JPH05134203A - Dynamic pressure air bearing type optical deflector - Google Patents

Dynamic pressure air bearing type optical deflector

Info

Publication number
JPH05134203A
JPH05134203A JP32695591A JP32695591A JPH05134203A JP H05134203 A JPH05134203 A JP H05134203A JP 32695591 A JP32695591 A JP 32695591A JP 32695591 A JP32695591 A JP 32695591A JP H05134203 A JPH05134203 A JP H05134203A
Authority
JP
Japan
Prior art keywords
dynamic pressure
sleeve
pressure shaft
optical deflector
herringbone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32695591A
Other languages
Japanese (ja)
Other versions
JP2645773B2 (en
Inventor
Shigetaka Yoshimoto
成香 吉本
Akiyoshi Takahashi
明義 高橋
Rie Wakashima
理絵 若島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP32695591A priority Critical patent/JP2645773B2/en
Publication of JPH05134203A publication Critical patent/JPH05134203A/en
Application granted granted Critical
Publication of JP2645773B2 publication Critical patent/JP2645773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To maintain the bearing rigidity while decreasing the windage loss of a rotary polygon mirror or rotary single-surface mirror in its rotation by sucking air at the outer periphery of a motor rotation part through a hole constituting a dynamic pressure bearing part when the motor rotation part rotates to lower the atmospheric pressure in the optical deflector. CONSTITUTION:A dynamic pressure shaft 1 and a cover member 4 are fixed through an O ring 20 and the cover member 4 and a motor case 3 are fixed through an O ring 21 without any gap. The space in the motor rotation part and the outside are linked to each other through a lengthwise hole (g) formed in the dynamic pressure shaft 1 through the gap between the dynamic pressure shaft 1 and a sleeve 2 and holes (b) and (c) communicating with the hole (g). When a motor part consisting of a yoke 16, a coil 15, a Hall element 18, and a magnet 22 is driven, the sleeve 2 fixed to the magnet 22 rotates and the rotary polygon mirror 5 fixed to a hub 6, fixed to the sleeve 2, with a screw 9 further rotates. At this time, dynamic pressure is generated between the dynamic pressure shaft 1 and sleeve 2 and the bearing rigidity is generated with the dynamic pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、情報機器、画像機器、
計測機器に用いられる動圧空気軸受型光偏向器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to information equipment, image equipment,
The present invention relates to a dynamic pressure air bearing type optical deflector used in a measuring instrument.

【0002】[0002]

