} (i>
N−j) θi,j =2π (i≦N−j) となる。
Since the outer radius of the i-th annular zone (i is an integer equal to or less than N) is i / N × R, if the radius of the center of the annular zone is the radius r i of the i-th annular zone, then r i = (I-1 / 2) R
/ N. When the film thickness correction member 2 is at the j-th step (when the contour of the member 2 is in contact with the inner periphery of the (N-j) th annular zone), the position l j of the contour 2a of the member 2 is represented by l j = ( N−j) R / N, then, in the i-th annular zone, the angle θ i, j of the arc of the region where the film is attached is θ i, j = 2 cos −1 (−l j / r i ) = 2 cos -1 {(j-N) / (i-1 / 2)} (i>
N−j) θ i, j = 2π (i ≦ N−j).

【0064】成膜速度をkとすると、i番目の輪帯に堆
積する膜の厚さyo i,j は yo i,j =ktj (i≦N−j) yo i,j =k(θi,j )tj /2π =(k/π)cos-1{(j−N)/(i−1/2)}
(i>N−j) となる。
Assuming that the deposition rate is k, the thickness y oi , j of the film deposited on the i-th annular zone is yo i, j = kt j (i ≦ N−j) yo i, j = k (θ i, j ) t j / 2π = (k / π) cos -1 {(j−N) / (i−1 / 2)}
(I> N−j).

【0065】iがN−j以下の時は、i番目の輪帯は膜
厚補正部材2に遮蔽されないため開口角は2πとなり成
膜速度はkとなる。従って、部材2を基板の中心からN
番目の輪帯位置まで動かした際の、i番目の輪帯に堆積
する膜の厚さyi となる。ここで、二つのベクトルYとTをY=yi =
(y1 , y2 , ・・・yN ) 、T=ti = (t1 ,
2 , ・・・,tN ) とし、行列Bを B=(bi,j ) bi,j = k (i≦N−j) bi,j = ( k /π)cos-1{(j−N)/(i−1/
2)}(i>N−j) とすると、Y=BT となる。
When i is equal to or smaller than Nj, the i-th orbicular zone is not shielded by the film thickness correcting member 2, so that the aperture angle becomes 2π and the film forming speed becomes k. Therefore, the member 2 is moved from the center of the substrate by N
The thickness y i of the film deposited on the i-th annular zone when moved to the position of the i-th annular zone is Becomes Here, two vectors Y and T are defined as Y = y i =
(Y 1 , y 2 ,... Y N ), T = t i = (t 1 ,
t 2 ,..., t N ), and the matrix B is B = (b i, j ) b i, j = k (i ≦ N−j) b i, j = (k / π) cos −1 } (J−N) / (i−1 /
2) If} (i> N−j), Y = BT.

【0066】この式は、膜厚補正部材の動かし方と薄膜
の膜厚分布の関係を与える。従って、行列Bの逆行列を
-1とすると、 T=B-1Yを満たすような部材の滞在
時間Tで部材を動かすと、所望の膜厚分布Yが得られ、
その結果所望の形状の反射鏡および基板を作製すること
ができる。そして、これらの式から所望の膜厚分布Yを
得るための膜厚補正部材の動かし方を計算することがで
きる。
This equation gives the relation between the way of moving the film thickness correction member and the film thickness distribution of the thin film. Therefore, assuming that the inverse matrix of the matrix B is B −1 , when the member is moved at the residence time T of the member that satisfies T = B −1 Y, a desired film thickness distribution Y is obtained,
As a result, a reflector and a substrate having desired shapes can be manufactured. Then, it is possible to calculate how to move the film thickness correction member to obtain a desired film thickness distribution Y from these equations.

【0067】これまで述べたように、本発明によれば、
膜厚補正部材を基板の中心から外側へ動かせば膜厚は基
板の中心から外側に向かって単調増加し、部材を基板の
外側から中心に向かって動かすと、膜厚は基板の中心か
ら外側に向かって単調減少する。さらに、これらの動き
を組み合わせることによって任意の膜厚分布を実現する
こともできる。
As described above, according to the present invention,
When the thickness correction member is moved from the center of the substrate to the outside, the film thickness monotonically increases from the center of the substrate to the outside.When the member is moved from the outside of the substrate to the center, the film thickness moves from the center of the substrate to the outside. It decreases monotonically toward. Furthermore, an arbitrary film thickness distribution can be realized by combining these movements.

【0068】膜厚補正部材をステップ状に移動させる
と、各輪帯における開口角は例えば図8の曲線1に示す
ようにステップ状に変化する。そこで、開口角を図8の
曲線2に概等しく変化させるためには、膜厚補正部材を
ステップ状ではなく連続的に走査させればよい。例え
ば、j番目のステップ位置に部材を滞在させる代わり
に、j番目のステップ位置からj+1番目のステップ位
置へ移動時間が滞在時間と等しくなるような速度で定速
移動させてもよいし、開口角の変化が曲線2を描くよう
に、移動速度を連続的に変化させて膜厚補正部材を走査
してもよい。
When the film thickness correcting member is moved stepwise, the opening angle in each ring zone changes stepwise, for example, as shown by a curve 1 in FIG. Therefore, in order to change the opening angle approximately equal to the curve 2 in FIG. 8, the thickness correction member may be scanned continuously instead of stepwise. For example, instead of the member staying at the j-th step position, the member may be moved at a constant speed from the j-th step position to the (j + 1) -th step position at a speed such that the moving time is equal to the staying time, The thickness correction member may be scanned while the moving speed is continuously changed so that the change of the curve describes the curve 2.

【0069】以下、本発明を実施例によりさらに詳細に
説明するが、本発明はこれらの例に限定されるものでは
ない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0070】[0070]

【実施例1】図1は本実施例の真空薄膜形成装置の一部
構成を示す概略構成図である。図1の真空薄膜形成装置
は、少なくとも、基板4の回転・保持機構5、薄膜の材
料を蒸発させる蒸発源1、該蒸発源から発して前記基板
4に向かう蒸発粒子の一部を遮蔽する膜厚補正部材2、
及び該膜厚補正部材2の位置を制御する駆動機構3を有
する。
Embodiment 1 FIG. 1 is a schematic configuration diagram showing a partial configuration of a vacuum thin film forming apparatus of the present embodiment. The vacuum thin film forming apparatus shown in FIG. 1 includes at least a rotation / holding mechanism 5 for a substrate 4, an evaporation source 1 for evaporating a material of the thin film, and a film for shielding a part of evaporated particles emitted from the evaporation source toward the substrate 4. Thickness correction member 2,
And a drive mechanism 3 for controlling the position of the film thickness correction member 2.

【0071】蒸発源には高精度な膜厚制御(成膜速度制
御)が可能なイオンビームスパッタ源を用いた。基板4
は表面形状が球面であり、研磨加工で作製した直径30
mmの石英基板を用いた。膜厚補正部材2は蒸発源1と基
板4の間に基板4に近接して配置され、また駆動機構3
は、所望の膜厚分布と相関がある速度分布を持たせて、
前記膜厚補正部材を所定方向に直進移動させる機能を有
する。
As the evaporation source, an ion beam sputtering source capable of controlling the film thickness with a high degree of accuracy (film formation speed control) was used. Substrate 4
Has a spherical surface and a diameter of 30 manufactured by polishing.
A mm quartz substrate was used. The film thickness compensating member 2 is disposed between the evaporation source 1 and the substrate 4 in close proximity to the substrate 4, and a driving mechanism 3
Has a velocity distribution that is correlated with the desired film thickness distribution,
It has a function of moving the film thickness correcting member straight in a predetermined direction.

【0072】膜厚補正部材2は、厚さ1mm、50×10
0mm(長方形)のステンレス製の平板であり、その端部
(輪郭部)2aは直線形状となっている。膜厚補正部材
2の位置を制御する駆動機構3はスキャンステージであ
り、部材2を所望の一方向に走査することができる。本
装置を用いて基板4上にSiO2 の薄膜を形成した。成
膜の際は、まず膜厚補正部材2の端部2aの基板上への
投影ラインが基板4の中心付近となるように配置し、そ
の後、図4に示すように、基板4を自転させながら端部
2aが基板4の周辺部に近づく方向に走査した。
The film thickness correction member 2 has a thickness of 1 mm, 50 × 10
It is a stainless steel flat plate of 0 mm (rectangle), and its end (contour) 2a has a linear shape. The drive mechanism 3 that controls the position of the film thickness correction member 2 is a scan stage, and can scan the member 2 in a desired one direction. Using this apparatus, a thin film of SiO 2 was formed on the substrate 4. At the time of film formation, first, the projection line on the substrate at the end 2a of the film thickness correction member 2 is arranged near the center of the substrate 4, and then the substrate 4 is rotated as shown in FIG. The scanning was performed in a direction in which the end 2a approached the peripheral portion of the substrate 4 while the edge 2a approached.

【0073】膜厚補正部材2の走査速度を制御すること
により膜厚分布を制御し、所望の膜厚分布を得た。ま
た、成膜の前に表面形状誤差を所望の値以下まで小さく
できるような膜厚分布と、そのような膜厚分布を得るた
めの部材2の走査速度をあらかじめ計算しておいた。こ
の様にして加工した基板の表面形状を干渉計で測定した
ところ、所望の非球面形状となっており、その表面形状
誤差は0.2 nmrms以下となった。
The desired film thickness distribution was obtained by controlling the scanning speed of the film thickness correcting member 2 to control the film thickness distribution. Prior to film formation, a film thickness distribution capable of reducing the surface shape error to a desired value or less and a scanning speed of the member 2 for obtaining such a film thickness distribution have been calculated in advance. When the surface shape of the substrate processed in this manner was measured by an interferometer, the substrate had a desired aspherical shape, and the surface shape error was 0.2 nmrms or less.

【0074】また、この基板に多層膜を形成して多層膜
反射鏡とし、同様に作製した多層膜反射鏡4枚で結像光
学系を構成したところ、その波面収差は1nmrms以
下であった。さらに、この光学系を用いてX線投影露光
装置を作製し、レジストを露光したところ、パターンサ
イズ0.1 μmのレジストパターンが得られた。
Further, when a multilayer film was formed on this substrate to form a multilayer film reflector, and an imaging optical system was constructed with four similarly prepared multilayer film mirrors, the wavefront aberration was 1 nmrms or less. Further, an X-ray projection exposure apparatus was manufactured using this optical system, and the resist was exposed. As a result, a resist pattern having a pattern size of 0.1 μm was obtained.