【従来の技術】従来例の動圧空気軸受型光偏向器の一例
の構造と作用とを図8から図12を参照して説明する。
図8は従来例の動圧空気軸受型光偏向器の断面図であ
る。動圧軸1aはモータケース3に焼きばめ等で隙間な
く固着されている。また、動圧軸1aとカバー部材4は
Oリング20を介して、又カバー部材4とモータケース
3はOリング21を介して、隙間なく固着されている。
モータケース3の開口部に架設した支持板17にホール
素子18を設ける。動圧軸1aの外周には円筒状スリー
ブ2が嵌挿してあり、更にスリーブ2の外周にはマグネ
ット22が嵌挿固着され、このスリーブ2と対面するよ
うにモータケース3の垂直側壁内に設けたヨーク16に
はコイル15を巻回する。モータケース3の内側壁上に
は、動圧軸1aの外周に渉ってスラスト動圧軸受12を
設け、スラスト動圧軸受12上にワッシャ13を配設す
る。また符号14はマグネット22の下端に設けられ、
ワッシャ13に固着したスペーサである。カバー部材4
内には、スリーブ2の外周に固定したハブ6とこのハブ
6に水平にネジ9で固着した回転多面鏡5とを、スリー
ブ2と共に動圧軸1aの外周を回転自在に、収納する。
又スリーブ2の上端とこれに対面するカバー部材4の内
側面にそれぞれ極性の異なる一対のスラスト抑え用磁石
10,11を配設する。モータ回転部内の空間と外部と
は、動圧軸1aとスリーブ2の間の隙間を通して、後述
する動圧軸1aに設けた入口Kを具えた長手方向の中心
孔Hgと、これに連通している孔Hb,Hcの開口部に
より流通している。コイル15に通電すると、ヨーク1
6、ホール素子18、マグネット22よりなるモータ駆
動部が作動して、その外周に、マグネット22を嵌挿固
着した円筒状スリーブ2がスラスト動圧軸受12に支持
され、動圧軸1aを芯として回転する。それと同時に前
記スリーブ2の外周に設けたハブ6と共に回転多面鏡5
が回転する。この際、動圧軸1aとスリーブ2の間に動
圧が発生し、この動圧により軸受剛性が生ずる。又磁石
10、11との間には磁石の反発力により適宜な隙間が
保持されている。動圧軸1aとスリーブ2との間の隙間
内の空気の圧力分布を、図9から図12で説明する。図
9は動圧軸1aの平面図で、動圧軸受部を示す。動圧軸
1aには互いに反対向きの吸入角βを持ったヘリングボ
ーン溝HdとHeと溝非加工部Hfより構成される一対
の動圧軸受部Maが設けてある。図10は動圧軸1aの
上半分の断面図であり、動圧軸1aの中心部の長手方向
に、大気と連通する入口Kを具えた中央孔Hgと、この
中央孔Hgに連通してスリーブ2の方向へ開口する孔H
b,Hcが穿設してある。又入口K付近にはフィルタ2
3が設けてある(図8)。孔Hb,Hcの開口部はヘリ
ングボーン溝Hd,Heの中心に位置しており、図9で
図示の従来例の動圧空気軸受型光偏向器の動圧軸受部M
aの境界条件は孔Hb,Hcの開口部分での空気の圧力
が大気圧に等しいということになる。又回転安定状態で
は、図11に図示のように、空気吸い込み口では軸方向
の質量流量は0になるので、この動圧軸受部Ma内の圧
力分布は図12に図示の状態となる。図12において縦
軸は代表値を大気圧にとった無次元圧力Pであり、P=
1のとき空気圧は大気圧に等しいことを示す。この従来
例では図12に示すように、動圧軸受部Maの両端の空
気吸い込み口では大気圧よりも圧力が低くなるから、図
8で示す動圧空気軸受型光偏向器内の空気圧は大気圧よ
りも低くなり、風損を小さくしているが、しかし、動圧
軸受部Maの内部の最大空気圧は前記の通り大気圧とな
っていた。
2. Description of the Related Art The structure and operation of an example of a conventional dynamic pressure air bearing type optical deflector will be described with reference to FIGS.
FIG. 8 is a sectional view of a conventional dynamic air bearing type optical deflector. The dynamic pressure shaft 1a is fixed to the motor case 3 by shrink fitting or the like without any gap. The dynamic pressure shaft 1a and the cover member 4 are fixed to each other via an O-ring 20, and the cover member 4 and the motor case 3 are fixed to each other via an O-ring 21 without any gap.
The Hall element 18 is provided on the support plate 17 that is installed over the opening of the motor case 3. A cylindrical sleeve 2 is fitted and fitted on the outer circumference of the dynamic pressure shaft 1a, and a magnet 22 is fitted and fixed on the outer circumference of the sleeve 2. The magnet 22 is provided in the vertical side wall of the motor case 3 so as to face the sleeve 2. The coil 15 is wound around the yoke 16. A thrust dynamic pressure bearing 12 is provided on the inner wall of the motor case 3 so as to extend over the outer circumference of the dynamic pressure shaft 1 a, and a washer 13 is disposed on the thrust dynamic pressure bearing 12. Reference numeral 14 is provided at the lower end of the magnet 22,
It is a spacer fixed to the washer 13. Cover member 4
A hub 6 fixed to the outer circumference of the sleeve 2 and a rotary polygon mirror 5 horizontally fixed to the hub 6 with screws 9 are housed therein together with the sleeve 2 so that the outer circumference of the dynamic pressure shaft 1a can be rotated.