【0075】一方、従来の真空薄膜形成装置で作製した
反射鏡で軟X線投影露光装置を作製し、レジストを露光
したところ、パターンサイズ0.1 μm のレジストパター
ンを得ることはできなかった。
On the other hand, when a soft X-ray projection exposure apparatus was manufactured using a reflecting mirror manufactured by a conventional vacuum thin film forming apparatus and the resist was exposed, a resist pattern having a pattern size of 0.1 μm could not be obtained.

【0076】[0076]

【実施例2】図2は本実施例の真空薄膜形成装置の一部
構成を示す概略構成図である。図2の真空薄膜形成装置
は、少なくとも、基板4の回転・保持機構5、薄膜の材
料を蒸発させる蒸発源1、該蒸発源から発して前記基板
4に向かう蒸発粒子の一部を遮蔽する膜厚補正部材2、
及び基板4の位置を制御する駆動機構7を有する。
Embodiment 2 FIG. 2 is a schematic configuration diagram showing a partial configuration of a vacuum thin film forming apparatus of the present embodiment. The vacuum thin film forming apparatus shown in FIG. 2 includes at least a rotating / holding mechanism 5 for the substrate 4, an evaporation source 1 for evaporating the material of the thin film, and a film for shielding a part of the evaporated particles emitted from the evaporation source toward the substrate 4. Thickness correction member 2,
And a drive mechanism 7 for controlling the position of the substrate 4.

【0077】蒸発源には高精度な膜厚制御(成膜速度制
御)が可能なイオンビームスパッタ源を用いた。基板4
は表面形状が球面であり、研磨加工で作製した直径30
mmの石英基板を用いた。膜厚補正部材2は蒸発源1と基
板4の間に基板4に近接して配置され、また駆動機構7
は、所望の膜厚分布と相関がある速度分布を持たせて、
前記基板の回転・保持機構5を所定方向に直進移動させ
る機能を有する。
As the evaporation source, an ion beam sputtering source capable of controlling the film thickness with a high degree of accuracy (film forming speed control) was used. Substrate 4
Has a spherical surface and a diameter of 30 manufactured by polishing.
A mm quartz substrate was used. The film thickness compensating member 2 is disposed between the evaporation source 1 and the substrate 4 in close proximity to the substrate 4, and a driving mechanism 7
Has a velocity distribution that is correlated with the desired film thickness distribution,
It has a function of moving the substrate rotation / holding mechanism 5 straight in a predetermined direction.

【0078】膜厚補正部材2は、厚さ1mm、50×10
0mm(長方形)のステンレス製の平板であり、その端部
(輪郭部)2aは直線形状となっている。基板4の位置
を制御する駆動機構7はスキャンステージであり、基板
4を所望の一方向に走査することができる。本装置を用
いて基板4上にSiO2 の薄膜を形成した。成膜の際
は、まず基板4を遮蔽部材の端部2aの基板上への投影
ラインが基板4の中心付近となるように配置し、その
後、図4に示すように基板4を自転させながら端部2a
が基板4の周辺部に近づくような方向に走査した。
The film thickness correcting member 2 has a thickness of 1 mm, 50 × 10
It is a stainless steel flat plate of 0 mm (rectangle), and its end (contour) 2a has a linear shape. The drive mechanism 7 for controlling the position of the substrate 4 is a scan stage, and can scan the substrate 4 in one desired direction. Using this apparatus, a thin film of SiO 2 was formed on the substrate 4. At the time of film formation, the substrate 4 is first arranged so that the projection line of the end 2a of the shielding member onto the substrate is near the center of the substrate 4, and then, while rotating the substrate 4 as shown in FIG. End 2a
Scans in such a direction that it approaches the periphery of the substrate 4.

【0079】基板4の走査速度を制御することにより膜
厚分布を制御し、所望の膜厚分布を得た。また、成膜の
前に表面形状誤差を所望の値以下まで小さくできるよう
な膜厚分布と、そのような膜厚分布を得るための基板4
の走査速度をあらかじめ計算しておいた。この様にして
加工した基板の表面形状を干渉計で測定したところ、所
望の非球面形状となっており、その表面形状誤差は0.2
nmrms以下となった。
The desired film thickness distribution was obtained by controlling the scanning speed of the substrate 4 to control the film thickness distribution. Further, a film thickness distribution capable of reducing a surface shape error to a desired value or less before film formation, and a substrate 4 for obtaining such a film thickness distribution.
Was calculated in advance. When the surface shape of the substrate processed in this way was measured with an interferometer, the substrate had a desired aspherical shape, and the surface shape error was 0.2%.
nmrms or less.

【0080】また、この基板に多層膜を形成して多層膜
反射鏡とし、同様に作製した多層膜反射鏡4枚で結像光
学系を構成したところ、その波面収差は1nmrms以
下であった。さらに、この光学系を用いてX線投影露光
装置を作製し、レジストを露光したところ、パターンサ
イズ0.1 μmのレジストパターンが得られた。
Further, when a multilayer film was formed on this substrate to form a multilayer film reflector, and an imaging optical system was constituted by four similarly manufactured multilayer film mirrors, the wavefront aberration was 1 nmrms or less. Further, an X-ray projection exposure apparatus was manufactured using this optical system, and the resist was exposed. As a result, a resist pattern having a pattern size of 0.1 μm was obtained.

【0081】一方、従来の真空薄膜形成装置で作製した
反射鏡で軟X線投影露光装置を作製し、レジストを露光
したところ、パターンサイズ0.1 μm のレジストパター
ンを得ることはできなかった。以上の実施例では、非常
に高精度な形状が要求される多層膜反射鏡用の基板が成
膜対象であったが、この他の基板にも適用可能であり、
例えば、形状誤差を有するX線用の全反射鏡やエキシマ
レーザーステッパー用の反射鏡を基板として用い、同様
に所望形状の反射面を形成することができることは言う
までもない。
On the other hand, when a soft X-ray projection exposure apparatus was manufactured using a reflecting mirror manufactured by a conventional vacuum thin film forming apparatus and the resist was exposed, a resist pattern having a pattern size of 0.1 μm could not be obtained. In the above embodiment, the substrate for the multilayer reflector that requires a very high-precision shape is a target for film formation. However, the substrate can be applied to other substrates,
For example, it goes without saying that a reflection surface having a desired shape can be similarly formed by using a total reflection mirror for X-rays having a shape error or a reflection mirror for an excimer laser stepper as a substrate.

【0082】[0082]

【発明の効果】以上説明したように、本発明の真空薄膜
形成装置によれば、所望の膜厚分布を有する薄膜を形成
することができる。また、本発明にかかる真空薄膜形成
装置を用いて、所望の反射面形状に近似した反射面形状
を有する基板に、前記所望の反射面形状と前記基板の反
射面形状の形状差分布に相当する膜厚分布を有する薄膜
層を設けると、高精度な反射面形状を有する反射鏡を製
造することができる。
As described above, according to the vacuum thin film forming apparatus of the present invention, a thin film having a desired film thickness distribution can be formed. In addition, using the vacuum thin film forming apparatus according to the present invention, a substrate having a reflection surface shape similar to a desired reflection surface shape corresponds to a shape difference distribution between the desired reflection surface shape and the reflection surface shape of the substrate. When a thin film layer having a film thickness distribution is provided, a reflecting mirror having a highly accurate reflecting surface shape can be manufactured.

【0083】また、本発明の反射鏡の製造方法によれ
ば、高精度な反射面形状を有する反射鏡(例えば、多層
膜X線反射鏡を製造する際のX線反射多層膜を形成する
基板となる反射鏡)及び該多層膜X線反射鏡を製造でき
る。また、本発明により製造した多層膜X線反射鏡を具
備したX線投影露光装置は高い解像力を有し、その結
果、高いスループットで、マスクのパターンを忠実に基
板上に転写することができる。
Further, according to the method for manufacturing a reflecting mirror of the present invention, a reflecting mirror having a highly accurate reflecting surface shape (for example, a substrate for forming an X-ray reflecting multilayer film when manufacturing a multilayer X-ray reflecting mirror) And a multilayer X-ray reflecting mirror can be manufactured. Further, the X-ray projection exposure apparatus provided with the multilayer X-ray reflecting mirror manufactured according to the present invention has a high resolution, and as a result, it is possible to faithfully transfer the mask pattern onto the substrate with high throughput.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、実施例1の真空薄膜形成装置の一部構成を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a partial configuration of a vacuum thin film forming apparatus according to a first embodiment.

【図2】は、実施例2の真空薄膜形成装置の一部構成を
示す概略構成図である。
FIG. 2 is a schematic configuration diagram illustrating a partial configuration of a vacuum thin film forming apparatus according to a second embodiment.

【図3】は、本発明にかかる膜厚補正部材の一例を示す
平面図である。
FIG. 3 is a plan view showing an example of a film thickness correction member according to the present invention.

【図4】は、本発明にかかる成膜の一例を示す概念図で
あり、図4(a)(b)(c)は、膜厚補正部材または
基板を走査することにより基板の一端から他端へ所望の
膜厚分布を有する膜が形成される様子を示している。
4A and 4B are conceptual diagrams showing an example of film formation according to the present invention. FIGS. 4A, 4B, and 4C show another example in which a film thickness correction member or a substrate is scanned to scan another portion from one end of the substrate. This shows how a film having a desired film thickness distribution is formed at the end.

【図5】は、本発明にかかる膜厚補正部材の端部(輪郭
部分)を直線形状に加工する加工例を示す斜視図であ
る。
FIG. 5 is a perspective view showing a processing example of processing an end portion (contour portion) of the film thickness correcting member according to the present invention into a linear shape.

【図6】は、膜厚補正部材を基板の回転中心から外周へ
移動させたときの基板と膜厚補正部材の位置関係を示す
説明図である。
FIG. 6 is an explanatory diagram showing a positional relationship between the substrate and the film thickness correction member when the film thickness correction member is moved from the rotation center of the substrate to the outer periphery.