A pair of thrust suppressing magnets 10 and 11 having different polarities are provided on the upper end of the sleeve 2 and the inner surface of the cover member 4 facing the upper end of the sleeve 2. The space inside the motor rotating portion and the outside communicate with a longitudinal center hole Hg having an inlet K provided in the dynamic pressure shaft 1a, which will be described later, through a gap between the dynamic pressure shaft 1a and the sleeve 2, and to communicate therewith. It circulates through the openings of the holes Hb and Hc. When the coil 15 is energized, the yoke 1
6, the motor drive unit composed of the Hall element 18 and the magnet 22 operates, and the cylindrical sleeve 2 in which the magnet 22 is fitted and fixed is supported by the thrust dynamic pressure bearing 12 on the outer periphery thereof, and the dynamic pressure shaft 1a is used as the core. Rotate. At the same time, together with the hub 6 provided on the outer circumference of the sleeve 2, the rotary polygon mirror 5
Rotates. At this time, a dynamic pressure is generated between the dynamic pressure shaft 1a and the sleeve 2, and this dynamic pressure causes bearing rigidity. An appropriate gap is maintained between the magnets 10 and 11 by the repulsive force of the magnets. The pressure distribution of the air in the gap between the dynamic pressure shaft 1a and the sleeve 2 will be described with reference to FIGS. 9 to 12. FIG. 9 is a plan view of the dynamic pressure shaft 1a, showing a dynamic pressure bearing portion. The dynamic pressure shaft 1a is provided with a pair of dynamic pressure bearing portions Ma including herringbone grooves Hd and He having suction angles β opposite to each other and a groove non-machined portion Hf. FIG. 10 is a cross-sectional view of the upper half of the dynamic pressure shaft 1a. In the longitudinal direction of the central portion of the dynamic pressure shaft 1a, a central hole Hg having an inlet K communicating with the atmosphere and a central hole Hg communicating with the central hole Hg. Hole H that opens in the direction of sleeve 2
b and Hc are drilled. Filter 2 near the entrance K
3 is provided (FIG. 8). The openings of the holes Hb and Hc are located at the centers of the herringbone grooves Hd and He, and the dynamic pressure bearing portion M of the conventional dynamic pressure air bearing type optical deflector shown in FIG.
The boundary condition of a is that the pressure of the air at the openings of the holes Hb and Hc is equal to the atmospheric pressure. Further, in the stable rotation state, as shown in FIG. 11, the mass flow rate in the axial direction becomes 0 at the air suction port, so the pressure distribution in the dynamic pressure bearing portion Ma becomes the state shown in FIG. In FIG. 12, the vertical axis is the dimensionless pressure P with the representative value being atmospheric pressure, and P =
A value of 1 indicates that air pressure is equal to atmospheric pressure. In this conventional example, as shown in FIG. 12, the air intake ports at both ends of the dynamic pressure bearing portion Ma have a pressure lower than the atmospheric pressure. Therefore, the air pressure in the dynamic pressure air bearing type optical deflector shown in FIG. 8 is large. Although it is lower than the atmospheric pressure to reduce the wind loss, the maximum air pressure inside the dynamic pressure bearing portion Ma is the atmospheric pressure as described above.