【図7】は、膜厚補正部材を基板の外周から回転中心へ
移動させたときの基板と膜厚補正部材の位置関係を示す
説明図である。
FIG. 7 is an explanatory diagram showing a positional relationship between the substrate and the film thickness correction member when the film thickness correction member is moved from the outer periphery of the substrate to the center of rotation.

【図8】は、各輪帯における開口角の変化を示すデータ
図である。
FIG. 8 is a data diagram showing a change of an opening angle in each orbicular zone.

【図9】は、従来の反射鏡および基板の作製に用いられ
る真空薄膜形成装置の一部構成を示す概略構成図であ
る。
FIG. 9 is a schematic configuration diagram showing a partial configuration of a conventional vacuum thin film forming apparatus used for manufacturing a reflecting mirror and a substrate.

【図10】は、従来の膜厚補正部材の一例を示す平面図
である。
FIG. 10 is a plan view showing an example of a conventional film thickness correction member.

【図11】は、従来の真空薄膜形成装置を用いて作製し
た反射鏡(基板)の断面図である。
FIG. 11 is a sectional view of a reflecting mirror (substrate) manufactured using a conventional vacuum thin film forming apparatus.

【主要部分の符号の説明】[Description of Signs of Main Parts]

1・・・蒸発源 2・・・膜厚補正部材 2a・・・膜厚補正部材の端部(輪郭部分) 3・・・膜厚補正部材の駆動機構 4・・・基板 5・・・基板の回転・保持機構 6a、6b・・・蒸発粒子 7・・・基板の駆動機構 8・・・薄膜 9・・・補助部材 11・・・蒸発源 12・・・膜厚補正部材 12a・・・開口部の端部(エッジ) 13・・・基板の回転機構 14・・・基板 15・・・保持機構 16a、16b・・・蒸発粒子 17・・・薄膜 以上 DESCRIPTION OF SYMBOLS 1 ... Evaporation source 2 ... Film thickness correction member 2a ... Edge part (outline part) of film thickness correction member 3 ... Drive mechanism of film thickness correction member 4 ... Substrate 5 ... Substrate Rotation / holding mechanism 6a, 6b Evaporated particles 7 Substrate drive mechanism 8 Thin film 9 Auxiliary member 11 Evaporation source 12 Film thickness correction member 12a End (edge) of opening 13: substrate rotating mechanism 14: substrate 15: holding mechanism 16a, 16b: evaporated particles 17: thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 H01L 21/30 531Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01L 21/027 H01L 21/30 531Z

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に配置された基板上に薄膜を
形成する真空薄膜形成装置であり、少なくとも、前記基
板の回転・保持機構、前記薄膜の材料を蒸発させる蒸発
源、及び該蒸発源から発して前記基板に向かう蒸発粒子
の一部を遮蔽する膜厚補正部材を備えた真空薄膜形成装
置において、 前記膜厚補正部材に所定形状の輪郭部分を設け、かつ、
前記膜厚補正部材を所望の膜厚分布と相関がある速度分
布を持たせて所定方向に直進移動させる機能を有する駆
動機構を設けることにより、前記所望の膜厚分布を有す
る薄膜を形成できるようにしたことを特徴とする真空薄
膜形成装置。
1. A vacuum thin film forming apparatus for forming a thin film on a substrate disposed in a vacuum vessel, comprising at least a mechanism for rotating and holding the substrate, an evaporation source for evaporating a material of the thin film, and the evaporation source In a vacuum thin film forming apparatus provided with a thickness correction member that shields a part of the evaporating particles emitted from and toward the substrate, a contour portion of a predetermined shape is provided on the thickness correction member, and
A thin film having the desired film thickness distribution can be formed by providing a drive mechanism having a function of causing the film thickness correction member to move straight in a predetermined direction with a speed distribution correlated with the desired film thickness distribution. A vacuum thin film forming apparatus characterized in that:
【請求項2】 真空容器内に配置された基板上に薄膜を
形成する真空薄膜形成装置であり、少なくとも、前記基
板の回転・保持機構、前記薄膜の材料を蒸発させる蒸発
源、及び該蒸発源から発して前記基板に向かう蒸発粒子
の一部を遮蔽する膜厚補正部材を備えた真空薄膜形成装
置において、 前記膜厚補正部材に所定形状の輪郭部分を設け、かつ、
前記回転・保持機構を所望の膜厚分布と相関がある速度
分布を持たせて所定方向に直進移動させる機能を有する
駆動機構を設けることにより、前記所望の膜厚分布を有
する薄膜を形成できるようにしたことを特徴とする真空
薄膜形成装置。
2. A vacuum thin film forming apparatus for forming a thin film on a substrate disposed in a vacuum container, comprising at least a mechanism for rotating and holding the substrate, an evaporation source for evaporating a material of the thin film, and the evaporation source In a vacuum thin film forming apparatus provided with a thickness correction member that shields a part of the evaporating particles emitted from and toward the substrate, a contour portion of a predetermined shape is provided on the thickness correction member, and
A thin film having the desired film thickness distribution can be formed by providing a driving mechanism having a function of causing the rotation / holding mechanism to have a speed distribution correlated with a desired film thickness distribution and to move in a predetermined direction. A vacuum thin film forming apparatus characterized in that:
【請求項3】 前記膜厚補正部材は、前記回転・保持機
構に近接して配置されていることを特徴とする請求項1
または2記載の真空薄膜形成装置。
3. The apparatus according to claim 1, wherein the film thickness correction member is disposed close to the rotation / holding mechanism.
Or the vacuum thin film forming apparatus according to 2.
【請求項4】 前記膜厚補正部材は平板状の部材であ
り、かつ、前記輪郭部分が直線形状であることを特徴と
する請求項1〜3記載の真空薄膜形成装置。
4. The vacuum thin film forming apparatus according to claim 1, wherein said film thickness correction member is a plate-shaped member, and said contour portion is linear.
【請求項5】 少なくとも、 所望の反射面形状に近似した反射面形状を有する基板を
用意する工程と、 前記基板を回転・保持機構に設置する工程と、 前記所望の反射面形状と前記基板の反射面形状の形状差
分布を求める工程と、 真空薄膜形成法により前記基板の反射面に膜厚分布を有
する薄膜層を設けて、前記所望の反射面形状を形成する
工程であり、 前記蒸発源から発して前記基板に向かう蒸発粒子の一部
を遮蔽する部材であり、所定形状の輪郭部分を有する膜
厚補正部材を設けて、該膜厚補正部材を前記薄膜層の成
膜中に、前記形状差分布と相関がある速度分布を持たせ
て所定方向に直進移動させることにより、回転している
前記基板の反射面に前記形状差分布に相当する膜厚分布
を有する薄膜層を形成して、所望形状の反射面を有する
反射鏡を作製する工程と、を備えた反射鏡の製造方法。
5. A step of preparing at least a substrate having a reflection surface shape close to a desired reflection surface shape; a step of installing the substrate on a rotation / holding mechanism; A step of obtaining a shape difference distribution of the reflection surface shape, and a step of forming a desired reflection surface shape by providing a thin film layer having a film thickness distribution on the reflection surface of the substrate by a vacuum thin film forming method. A member that shields a part of the evaporating particles emitted from the substrate toward the substrate, and a film thickness correction member having a contour portion of a predetermined shape is provided, and the film thickness correction member is formed during the formation of the thin film layer. By forming a thin film layer having a film thickness distribution corresponding to the shape difference distribution on the reflecting surface of the rotating substrate by moving straight in a predetermined direction with a speed distribution having a correlation with the shape difference distribution. Has a reflective surface of desired shape Method for manufacturing a reflecting mirror and a step of fabricating the reflector.
【請求項6】 少なくとも、 所望の反射面形状に近似した反射面形状を有する基板を
用意する工程と、 前記基板を回転・保持機構に設置する工程と、 前記所望の反射面形状と前記基板の反射面形状の形状差
分布を求める工程と、 真空薄膜形成法により前記基板の反射面に膜厚分布を有
する薄膜層を設けて、前記所望の反射面形状を形成する
工程であり、 前記蒸発源から発して前記基板に向かう蒸発粒子の一部
を遮蔽する部材であり所定形状の輪郭部分を有する膜厚
補正部材を設けて、かつ、該基板を前記薄膜層の成膜中
に、前記形状差分布と相関がある速度分布を持たせて所
定方向に直進移動させることにより、回転している前記
基板の反射面に前記形状差分布に相当する膜厚分布を有
する薄膜層を形成して、所望形状の反射面を有する反射
鏡を作製する工程と、を備えた反射鏡の製造方法。