【0003】[0003]

【発明の解決すべき課題】前記従来例の動圧空気軸受型
光偏向器では、モータ回転部の回転により回転多面鏡、
回転単面鏡を含むモータ回転部の外周における気圧を低
下させて回転多面鏡又は回転単面鏡の風損を少なくする
ために動圧軸とスリーブとの隙間の気圧を大気圧として
いるので、軸受剛性が低くなるという問題点があった。
In the conventional dynamic pressure air bearing type optical deflector, the rotary polygon mirror is rotated by the rotation of the motor rotating portion.
Since the atmospheric pressure in the gap between the dynamic pressure shaft and the sleeve is atmospheric pressure in order to reduce the air pressure in the outer periphery of the motor rotating portion including the rotating single-sided mirror and reduce the wind loss of the rotating polygonal mirror or the rotating single-sided mirror, There is a problem that the bearing rigidity becomes low.

【0004】[0004]

【課題を解決するための手段】本発明は前記問題を解決
するためになされたもので、ケース3に立設した動圧軸
1の外周を回転多面鏡5又は回転単面鏡と共に回転自在
のモータ回転部をケース3とカバー部材4内に収納した
光偏向器において、外周にヘリングボーン溝q,d,
e,d,e,rを穿設した動圧軸1の中心部の長手方向
に、大気と連通している中央孔gを穿設し、両側端に位
置するヘリングボーン溝q,rとその内側に位置するヘ
リングボーン溝d,eとの中心位置に、この中央孔gと
連通しており動圧軸1とスリーブ2との隙間方向へ開口
した孔b,cを穿設し、モータ回転部の回転により回転
多面鏡5、回転単面鏡を含むモータ回転部の外周におけ
る気圧を低下せしめながら動圧軸1とスリーブ2との隙
間の気圧を大気圧よりも高く保ち、回転多面鏡5又は回
転単面鏡の風損を少なくしつつ軸受剛性を高めるもので
ある。
The present invention has been made to solve the above-mentioned problems, and the outer periphery of a dynamic pressure shaft 1 erected on a case 3 is rotatable together with a rotary polygon mirror 5 or a rotary single-sided mirror. In the optical deflector in which the motor rotating portion is housed in the case 3 and the cover member 4, the herringbone grooves q, d,
A central hole g communicating with the atmosphere is formed in the longitudinal direction of the central portion of the dynamic pressure shaft 1 in which e, d, e, and r are formed, and the herringbone grooves q and r located at both ends and Holes b and c, which communicate with the central hole g and are opened in the gap direction between the dynamic pressure shaft 1 and the sleeve 2, are formed at the center positions of the herringbone grooves d and e located on the inner side to rotate the motor. The pressure of the gap between the dynamic pressure shaft 1 and the sleeve 2 is kept higher than the atmospheric pressure while lowering the atmospheric pressure at the outer periphery of the rotating polygon mirror 5 and the rotating portion of the motor including the rotating single-sided mirror by the rotation of the rotary polygon mirror 5. Alternatively, the bearing rigidity is increased while reducing the windage loss of the rotating single-sided mirror.

【0005】[0005]

【作用】本発明の動圧空気軸受型光偏向器においては、
モータ回転部が回転すると動圧軸受部を構成する孔がモ
ータ回転部外周における空気を吸い込むことにより、光
偏向器内部の気圧を下げると同時に動圧軸とスリーブと
の隙間の気圧を大気圧よりも高めることによって、回転
多面鏡又は回転単面鏡による風損を少なくしたままで剛
性を高めることができる。
In the dynamic pressure air bearing type optical deflector of the present invention,
When the motor rotating part rotates, the hole forming the dynamic pressure bearing part sucks air in the outer periphery of the motor rotating part to lower the air pressure inside the optical deflector and at the same time reduce the pressure in the gap between the dynamic pressure shaft and the sleeve from atmospheric pressure. By also increasing, the rigidity can be increased while reducing the windage loss due to the rotary polygon mirror or the rotary single mirror.

【0006】[0006]

【実施例】以下添付図面を参照して、本発明に係る動圧
空気軸受型光偏向器の実施例について説明する。尚、本
実施例においては回転多面鏡を装着した動圧空気軸受型
光偏向器について述べているが、回転単面鏡を装着して
もよいことは勿論である。尚従来例の動圧空気軸受型光
偏向器の説明において採用した符号のうち、本実施例と
同一のものは同一部材を示す。図1は本発明による動圧
空気軸受型光偏向器の断面図である。動圧軸1はモータ
ケース3に焼きばめ等で隙間なく固着されている。又、
動圧軸1とカバー部材4はOリング20を介して、又カ
バー部材4とモータケース3とはOリング21を介して
隙間なく固着されている。モータ回転部内の空間と外部
とは、動圧軸1とスリーブ2の間の隙間を通して、後述
する動圧軸1に設けた長手方向の中心孔gと、これに連
通している孔b,cの開口部により流通している。ヨー
ク16、コイル15…、ホール素子18、マグネット2
2から構成されるモータ部を駆動すると、マグネット2
2が固着された中空円筒形のスリーブ2が回転し、更
に、スリーブ2に固着されたハブ6にネジ9で固着され
た回転多面鏡5が回転する。この際、動圧軸1とスリー
ブ2の間に動圧が発生し、この動圧により軸受剛性が生
ずる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a dynamic pressure air bearing type optical deflector according to the present invention will be described below with reference to the accompanying drawings. In this embodiment, a dynamic pressure air bearing type optical deflector equipped with a rotary polygon mirror is described, but it goes without saying that a rotary single mirror may be installed. Among the reference numerals used in the description of the conventional dynamic air bearing type optical deflector, the same members as those in this embodiment indicate the same members. FIG. 1 is a sectional view of a dynamic pressure air bearing type optical deflector according to the present invention. The dynamic pressure shaft 1 is firmly fixed to the motor case 3 by shrink fitting or the like. or,
The dynamic pressure shaft 1 and the cover member 4 are fixed to each other via an O-ring 20, and the cover member 4 and the motor case 3 are fixed to each other via an O-ring 21 without any gap. A space in the motor rotating portion and the outside are passed through a gap between the dynamic pressure shaft 1 and the sleeve 2 and a longitudinal center hole g provided in the dynamic pressure shaft 1 described later and holes b and c communicating with the central hole g. Is distributed through the opening. Yoke 16, coil 15, ..., Hall element 18, magnet 2
When the motor unit composed of 2 is driven, the magnet 2
The hollow cylindrical sleeve 2 to which 2 is fixed rotates, and the rotary polygon mirror 5 fixed to the hub 6 fixed to the sleeve 2 with a screw 9 also rotates. At this time, a dynamic pressure is generated between the dynamic pressure shaft 1 and the sleeve 2, and this dynamic pressure causes bearing rigidity.

【0007】動圧軸1とスリーブ2との間の隙間内の空
気の圧力分布を、図2から図7で説明する。図2は動圧
軸1の断面図で、動圧軸受部Mを示す。動圧軸1には、
互いに反対向きの吸入角βを持ったヘリングボーン溝d
とeと溝非加工部fより構成される2対の動圧軸受M,
Mと、この2対の動圧軸受M,Mの両側端に位置し、と
なりあうヘリングボーン溝d,eと同じ向きの吸入角β
を持ったヘリングボーン溝qとrが設けてある。又動圧
軸受Mは、図4に示すように溝非加工部をなくして、全
面加工を施したヘリングボーン溝d1,e1のみであっ
てもよい。図3は動圧軸1の上半分の断面図であり、動
圧軸1の中心部の長手方向に、大気と連通する入口Kを
具えた中央孔gと、この中央孔gに連通してスリーブ2
の方向へ開口する孔b,cが穿設してある。入口K付近
にはフィルタ23が設けてある。孔b,cの開口部は、
動圧軸受M,Mとその外側に設けたヘリングボーン溝q
及びrとの、それぞれの中心に位置しており、図1で図
示の本発明に係る動圧空気軸受型光偏向器の動圧軸1の
境界条件は孔b,cの開口部分での空気の圧力が大気圧
に等しいということになる。又回転安定状態では、図6
に図示のように、空気吸い込み口では軸方向の質量流量
は0になるので、この動圧軸1内の圧力分布は図7に図
示の状態となる。図7において縦軸は代表値を大気圧に
とった無次元圧力Pであり、P=1のとき空気圧は大気
圧に等しいことを示す。本発明では、前記の通り動圧軸
受Mとヘリングボーン溝q及びrとの中心に位置する孔
b,cの開口部分での空気の圧力が大気圧に等しくなる
ため、図7に示すように空気吸い込み口における気圧は
大気圧よりも低くなって、図1で示す動圧空気軸受型光
偏向器内の気圧も大気圧より低くなるが、動圧軸1とス
リーブ2との間の隙間内の最大空気圧は大気圧よりも高
くなり、風損を低下させたまま軸受剛性を高めることが
できる。
The pressure distribution of the air in the gap between the dynamic pressure shaft 1 and the sleeve 2 will be described with reference to FIGS. 2 to 7. FIG. 2 is a sectional view of the dynamic pressure shaft 1, showing a dynamic pressure bearing portion M. In the dynamic pressure shaft 1,
Herringbone groove d with suction angles β opposite to each other
And e and two pairs of hydrodynamic bearings M composed of a groove-unmachined portion f,
M and the suction angle β in the same direction as the herringbone grooves d and e that are located at both ends of the two pairs of dynamic pressure bearings M and M
There are provided herringbone grooves q and r. Further, as shown in FIG. 4, the hydrodynamic bearing M may have only the herringbone grooves d1 and e1 which have been subjected to the entire surface processing without the groove non-processed portion. FIG. 3 is a cross-sectional view of the upper half of the dynamic pressure shaft 1. In the longitudinal direction of the central portion of the dynamic pressure shaft 1, a central hole g having an inlet K communicating with the atmosphere and a central hole g communicating with the central hole g. Sleeve 2
Holes b and c that open in the direction of are formed. A filter 23 is provided near the entrance K. The openings of the holes b and c are
Dynamic bearings M, M and herringbone groove q provided on the outside thereof
And r, which are located at the respective centers, and the boundary condition of the dynamic pressure shaft 1 of the dynamic air bearing type optical deflector according to the present invention shown in FIG. 1 is that the air at the opening portions of the holes b and c is The pressure of is equal to the atmospheric pressure. When the rotation is stable,
As shown in FIG. 7, the mass flow rate in the axial direction is 0 at the air suction port, so the pressure distribution in the dynamic pressure shaft 1 becomes the state shown in FIG. In FIG. 7, the vertical axis represents the dimensionless pressure P whose representative value is atmospheric pressure, and when P = 1, the air pressure is equal to atmospheric pressure. In the present invention, as described above, since the air pressure at the opening portions of the holes b and c located at the centers of the dynamic bearing M and the herringbone grooves q and r becomes equal to the atmospheric pressure, as shown in FIG. The air pressure at the air suction port becomes lower than the atmospheric pressure, and the air pressure inside the dynamic pressure air bearing type optical deflector shown in FIG. 1 also becomes lower than the atmospheric pressure. However, in the gap between the dynamic pressure shaft 1 and the sleeve 2. The maximum air pressure is higher than the atmospheric pressure, and the bearing rigidity can be increased while reducing the wind loss.

【0008】[0008]

【効果】以上詳細に説明したように、本発明によれば、
回転多面鏡の周囲圧力を下げたまま動圧軸受内部すなわ
ち動圧軸とスリーブの隙間の気圧を高めることができる
ので、風損を小さくしてモータの省力化を行う際にも軸
受剛性を低下させることがなく、モータの性能を維持で
きる。
As described above in detail, according to the present invention,
Since the air pressure inside the dynamic pressure bearing, that is, the gap between the dynamic pressure shaft and the sleeve can be increased while reducing the ambient pressure of the rotating polygon mirror, the bearing rigidity is also reduced when the wind loss is reduced and the motor labor is saved. The performance of the motor can be maintained without causing it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る動圧空気軸受型光偏向器の一実施
例の断面図。
FIG. 1 is a sectional view of an embodiment of a dynamic pressure air bearing type optical deflector according to the present invention.

【図2】本発明に係る動圧空気軸受型光偏向器の動圧軸
受部の一実施例の平面図。
FIG. 2 is a plan view of an embodiment of a dynamic pressure bearing portion of a dynamic pressure air bearing type optical deflector according to the present invention.

【図3】図2の動圧軸受部の上半分断面図。3 is a sectional view of the upper half of the dynamic pressure bearing portion of FIG.

【図4】本発明に係る動圧空気軸受型光偏向器の動圧軸
受部の別の実施例の平面図。
FIG. 4 is a plan view of another embodiment of the dynamic pressure bearing portion of the dynamic pressure air bearing type optical deflector according to the present invention.

【図5】図4の動圧軸受部の上半分断面図。5 is an upper half sectional view of the dynamic pressure bearing portion of FIG.

【図6】図2に図示するヘリングボーン溝を具えたスリ
ーブを含む動圧軸受部の断面図。
6 is a cross-sectional view of a dynamic pressure bearing portion including a sleeve having a herringbone groove illustrated in FIG.

【図7】図6に示す動圧空気軸受型光偏向器の動圧軸受
部周辺の圧力分布の図。
7 is a diagram showing a pressure distribution around a dynamic pressure bearing portion of the dynamic pressure air bearing type optical deflector shown in FIG.

【図8】従来例の動圧空気軸受型光偏向器の断面図。FIG. 8 is a cross-sectional view of a conventional dynamic pressure air bearing type optical deflector.

【図9】従来例の動圧空気軸受型光偏向器の動圧軸受部
の平面図。
FIG. 9 is a plan view of a dynamic pressure bearing portion of a conventional dynamic pressure air bearing type optical deflector.

【図10】図9の動圧軸受部の上半分断面図。10 is a sectional view of the upper half of the dynamic pressure bearing portion of FIG.

【図11】図9に図示するヘリングボーン溝を具えたス
リーブを含む動圧軸受部の断面図。
11 is a cross-sectional view of a hydrodynamic bearing portion including a sleeve having a herringbone groove illustrated in FIG.

【図12】図11に示す動圧空気軸受型光偏向器の動圧
軸受部周辺の圧力分布の図。
12 is a diagram showing a pressure distribution around a dynamic pressure bearing portion of the dynamic pressure air bearing type optical deflector shown in FIG.

【符号の説明】[Explanation of symbols]

1 動圧軸 2 スリーブ 3 モータケース 5 回転多面鏡 10 スラスト抑え用磁石 11 スラスト抑え用磁石 12 スラスト動圧軸受 13 ワッシャ 15 コイル 16 ヨーク 20 Oリング 21 Oリング 22 マグネット 23 フィルタ b 孔 c 孔 d ヘリングボーン溝 e ヘリングボーン溝 d1 ヘリングボーン溝 e1 ヘリングボーン溝 q ヘリングボーン溝 r ヘリングボーン溝 f 溝非加工部 g 中央孔 K 入口 M 動圧空気軸受部 1 dynamic pressure shaft 2 sleeve 3 motor case 5 rotating polygon mirror 10 thrust suppressing magnet 11 thrust suppressing magnet 12 thrust dynamic pressure bearing 13 washer 15 coil 16 yoke 20 O-ring 21 O-ring 22 magnet 23 filter b hole c hole d herring Bone groove e Herringbone groove d1 Herringbone groove e1 Herringbone groove q Herringbone groove r Herringbone groove f Groove unprocessed part g Central hole K Inlet M Dynamic air bearing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若島 理絵 埼玉県入間市新久下新田110−1 コパル 電子株式会社入間事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rie Wakashima 110-1 Shinkushita Nitta, Iruma City, Saitama Copal Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ケースに立設した動圧軸の外周を回転多
面鏡又は回転単面鏡と共に回転自在のモータ回転部をケ
ースとカバー部材内に収納した光偏向器において、外周
にヘリングボーン溝を穿設した動圧軸の中心部の長手方
向に、大気と連通している中央孔を穿設し、両側端に位
置するヘリングボーン溝とその内側に位置するヘリング
ボーン溝との中心位置に、この中央孔と連通しており動
圧軸とスリーブとの隙間方向へ開口した孔を穿設し、モ
ータ回転部の回転により回転多面鏡、回転単面鏡を含む
モータ回転部の外周における気圧を低下せしめながら動
圧軸とスリーブとの隙間の気圧を大気圧よりも高く保
ち、回転多面鏡又は回転単面鏡の風損を少なくしつつ軸
受剛性を高めることを特徴とする動圧空気軸受型光偏向
器。
1. An optical deflector having a case and a cover member in which a motor rotating portion, which is rotatable together with a rotating polygon mirror or a rotating single-faced mirror, is housed on the outer circumference of a dynamic pressure shaft erected on the case, and a herringbone groove is formed on the outer circumference. In the longitudinal direction of the central part of the dynamic pressure shaft that was drilled, a central hole communicating with the atmosphere is drilled, and it is located at the center position of the herringbone groove located on both ends and the herringbone groove located inside it. , A hole communicating with this central hole and opened in the direction of the gap between the dynamic pressure shaft and the sleeve is formed, and the rotation of the motor rotating part causes the pressure on the outer periphery of the rotating part of the motor including the rotating polygon mirror and the rotating single-sided mirror. While maintaining the air pressure in the gap between the dynamic pressure shaft and the sleeve higher than atmospheric pressure while reducing the wind loss of the rotating polygon mirror or rotating single-sided mirror, and increasing the bearing rigidity. Type optical deflector.
【請求項2】 動圧軸の外周には互いに異なる方向の吸
入角を持つ複数対のヘリングボーン溝と、さらにこれら
の複数対のヘリングボーン溝の両側端にそれぞれ1つの
ヘリングボーン溝を刻設し、前記ヘリングボーン溝のう
ち両側端に位置するヘリングボーン溝ととなりあうヘリ
ングボーン溝とのそれぞれの中心位置に開口した孔を穿
設してなる請求項1記載の動圧空気軸受型光偏向器。
2. A plurality of pairs of herringbone grooves having suction angles in directions different from each other are formed on the outer periphery of the dynamic pressure shaft, and further, one herringbone groove is formed on each side end of the plurality of pairs of herringbone grooves. 2. A hydrodynamic air bearing type optical deflector according to claim 1, wherein holes are opened at respective center positions of the herringbone grooves located at both ends of the herringbone grooves and the herringbone grooves which are adjacent to each other. vessel.
JP32695591A 1991-11-15 1991-11-15 Dynamic pressure air bearing type optical deflector Expired - Lifetime JP2645773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32695591A JP2645773B2 (en) 1991-11-15 1991-11-15 Dynamic pressure air bearing type optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32695591A JP2645773B2 (en) 1991-11-15 1991-11-15 Dynamic pressure air bearing type optical deflector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33264696A Division JP2980854B2 (en) 1996-11-08 1996-11-08 Dynamic pressure air bearing type optical deflector

Publications (2)

Publication Number Publication Date
JPH05134203A true JPH05134203A (en) 1993-05-28
JP2645773B2 JP2645773B2 (en) 1997-08-25

Family

ID=18193648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32695591A Expired - Lifetime JP2645773B2 (en) 1991-11-15 1991-11-15 Dynamic pressure air bearing type optical deflector

Country Status (1)

Country Link
JP (1) JP2645773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564819U (en) * 1992-01-30 1993-08-27 コパル電子株式会社 Hydrodynamic bearing type optical deflector
KR20020042786A (en) * 2002-05-11 2002-06-07 황철홍 Centrifuge type dynamic air bearing utilizing a magnetic levitation
JP2005083506A (en) * 2003-09-09 2005-03-31 Canon Inc Air bearing device
US11150572B2 (en) 2015-01-22 2021-10-19 Hp Indigo B.V. Imaging and printing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286277B2 (en) 2014-05-12 2018-02-28 日本電産コパル電子株式会社 Fluid dynamic pressure bearing, motor, optical deflector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564819U (en) * 1992-01-30 1993-08-27 コパル電子株式会社 Hydrodynamic bearing type optical deflector
KR20020042786A (en) * 2002-05-11 2002-06-07 황철홍 Centrifuge type dynamic air bearing utilizing a magnetic levitation
JP2005083506A (en) * 2003-09-09 2005-03-31 Canon Inc Air bearing device
US11150572B2 (en) 2015-01-22 2021-10-19 Hp Indigo B.V. Imaging and printing system

Also Published As

Publication number Publication date
JP2645773B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPH07306373A (en) Hermetically closed polygon scanner
JPH05134203A (en) Dynamic pressure air bearing type optical deflector
US5690519A (en) Underwater propulsive device
JPS61258643A (en) Outer rotor dc brushless motor
JP2980854B2 (en) Dynamic pressure air bearing type optical deflector
JPH0527194A (en) Dynamical pressure air bearing type optical deflector
JP3084600B2 (en) Dynamic pressure air bearing type optical deflector
JP3092026B2 (en) Dynamic pressure air bearing type optical deflector
JP2918793B2 (en) Single bearing fan motor
JPH0742214Y2 (en) Fluid bearing motor
JPH06284666A (en) Brushless motor
CN1324789C (en) Rotary balance construction of fan motor rotor
JP2000232753A (en) Motor
TWI389428B (en) Inner type of motor and a claw-pole stator thereof
JPH05219708A (en) Brushless motor
JPH0392597U (en)
JP3154751B2 (en) Polygon scanner
JPH0862527A (en) Scanner motor for driving polygon mirror
JP2915878B2 (en) Motor with hemispherical bearing
JPH0514631U (en) Dynamic pressure air bearing
JPH0682712A (en) High speed rotating polygon mirror light deflecting device
JPH02126216A (en) Scanner unit
JPH0239119A (en) Rotary polygon mirror driving device
JPH05184099A (en) Polygon scanner motor equipped with bearing unit
JPS63113516A (en) Rotary polygon mirror device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15