6. A step of preparing at least a substrate having a reflection surface shape similar to a desired reflection surface shape; a step of installing the substrate on a rotation / holding mechanism; A step of obtaining a shape difference distribution of the reflection surface shape, and a step of forming a desired reflection surface shape by providing a thin film layer having a film thickness distribution on the reflection surface of the substrate by a vacuum thin film forming method. A film thickness correction member having a contoured portion of a predetermined shape, which is a member for shielding a part of the evaporating particles emitted from the substrate toward the substrate, and wherein the substrate has a shape difference during the film formation of the thin film layer. By moving straight ahead in a predetermined direction with a velocity distribution having a correlation with the distribution, a thin film layer having a film thickness distribution corresponding to the shape difference distribution is formed on the reflecting surface of the rotating substrate. Anti-reflection with reflective surface Method for producing a reflector comprising the steps of: preparing a mirror, a.
【請求項7】 前記膜厚補正部材は、前記基板に近接し
て配置されていることを特徴とする請求項5または6記
載の製造方法。
7. The manufacturing method according to claim 5, wherein the film thickness correction member is arranged close to the substrate.
【請求項8】 前記膜厚補正部材は平板状の部材であ
り、かつ、前記輪郭部分が直線形状であることを特徴と
する請求項5〜7記載の製造方法。
8. The method according to claim 5, wherein said film thickness correction member is a plate-shaped member, and said contour portion is linear.
【請求項9】 i、j、Nを整数とし、 前記蒸発源から見た前記膜厚補正部材の前記輪郭部分の
前記基板上への投影ラインが前記基板の回転軸位置から
長さRの位置まで移動するように該膜厚補正部材を走査
する際の該移動距離RをN等分した各点における該膜厚
補正部材の滞在時間をベクトルT=(ti ) =(t1 ,
2 , ・・・,tN ) とし、前記基板の半径がRである
場合に、該基板表面上において前記回転軸を中心とする
同心円であり、R/Nの整数倍の半径をする同心円の複
数の輪帯上における前記薄膜層の膜厚をベクトルY=
(yi ) =(y1 , y2 , ・・・、yN ) とし、該薄膜
層の成膜速度をkとし、行列Aを A=(ai,j ) ai,j = 0 (i<j) ai,j = ( k /π)cos-1{(j−1)/(i−1/
2)}(i≧j) とし、行列Aの逆行列をA-1としたときに前記滞在時間
TがT=A-1Y を満たすように前記膜厚補正部材を移
動させることを特徴とする請求項8記載の製造方法。
9. A projection line on the substrate of the contour portion of the film thickness correction member viewed from the evaporation source, where i, j, and N are integers, and a position of a length R from a rotation axis position of the substrate. The travel time of the film thickness correction member at each point obtained by dividing the movement distance R when scanning the film thickness correction member so as to move to N is represented by a vector T = (t i ) = (t 1 ,
t 2 ,..., t N ), and when the radius of the substrate is R, it is a concentric circle centered on the rotation axis on the surface of the substrate and has a radius equal to an integral multiple of R / N. The film thickness of the thin film layer on the plurality of orbicular zones is represented by a vector Y =
(Y i ) = (y 1 , y 2 ,..., Y N ), the deposition rate of the thin film layer is k, and the matrix A is A = (a i, j ) a i, j = 0 ( i <j) a i, j = (k / π) cos -1 {(j-1) / (i-1 /
2) When 膜厚 (i ≧ j), and the inverse matrix of the matrix A is A −1 , the film thickness correction member is moved such that the stay time T satisfies T = A −1 Y. The manufacturing method according to claim 8, wherein
【請求項10】 i、j、Nを整数とし、前記蒸発源から
見た前記膜厚補正部材の前記輪郭部分の前記基板上への
投影ラインが前記基板の回転軸位置から長さRの位置ま
で移動するように該膜厚補正部材を走査する際の該移動
距離RをN等分した各点における該膜厚補正部材の滞在
時間をベクトルT=(ti ) =(t1 , t2 , ・・・,
N ) とし、前記基板の半径がRである場合に、該基板
表面上において前記回転軸を中心とする同心円であり、
R/Nの整数倍の半径をする同心円の複数の輪帯上にお
ける前記薄膜層の膜厚をベクトルY=(yi ) =
(y1 , y2 , ・・・、yN ) とし、該薄膜層の成膜速
度をkとし、行列Bを B=(bi,j ) bi,j = k (i≦N−j) bi,j = ( k /π)cos-1{(j−N)/(i−1/
2)}(i>N−j) とし、行列Bの逆行列をB-1としたときに前記滞在時間
TがT=B-1Y を満たすように前記膜厚補正部材を移
動させることを特徴とする請求項8記載の製造方法。
10. i, j, and N are integers, and a projection line of the contour portion of the film thickness correction member on the substrate as viewed from the evaporation source is a position having a length R from a rotation axis position of the substrate. The travel time of the film thickness correction member at each point obtained by dividing the moving distance R when scanning the film thickness correction member so as to move to N is represented by a vector T = (t i ) = (t 1 , t 2). ,…,
t N ), and when the radius of the substrate is R, it is a concentric circle centered on the rotation axis on the substrate surface,
The film thickness of the thin film layer on a plurality of concentric orbits having a radius that is an integral multiple of R / N is represented by a vector Y = (y i ) =
(Y 1 , y 2 ,..., Y N ), the deposition rate of the thin film layer is k, and the matrix B is B = (b i, j ) b i, j = k (i ≦ N−j) ) B i, j = (k / π) cos -1 {(j−N) / (i−1 /
2) When} (i> N−j), and the inverse matrix of the matrix B is B −1 , the film thickness correction member is moved so that the stay time T satisfies T = B −1 Y. The method according to claim 8, wherein:
【請求項11】 前記所望形状が非球面であり、かつ、前
記基板の反射面形状が該非球面に近似の球面または非球
面であることを特徴とする請求項5〜10記載の製造方
法。
11. The manufacturing method according to claim 5, wherein the desired shape is an aspherical surface, and a reflection surface shape of the substrate is a spherical surface or an aspherical surface approximate to the aspherical surface.
【請求項12】 請求項5〜11記載の製造方法により作製
した反射鏡の反射面にさらにX線反射多層膜を設けるこ
とによりX線反射鏡とするX線反射鏡の製造方法。
12. A method of manufacturing an X-ray reflecting mirror, wherein an X-ray reflecting mirror is formed by further providing an X-ray reflecting multilayer film on a reflecting surface of the reflecting mirror manufactured by the manufacturing method according to claim 5.
JP18737796A 1996-07-17 1996-07-17 Vacuum thin film forming apparatus and reflector manufacturing method Expired - Fee Related JP3861329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18737796A JP3861329B2 (en) 1996-07-17 1996-07-17 Vacuum thin film forming apparatus and reflector manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18737796A JP3861329B2 (en) 1996-07-17 1996-07-17 Vacuum thin film forming apparatus and reflector manufacturing method

Publications (2)

Publication Number Publication Date
JPH1030170A true JPH1030170A (en) 1998-02-03
JP3861329B2 JP3861329B2 (en) 2006-12-20

Family

ID=16204954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18737796A Expired - Fee Related JP3861329B2 (en) 1996-07-17 1996-07-17 Vacuum thin film forming apparatus and reflector manufacturing method

Country Status (1)

Country Link
JP (1) JP3861329B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266389B1 (en) 1998-09-14 2001-07-24 Nikon Corporation Method for manufacturing a device, an exposure apparatus, and a method for manufacturing an exposure apparatus
WO2002077692A1 (en) * 2001-03-27 2002-10-03 Nikon Corporation Optical system manufacturing method and exposure device having an optical system manufactured by the manufacturing method
JP2004533538A (en) * 2000-07-10 2004-11-04 オプネティクス コーポレイション Double scan thin film processing system
JP2007107071A (en) * 2005-10-17 2007-04-26 Showa Shinku:Kk Vacuum film formation apparatus and method
US7229532B2 (en) 2003-03-10 2007-06-12 Canon Kabushiki Kaisha Sputtering apparatus
KR101108151B1 (en) 2009-04-30 2012-01-31 삼성모바일디스플레이주식회사 Evaporating apparatus
JP2015049338A (en) * 2013-08-30 2015-03-16 Hoya株式会社 Spectacle lens and manufacturing method thereof
CN109188683A (en) * 2018-09-27 2019-01-11 联合光科技(北京)有限公司 The module system uniformity modification method and device of large aperture light combination mirror

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266389B1 (en) 1998-09-14 2001-07-24 Nikon Corporation Method for manufacturing a device, an exposure apparatus, and a method for manufacturing an exposure apparatus
JP2004533538A (en) * 2000-07-10 2004-11-04 オプネティクス コーポレイション Double scan thin film processing system
WO2002077692A1 (en) * 2001-03-27 2002-10-03 Nikon Corporation Optical system manufacturing method and exposure device having an optical system manufactured by the manufacturing method
US7229532B2 (en) 2003-03-10 2007-06-12 Canon Kabushiki Kaisha Sputtering apparatus
JP2007107071A (en) * 2005-10-17 2007-04-26 Showa Shinku:Kk Vacuum film formation apparatus and method
KR101108151B1 (en) 2009-04-30 2012-01-31 삼성모바일디스플레이주식회사 Evaporating apparatus
US8961692B2 (en) 2009-04-30 2015-02-24 Samsung Display Co., Ltd. Evaporating apparatus
JP2015049338A (en) * 2013-08-30 2015-03-16 Hoya株式会社 Spectacle lens and manufacturing method thereof
CN109188683A (en) * 2018-09-27 2019-01-11 联合光科技(北京)有限公司 The module system uniformity modification method and device of large aperture light combination mirror

Also Published As

Publication number Publication date
JP3861329B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
KR19990083312A (en) Lithography apparatus
US7083290B2 (en) Adjustment method and apparatus of optical system, and exposure apparatus
JPWO2007043414A1 (en) MULTILAYER REFLECTOR, MULTILAYER REFLECTOR MANUFACTURING METHOD, OPTICAL SYSTEM, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
US20060056038A1 (en) Aberration correcting optical system
JP2002222754A (en) Correcting device, aligner, method of manufacturing device, and device
US7543948B2 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
JP3861329B2 (en) Vacuum thin film forming apparatus and reflector manufacturing method
JPH1026698A (en) Device for forming thin film under vacuum and method for manufacturing reflector
EP1413908A2 (en) Projection optical system and exposure apparatus equipped with the projection optical system
TW403937B (en) Exposure device and method of manufacturing semiconductor device
JP2005166778A (en) Aligner and method of manufacturing device
KR20190092275A (en) Projection optical system, exposure apparatus, and method of manufacturing article
JP3958261B2 (en) Optical system adjustment method
JP2005172988A (en) Projection optical system and exposure device equipped with the projection optical system
JPH0789537B2 (en) X-ray reduction projection exposure system
US10126660B2 (en) Multilayer film reflector, method of manufacturing multilayer film reflector, projection optical system, exposure apparatus, and method of manufacturing device
JPWO2005091343A1 (en) Mirror, alignment method, optical unit manufacturing method and optical unit, and exposure apparatus
JPH088157A (en) Projector and exposer
JP3376291B2 (en) Exposure apparatus and device manufacturing method
JP2004115861A (en) Film-forming method, multilayered-film-forming method, film-forming apparatus and euv exposure device
TWI647545B (en) Manufacturing method of optical element, exposure device and article
JP2004258178A (en) Projection optical system and aligner provided with the projection optical system
JP2000286178A (en) Projection optical system, aligner and manufacture of the projection optical system
JP2002221596A (en) Aspherical mirror
JPH0784097A (en) Method for manufacturing aspheric mirror and measuring its shape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees